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Abstract
This note describes the parameterisation of the monochromatic LSF as function of AL
position and wavelength used in the external calibration model for XP instruments.
The model is based on a set of 2D basis functions derived with generalised principal
component analysis of a large set of synthetic PSF/LSF.
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1 Introduction

The external calibration model for XP spectra has been described in Montegriffo (PMN-007).
However the details related to the LSF model therein contained were never properly described
in a dedicated technical note. That model was based on a parameterisation done through a set of
2D basis functions that were assembled starting from 1D basis functions derived with Principal
Component Analysis (PCA) on a large set of theoretically computed monochromatic PSFs:
PCA was run several times on PSF sets at different wavelengths and then, using a complex
interpolation scheme, a grid of basis function sets for monochromatic LSFs corresponding to
wavelengths ranging from 300 to 1100 nm with 1 nm spacing was finally produced (some more
details can be found on the presentation given at the eleventh CU5 plenary meeting held in
Bologna on April 2012, see link). However, to properly model the variation of the LSF with
wavelength it was necessary to introduce an interpolation scheme based on CF-015 suggestion,
where the coefficients multiplying the basis functions were modelled by low order polynomials,
as can be seen in Eq. 6 in PMN-007. When we started the review of the whole procedure for
the present technical note we discovered few subtle flaws in the PSF simulation algorithm that
left their sign into the basis functions; moreover the implementation of the model into PhotPipe
resulted into excessively bulky code that lead us to the decision of rethinking the whole implant
of the model. The two main consequences were the recalculation of the whole set of random
PSF/LSF on which the basis functions are built, and the implementation in MATLAB of the
Generalised Principal Component Analysis (GPCA) algorithm instead of PCA to derive our
model.

2 The LSF-084 scheme

In a series of studies (LL-084, LL-088) Lindegren proposes a minimum-dimension LSF model
suitable to describe AF polychromatic LSFs: the present technical note follows closely the
protocol defined by these works changing only few aspects to better fit our goals, e.g. building
up a proper model for XP monochromatic LSF.

Lindegren (LL-084) model the LSF as a linear combination of basis functions that have been
derived using PCA of a large number of theoretically computed and physically plausible LSFs.
The physical model for the PSF is built including/modelling the following elements:

• the optical wavefront error (WFE) map which is modelled by a linear combination
of normalised Legendre polynomials up to the 6th order: these maps are randomly
generated and scaled to have a RMS uniformly distributed between 40 and 60 nm;

• the pixel binning and four-phase TDI charge transfer;

• the charge diffusion;
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Polychromatic LSF/PSFs are computed as photon-weighted averages of the monochromatic
LSF/PSFs using random spectral energy distributions (SED) as weighting function. LSFs are
derived by integrating PSFs in the AC direction and then normalised to unit area. AL and
AC smearing due to image motion relative to the mean charge motion during exposure is not
taken into account because this effect can be simulated applying a smearing a posteriori. A
large number of polychromatic LSFs is obtained by combining 200 random WFE maps with 50
random SEDs (giving thus 10000 different realisations of LSFs). Each LSF is then considered
twice by mirroring it around u = 0 for symmetry reasons. The mean LSF is then calculated
and subtracted from each of the 20000 LSFs. PCA is then run to compute the optimal basis
functions for the LSF representation.

This scheme has been followed also to build up the present model but with a few remarkable
differences:

• while LL-084 model depends on a single variable (the AL position), the present one
aims to model monochromatic LSFs as function of AL position and wavelength,
thus we are looking for a 2D representation;

• we have found a fault in the PSF simulation code that introduces wavelength depen-
dent errors in the LSF shape that is largely discussed in Sect. 3;

• PCA is a well known dimension reduction scheme but it cannot take into account
the spatial locality of features in 2D images: hence we have implemented GPCA to
compute the optimal set of basis functions, as discussed in Sect. 4.

The original MATLAB code written by Lindegren and available in SVN was used as starting
framework and then integrated with few original routines specifically developed for the present
purposes. This code is available under SVN at this link.

3 PSF modelling and wavelength sampling

The numerical calculation of the PSF and LSF has been discussed by Lindegren in various
technical notes (see Lindegren (LL-046)). Here we report for convenience a brief summary of
all relevant equations.

Let (x, y) be linear coordinates in the pupil plane in units of [m], and (u, v) the corresponding
angular coordinates in the image plane in units of [rad]. For a given WFE map w(x, y) the
normalised monochromatic optical PSF is given by:

PO
λ (u, v) =

1

λ2DxDy

[∫ ∫ ∞
−∞

A(x, y) exp

[
i
2π

λ
(xu+ yv)

]
dx dy

]2
(1)

Technical Note 5

https://gaia.esac.esa.int/dpacsvn/DPAC/CU5/docs/GAIA-C5-TN-OABO-PMN-012/MATLAB/


CU5-DU14 GAIA-C5-TN-OABO-PMN-012-1

where λ is the wavelength, Dx and Dy the pupil dimensions along x and y and A the complex
amplitude of the incident wavefront in the pupil plane:

A(x, y) =

 exp
[
i2π
λ
w (x, y)

]
for (x, y) ∈ pupil

0 otherwise
(2)

Eq. 1 is computed through a discrete Fourier transform (DFT) that requires to evaluate the pupil
function A on a discrete grid of Nx ×Ny pixels with some steps ∆x and ∆y. This corresponds
to mapping the image plane on a corresponding grid with steps ∆u and ∆v respectively. The
DFT algorithm requires that Nx∆x∆u = λ and Ny∆y∆v = λ. The PSF image is computed on
a sub-pixel grid with a sampling distance of su and sv in each coordinate. If pu and pv are the
pixel size (in radians), then ∆u = su pu and ∆v = sv pv and consequently

∆x =
λ

Nxsupu
, ∆y =

λ

Nysvpv
, (3)

The sampling steps su and sv are free parameters and must be small enough to sample the image
at least to the Nyquist frequency, which means that:

su ≤
λmin

2Dxpu
, sv ≤

λmin
2Dypv

, (4)

For the Gaia case, λmin = 300 nm, Dx = 1.4510 m, Dy = 0.5016 m, pu = (10µm)/(35m) and
pv = (30µm)/(35m) resulting in su ≤ 0.36182 and sv ≤ 0.34888. The PSF image computed
by DFT is a periodic function of u and v with periods Nx∆u and Ny∆v respectively. Since
at some distance from the centre the intensity decreases with u−2 and v−2, in order to reach a
relative accuracy r at some distance u, v from the centre it is necessary that

Nx >
u

∆u
r−1/2, Ny >

v

∆v
r−1/2 (5)

With su = sv = 1/8, to have an accuracy of 10% at u = ±10 pixel it is necessary to set Nx >
800. Lindegren (LL-084) assumed for his computationsNx = 1024,Ny = 512: monochromatic
LSFs were computed for 39 wavelengths, geometrically spaced from 330 to 1015 nm (i.e.,
with a constant factor 1.03 between successive wavelengths). However, despite the fact that
the provided equations are valid for any wavelength value, the implementation based on DFT
introduces some subtle and insidious wavelength dependent systematic error that seems to have
gone unnoticed so far. This systematic can be easily seen in Fig. 1 where monochromatic LSFs
for a given WFE map have been computed on a fine wavelength grid with a sampling of 1 nm.
The diffraction patterns should vary linearly with wavelength and the LSF should have some
smooth appearance while the computed one seems to be assembled from ribbons resulting in a
discontinuous surface. Some ill behaviour is seen also in the right panel representing on a linear
scale the crest of the LSF as function of wavelength.

This behaviour can be understood by noticing that the pupil area is sampled on a grid that
changes with wavelength as seen by Eq. 3; the maximum sampled coordinate on the pupil for a
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FIGURE 1: Complex effect of the incomplete pupil coverage on a randomly generated
monochromatic LSF as function of wavelength. Left: logarithmic representation of the LSF in
the wavelength range [550−1015] nm ; Right: linear representation of the LSF value computed
at u = 0 in the wavelength range [600− 800] nm.

given wavelength λ, normalised in the range [−1,+1] is given by:

xmax = floor

(
NxsupuDx

2λ

)/(NxsupuDx

2λ

)
(6)

This means that the effective pupil of the instrument is a function of the wavelength as can be
seen in Fig. 2 where the fraction of the pupil coverage is plotted against the wavelength for the
AL and AC sampling scheme: having the pupil area not fully covered by the sampling is like
having an instrument with a smaller diameter. The scale of the LSF (the FWHM as well as
the angular dimension of the diffraction patters) should increase linearly with λ/D but also D
locally increases with λ and this causes the overall pattern seen in Fig. 1. This effect may be
minimal at shorter wavelength but becomes progressively larger at the red end. An easy way to
ensure a proper pupil coverage is to select only those wavelengths where this naturally happens:

λi =
NxsupuDx

2i
for 1 ≤ x ≤ Nx

2
; (7)

However this wavelength sampling scheme ensures a correct coverage for the AL scan direction
only as can be seen from Fig. 2. The only way to remove effects due to AC irregular sampling
is to change the AC sampling step sv accordingly to the following relation:

sv = su
Nx

Ny

Dx

Dy

1

3
; (8)

where the last factor comes from the ratio between AL and AC pixel size. In this way the
sampling scheme given by Eq.7 is optimal also for the AC pupil coverage.

3.1 Simulations for current analysis

The modulation transfer function (MTF) to compute the effective PSF models the along-scan
pixel integration, the along-scan four-phase TDI charge transfer, the across scan pixel integra-
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FIGURE 2: Maximum pupil coverage in AL and AC as a function of wavelength obtained
for sampling steps su = sv = 1/8 pixel and for a number of discretisation points Nx =
1024, Ny = 512. The pupil coverage is shown for two different wavelength ranges.

tion and the charge diffusion (modelled as a bivariate normal distribution with diffusion width
σu = σv = 4 µm).

The requirements for the current analysis are the following:

• sampling step su = 1/16;

• accuracy of the simulation r = 1% up to sample u = ±25 pixels from the centre;

• wavelength sampling scheme to ensure homogeneous pupil coverage both in AL
and AC directions.

The 1st requirement comes from the fact that the AL sampling grid of the simulated LSFs will
constitute the sampling grid for the basis functions which, as will be shown in following sec-
tions, exhibit features with spatial frequencies higher than those present in a typical LSF, so a
higher sampling density is advisable for a more accurate analytical representation of the derived
basis itself. The 2nd requirement was set to minimise any possible effect of the small discon-
tinuity present at the boundaries of the tails approximation, especially at longer wavelengths.
Eq. 5 resulted in Nx > 4000 pixel. Since DFT algorithms are highly efficient for array lengths
that are powers of 2, we set Nx = 4096. The 3rd requirement has been achieved by setting the
AC sampling step sv accordingly to Eq. 8.

The final settings adopted for the simulations are: Nx = 4096, Ny = 1024, su = 0.0625,
sv = 0.2411, umax = 26 pixel; each LSF is then sampled in the AL direction on a grid of
nu = 833 samples.

The achieved sv value is well below the limit set by the Nyquist frequency; the chosen AC
image dimension Ny ensures to compute the PSFs with an accuracy in the AC direction of
1% up to ±24.6 pixel from the centre. The wavelength grid resulting from Eq.7 was used to
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FIGURE 3: Maximum pupil coverage in AL and AC as a function of wavelength obtained
for the final sampling steps and number of discretisation points. The pupil coverage is shown
for two different wavelength ranges. Green squared points represent the chosen wavelength
sampling values.

build up the final wavelength sampling grid taking 1 value every 4 for wavelengths in the range
288−410 nm, 1 value every 2 for wavelengths between 410 and 540 nm and all remaining values
up to 1154 nm. The final grid contains 100 values distributed between 288.4 and 1153.6 nm.
Fig. 3 shows the maximum pupil coverage in AL and AC direction obtained with the current
settings and the assumed wavelength grid for the simulations.

3.2 LSF normalisation

A total number of 5000 WFE have been randomly generated providing an equal number of LSF
sets. The AL LSF is obtained by summing the PSF in the across scan direction and multiplying
by sv. At this stage the LSF needs to be properly normalised to ensure that

∫∞
−∞ L(u) du = 1.

However the numerical LSF spans a limited interval up to ±umax = 26 pixel so a proper model
for the wings must be introduced.

To model the wings for polychromatic and quasi-monochromatic LSF Lindegren (LL-084) pro-
posed the tail function:

t(u) =


0 if u ≤ α

γ1 (u− a)3 + γ2 (u− α)4 if α < u ≤ β
γ3u

−2 if β < u
(9)

This function is strictly zero for u < α, decreases as u−2 for u > β thus reproducing the
expected behaviour of a true LSF, and is a fourth-degree polynomial in the interval [α, β]. Co-
efficients γ can be computed to make t(u) ans t′(u) continuous at u = β and

∫∞
−∞ t(u) du = 1.

Setting α = 22, β = 26 it turns out that γ1 = 35/14384, γ2 = −8/17127, γ3 = 3959/162.
To make the analytical LSF representation continuous at u = ±β, the positive and negative tail
functions should be scaled respectively for the quantities

s+ = L(β)/t(β), s− = L(−β)/t(β) (10)
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FIGURE 4: Left: example of computation for the LSF tail scaling factors: blue dots are the
LSF data values at u = ±β; red line is the linear fit to data used to evaluate the correct scaling
factors s+λ and s−λ . Right: blue dots represents the Lmodλ term of Eq. 14, red dots are the two
scaled tail functions, the red line is the semi-analytical LSF model given by the sum of the
other components. Top panel refers to λ = 288 nm, bottom panel to λ = 1129 nm.

However modelling a monochromatic LSF is less trivial because of the presence of diffraction
patterns in the PSF profile, especially at longer wavelengths.

In absence of aberrations the monochromatic optical PSF can be written as:

PO
λ (u, v) =

DxDy

λ2
sinc2

(
πuDx

λ

)
sinc2

(
πvDy

λ

)
(11)

Therefore the optical LSF, obtained by integrating the previous relation along the v direction,
yields:

LOλ (u) =
1

π2Dx

λ

u2
sin2

(
πuDx

λ

)
=

1

2π2Dx

λ

u2

(
1− cos

(
2πuDx

λ

))
(12)

This equation shows two interesting properties:

• the wings of the LSF can be described as a function decreasing with u−2 added to a
cosine function;

• at a given u, the LSF central value (i.e. excluding the cosine term) depends linearly
from λ.

The first point suggests that the area below the wings can be computed modelling the wing itself
with the tail function of Eq. 9 if properly scaled, because the cosine contribution to the area is
null. These properties are still valid in presence of aberrations at a proper distance from the
LSF centre, as can be seen in Fig.4. The scaling factor of the tail function can be computed
by a linear fit of the values of the numerical LSF at u = ±β as shown in the left panel. The
resulting analytical LSF representation is almost continuous for shorter wavelengths because the
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FIGURE 5: Normalisation factor as a function of wavelength: blue squares are the numeri-
cal values computed via Eq. 16; red line is a linear fit to the data used to compute the LSF
normalisation function.

amplitude of the diffraction patterns is practically zero below 500 nm. At longer wavelength a
discontinuity is present and its magnitude changes with the wavelength because the amplitude
of the pattern increases and the phase of the cosine function at u = ±β changes with λ as well.
The resulting semi-analytical model for the the LSF is then:

Lλ(u) = Lmodλ (u) + s+λ t(u) + s−λ t(−u) (13)

where
Lmodλ (u) = Lλ(u)− s+λ t(u)− s−λ t(−u) (14)

is numerically computed and defined only over a discrete grid on the interval [−β, β];

s+λ =
(
c+0 + c+1 λ

)
/t(β)

s−λ =
(
c−0 + c−1 λ

)
/t(β) (15)

where c+0 , c
+
1 and c−0 , c

−
1 are the coefficients of the fit of Lλ(β), and Lλ(−β) respectively. The

integral of the LSF is then approximated by:∫ ∞
−∞

Lλ(u) du '
+β∑
−β

Lmodλ (u) du+ s+ + s− (16)

However, as can be seen in Fig. 5, while the approximation is good at shorter wavelengths, at
longer ones the effect introduced by the truncation of the diffraction patterns in the transition
between the numerical LSF and the analytical tail function becomes rather evident. To avoid the
inclusion of this numerical error into the LSF we have then decided to compute the final nor-
malisation factor as a linear fit of the values numerically computed through Eq. 16; an example
of such normalisation function is shown in Fig. 5.

Technical Note 11
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4 Generalised Principal Component Analysis (GPCA)

The Generalised Principal Component Analysis (hereafter GPCA) (Ye et al., 2004) is a fast and
efficient algorithm for 2D image compression and retrieval: this algorithm is used to concentrate
relevant information of a given data set in a small number of dimensions, but unlike the PCA,
it is able to preserve the spatial locality of pixels into an image by projecting the images to a
vector space that is the tensor product of two lower-dimensional vector spaces.

Consider a matrix X ∈ Rr×c and a (`1, `2)-dimensional axis system ui ⊗ wj for i = 1, . . . , `1
and j = 1, . . . , `2 (the symbol ⊗ denotes the tensor product), where `1 < r, `2 < c, ui ∈ Rr×1

and wj ∈ Rc×1. The projection ofX on to the (i, j)-th coordinate ui⊗wj is given by uTi ·X ·wj .

Let Ai ∈ Rr×c, with i = 1, . . . , n, denotes a set of matrices, A = 1
n

∑n
i=1Ai their mean and

Ãi = Ai −A: GPCA task is to derive an optimal (`1, `2)-dimensional axis system, designed by
two matrices U ∈ Rr×`1 and W ∈ Rc×`2 with orthonormal columns, such that the projections
of the data points Ãi onto this axis system have the maximum variance over all the possible
(`1, `2)-dimensional axis systems. The variance is defined as

var(U,W ) =
1

n− 1

n∑
i=1

‖UT · Ãi ·W‖F (17)

the symbol ‖.‖F denotes the Frobenius norm of a matrix.
Two interesting properties of matrices U and W are that:

• for a given W , left matrix U consists of the `1 eigenvectors of the matrix
MU =

∑n
i=1 Ãi ·W ·W T · Ãi

T
corresponding to the largest `1 eigenvalues;

• for a given U , right matrix W consists of the `2 eigenvectors of the matrix
MW =

∑n
i=1 Ãi

T
· U · UT · Ãi corresponding to the largest `2 eigenvalues.

These properties provide an iterative method to effectively compute U and W : for a fixed U we
can compute W through Singular Value Decomposition (SVD) of MW :

MW = φW ·DW · φTW (18)

DW ∈ Rc×c is a diagonal matrix containing the eigenvalues of MW while the columns of
φW ∈ Rc×c are the corresponding eigenvectors; we can then update the W matrix by selecting
the first `2 columns:

W =
[
φW1 , φW2 , . . . , φW`2

]
(19)

After this we can then update the U matrix by computing the `1 eigenvectors ofMU correspond-
ing to the largest `1 eigenvalues

MU = φU ·DU · φTU (20)

Technical Note 12
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with DU ∈ Rn×n and φU ∈ Rn×n

U =
[
φU1 , φU2 , . . . , φU`1

]
(21)

and so on until the result converges. Experience shows that if the process is initialised by setting
U0 = {Id, 0}T , where Id is the `1 × `1 identity matrix, the derived solution is satisfactory and
the process usually converges in very few iterations.
For given U and W matrices, the projection of Ãi can be computed as

Di = UT · Ãi ·W with Di ∈ R`1×`2 (22)

From Di we can reconstruct Ãi by setting

Ãi ≈ U ·Di ·W T (23)

then
Ai ≈ U ·Di ·W T + A (24)

The reconstruction error for Ai is then

Ei = ‖Ãi − U ·Di ·W T‖F = ‖Ãi − U · UT · Ãi ·W ·W T‖F (25)

The convergence can be measured by monitoring the root mean square error (RMSE) defined
as

RMSE =

√√√√ 1

n

n∑
i=1

Ei
2 (26)

RMSE measures the average reconstruction error.

4.1 LSF modelling and GPCA

GPCA fits quite well the needs for a proper LSF modelling: each simulated LSF consists of a
matrix with nu = 833 rows and nw = 100 columns; as we will see, each LSF can be accurately
described with a typical (`1, `2) = (9, 3)-dimensional axis system (or possibly with even lower
dimensionality). The columns of the left matrix U are the basis functions that model the LSF
dependencies in the AL direction while those of the right matrix W model the wavelength
dependencies. If L is the mean LSF, then Eq. 24 states that a LSF can be approximated as:

L ≈ L+ U ·D ·W T (27)

or, in extended notation:

L(ui, λj) = Lui,λj +

`1∑
m=1

`2∑
n=1

dm,n · Ui,m ·Wj,n (28)
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σ U ; (`1, `2) = (20, 10)
σ W ; (`1, `2) = (20, 10)
σ U ; (`1, `2) = (30, 30)
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FIGURE 6: Left: singular values for the matrix U (blue lines) and W (red lines) computed for
two different subspaces (`1, `2) = (20, 10) and (30, 30) respectively.Right: empirical RMSE
for the set of 10000 LSF measured as function of order (`1, `2).

i.e., the LSF can effectively be rendered as a linear model depending on less than 27 param-
eters. Moreover the LSF can be easily 2D-interpolated to continuous variables (u, λ) by 1D-
interpolation of U and W bases separately (see Sect. 5). The GPCA algorithm is so efficient
that the whole set of (5000 × 2) × (833 × 100) matrices can be processed in few minutes
on a common laptop. Each LSF is considered twice by reversing the array columns (equiv-
alent to swapping the AL axis), to preserve the intrinsic AL symmetry of the problem. We
have run the algorithm by setting the number of dimensions (`1, `2) to many different pairs
(90/30, 40/30, 40/20, 30/30, 30/20, 30/10, 20/20, 20/10) obtaining every time virtually iden-
tical results. Fig. 6 (left panel) shows the resulting first 20 singular values σU and σW for the
two cases (`1, `2) = (30, 30) and (`1, `2) = (20, 10); while the left eigenvalues σU don’t de-
pend on the number of corresponding dimensions `1, the eigenvalues σW exhibit some drop off
around the order `2 ' `1/2; moreover the left eigenvalues σW keep approximately the same
value of σU for half of the corresponding order: this behaviour suggests that the LSF wave-
length modelling should require barely half dimensions with respect to the AL dependency
modelling. This is confirmed also by the RMSE that has been measured on a grid of (`1, `2)
pairs as shown in Fig. 6, right panel: note how the function is steeper along the `2 axis than the
`1 one. For the present analysis we have decided to fix the subspace dimensions for GPCA to
(`1, `2) = (20, 10). Table 4.1 reports the (`1, `2) pairs corresponding to the minimal number

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
`1 · `2 1 2 3 4 8 10 12 18 21 24 27 36 40 44 55 60 65 78
`1 1 2 3 4 4 5 6 6 7 8 9 9 10 11 11 12 13 13
`2 1 1 1 1 2 2 2 3 3 3 3 4 4 4 5 5 5 6
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TABLE 2: Steepest descent path in the RMSE surface with minimal number of parameters.
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FIGURE 7: Distribution of the coefficients of the projection of the 10000 LSF onto the (U,W )
axis system. Coefficients for the ith LSF are computed as Di = UT · (Li − L) ·W .

of parameters required to get the steepest descent path through RMSE values. This sequence
provides a useful scheme to be followed in the source update process where a compromise be-
tween number of model parameters and quality of the data will need to be found.
The distributions of the coefficients of the projection for the 10000 LSF onto the (U,W ) axis

system are plotted in Fig. 7 . The coefficients for the ith LSF are computed following Eq. 22:
Di = UT · (Li−L) ·W . These distributions may provide useful information for delimiting the
starting search region for the true LSF parameters during the source update process.

Fig. 8 shows the first four basis functions for the left matrix U and for the right matrix W : left
basis functions are plotted as a function of the AL coordinate, while the right ones as a function
of wavelength. Unsurprisingly the Ui bases resemble basis functions from Lindegren (LL-084),
although the present ones are a bit more complex, especially at higher orders, for the presence
of small fluctuations due to diffraction patterns in the LSF wings. Figs. 9-10 show the tensor
product between the first left bases U1, . . . , U6 and the first two right bases W1,W2. Only the
central AL coordinate range (−10, 10) is plotted for clearness.

Finally two examples of the approximations obtained with three different configurations of
model parameter numbers is shown in Fig. 11. The two cases have been chosen to represent the
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FIGURE 8: Left: first 4 left basis functions (matrix U columns) as function of the AL coordi-
nate. Right: first 4 right basis functions (matrix W columns) as function of the wavelength.

Technical Note 16



CU5-DU14 GAIA-C5-TN-OABO-PMN-012-1

FIGURE 9: Tensor product between the first 3 left basis functions (U1, U2, U3) and the first 2
right basis functions (W1,W2). Only the central range (−10, 10) pixel in the AL axis is shown
for clearness.
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FIGURE 10: Tensor product between the (U4, U5, U6) left basis functions and the first 2 right
basis functions (W1,W2).

interquartile range in the RMSE distributions: these distributions are shown in Fig. 12 for each
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FIGURE 11: Typical reconstruction error as function of the number of basis functions used.
The two examples represent the interquartile range in the RMSE distribution.
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FIGURE 12: Distribution of the average reconstruction error obtained with three different
model (`1, `2) order pairs.

model configuration.

5 Basis Functions interpolation

5.1 Left Basis Functions

The numerical basis functions contained in matrix U span the interval −26 ≤ u ≤ +26 pixel in
steps of 0.0625 pixel while those contained in the right matrixW span the interval 288.4 ≤ λ ≤
1153.6 nm with a sampling scheme set by Eq. 7. The most suitable interpolation method for
the set of U basis functions has been described by Lindegren (LL-046): the bi-quartic B-spline
function consists of a normalised cubic B-spline on a knot sequence with interval 0.5 pixels and
convolved with a centred rectangular function of unit area and width. Alternatively it can be
seen as the sum of two adjacent quartic B-splines on a regular knot sequence. This function
has the remarkable property to satisfy the ’shift-invariant sum’ condition (i.e. preserve the
underlying function normalisation independently from the sub-pixel position of the sampling
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FIGURE 13: Blue points represent a numerical basis function, red line is the spline+tail fit,
magenta squares are the spline knots. Top: the knots cover the whole function domain; bottom:
5 extra-knots have been added to provide full support in the basis function domain.

grid). Formally a bi-quartic B-spline can be considered as a 6th order spline, thus if xk =
0.5 k + δ is the knot sequence (being δ a fixed number), the kth bi-quartic B-spline term Bk(x)
is non-zero only on the interval [xk−3, xk+3]. Moreover for any u ∈ [x`, x`+1) there are at
most 6 non-zero B-splines, which are denoted byB`−5(u), B`−4(u), . . . , B`(u). Lindegren (LL-
084) assumed the knots sequence to be xk = −β + 0.5 k, with k = 0, 1, . . . , 4 β, so that
the first and last knots are set equal to the pixel coordinate of the first and last basis function
element. However B-splines have a full support interval that is narrower than the knots interval
(B-splines naturally tend to zero at the edges of the support interval). As a consequence the
spline approximation done by Lindegren on his basis functions showed some residual ’wiggles’
at the edges of the fitting interval that was erroneously interpreted in LL-084 as a mismatch
between the slopes of the basis function and that of the tail function. To overcome this problem
one can add a number of extra-knots equal to the spline degree at both ends of the required
support interval so that xk′ = −β + 0.5 k′, with k′ = −5,−4, . . . , 4 β + 5; the apex in k′ is
set to remark the fact that this index can assume negative values, while we would have used
k = k′ + 5 to designate the traditional array index. Fig. 13 shows the effect of adding these
extra-knots on the residuals of the fit to the basis functions. The bi-quartic B-spline for the ith

basis function can then be written as:

Si(u) =
∑̀
k′=`−5

sik′ Bk′(u) (29)

which is strictly valid in the full interval support−β ≤ u ≤ β: the ’left’ index ` spans the range
(0, 4β − 1). To summarise, since in the present study we have set β = 26, the total number of
spline knots is nknots = 4β + 1 + 10 = 115, the number of spline coefficients sik′ is equal to
the number of degrees of freedom of Si(u), i.e. ncoeffs = nknots − 6 = 109.

To extend the U basis functions beyond the pixel β = ±26, we use the special tail functions
already introduced in Sect. 3.2, so that the ith basis function is approximated as:

Ui(u) = Si(u) + s−i t(−u) + s+i t(u) (30)
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FIGURE 14: Examples for the spline+tail approximation for right U basis functions (left) and
corresponding residuals (right).

where t(u) is the tail function and the two coefficients are

s−i =
Ui(−β)

t(β)
, s+i =

Ui(β)

t(β)
(31)

to make the approximation continuous at u = ±β. The spline coefficients sik are computed by
fitting Eq. 29 to the function Ui(u) − s−i t(−u) − s+i t(u). The integral for the approximating
function (Eq. 30) is given by ∫ ∞

−∞
Ui(u) du =

4β−1∑
k′=0

sik′ + s−i + s+i (32)

Fig. 14 shows the spline+fit approximation for two basis functions (U1 and U5) and the relative
residuals. RMS of the residuals ranges from 4.8 × 10−5 for U1 to 4.8 × 10−4 for U10: the
total RMS due to the spline approximation is expected to be much smaller than the typical
reconstruction error seen in Fig. 11. To verify this we have fitted a random numerical LSF
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FIGURE 15: Example of the bi-quartic B-spline approximation for a random numerical LSF.
Vertical scale has been magnified by a factor of 103; only the central 8 pixel are shown along
the y-axis.

computed for the present analysis with the spline+tail approximation and the residuals of the fit
are shown in Fig. 15: the maximum of the residuals and the global RMS error are both a factor
10 smaller than the typical reconstruction error shown in Fig. 11.

5.2 Right Basis Functions

The interpolation for the right basis functions W can be done using a cubic spline. Since the
wavelength support interval spans the range 288.4−1153.6 nm which is wider than that covered
by XP photometers, there is no need to extrapolate the basis functions outside this interval.

6 Mean LSF representation

The mean LSF has been computed on the same AL and wavelength sampling grids of the
numerical LSF, hence we have to settle a method to interpolate/extrapolate it in the AL direction
and to interpolate in the wavelength direction. In principle the interpolation/extrapolation in AL
coordinate could be done with the same algorithm adopted for the left Ui basis function seen
in Sect. 5.1. On the other hand interpolation in the wavelength space is more problematic
because of the relative coarse sampling density which makes linear or spline interpolation not
enough accurate. However GPCA can come the handy to solve the problem: the idea is to
use algorithm seen in Sect. 4 to express the mean LSF as L ≈ UL · DL · WL

T such that the
error EL = ‖L − UL ·DL ·WL

T‖F is minimal. The columns of the right matrix WL can then
be interpolated with a cubic spline to the desired wavelength grid, providing the oversampled
matrix W̃L which is used to finally reconstruct the interpolated L as

LI = UL ·DL · W̃L

T
. (33)
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FIGURE 16: Detail of 1nm-wavelength interpolated mean LSF (logarithmic scale). Left: bi-
linear interpolation; right: GPCA-based interpolation.

Fig. 16 shows a comparison between the result of bi-linear interpolation and the proposed
GPCA-based interpolation scheme, where the mean LSF has been oversampled to a wave-
length grid of 1 nm spacing. Only a limited range in both x and y axis is shown to empha-
sise the different quality of the interpolation which is more evident in the LSF diffraction pat-
terns that appear smoother in the GPCA case. The residuals of the mean LSF reconstruction,
L−UL ·DL ·WL

T , computed for subspace dimensionality (`1, `2) equal to (20, 20) and (35, 35)
are shown in Fig. 17. The 2nd configuration has been also used to produce the GPCA interpola-
tion of Fig. 16
The bi-quartic B-spline interpolation scheme can be used to interpolate the basis functions UL:

FIGURE 17: Error of the reconstructed mean LSF for a (20, 20)-dimensional (left) and for
a (35, 35)-dimensional (right) representation. The two z-scales have been magnified respec-
tively by a factor of 104 and 106.
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FIGURE 18: Left: Error in the reconstructed mean LSF produced by the bi-quartic B-spline
interpolation. Right: Mean LSF reconstruction error introduced by the diagonalization of the
coefficients matrix DL: the vertical scale has been enlarged by a factor 107.

even if these are dominated by the mean LSF diffraction patterns and hence are much more
complicated with respect to previous U bases, the overall reconstruction error due to the bi-
quartic B-spline approximation, shown in Fig. 18, has the same magnitude as the one obtained
by fitting the numerical LSF of Fig. 15. The extrapolation beyond u = ±β can be done with
the tail function of Eq. 9 but we need to keep into account considerations done in Sect. 3.2:
in particular, the tails scaling factors s+ and s− (which in the case of the mean LSF should be
identical) must be computed with Eq. 15, where the coefficients c±0 , c

±
1 are computed by linear

fitting the mean LSF borders as function of λ. However this tail scaling cannot be applied to
the basis functions UL because GPCA decomposition has disentangled the wavelength depen-
dencies in the right WL matrix. The only possibility is to subtract the tail model scaled through
Eq. 15 before the GPCA decomposition, i.e. rather than L we decompose the matrix L

mod

whose (i, j)th element is given by:

L
mod

i,j = Li,j −
(
c+0 + c+1 λj

)
t(β)

t(ui)−
(
c−0 + c−1 λj

)
t(β)

t(−ui) (34)

Once the GPCA is applied, the matrix UL columns are fitted with a bi-quartic B-spline, while
those of WL with a cubic spline; to get the value to a given (u, λ) pairs, first the interpolated
matrix rows Uu and Wλ are computed, then the corresponding mean LSF value is evaluated as:

L(u, λ) = Uu ·DL ·Wλ
T +

(
c+0 + c+1 λ

)
t(β)

t(u) +

(
c−0 + c−1 λ

)
t(β)

t(−u) (35)

Finally it is worth noticing that the matrix DL has off-diagonal elements that are nearly zero:
if we set these elements to zero and compute the error in the reconstructed L produced by this
approximation we obtain the residuals shown in the right panel of Fig. 18. The resulting error
is completely negligible with respect to the reconstruction error budget seen so far, thus this
kind of optimisation is acceptable and useful to speed up the mean LSF evaluation process.
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Moreover columns of WL matrix can be scaled once for corresponding diagonal elements of
DL matrix thus simplifying further the evaluation process and the data model because of the
needlessness to store separately the DL array.

7 Data Model

The basis functions AL sampling grid ranges from β = −26 to β = +26, hence the knot
sequence for bi-quartic spline interpolations ranges from−β−2.5 to +β+2.5 and is composed
of 115 points. The only quantity needed for the reconstruction of the knots sequence to be stored
in the data model (DM) is the β value while the other tail function parameter α is necessary to
completely characterise the LSF tails model. The number of degrees of freedom for the bi-
quartic spline is then 115−6 = 109 and this corresponds to the number of spline coefficients to
be saved for each left basis function (i.e. both U and UL columns). Each U basis function needs
also two more parameters which are the positive and the negative tail scaling factors, while,
in the case of the mean LSF model, these tail factors are computed through the polynomial
relations of Eq. 15: in this case the DM will store only two coefficients for the positive tail and
two for the negative one. The total number of left basis functions to be stored are 20 for U and
35 for UL. The wavelength sampling for the right W and WL matrices is made of 100 points,
hence the corresponding number of cubic spline coefficients is 99 × 4 for each basis function
(10 bases for W and 35 for WL). Finally the mean LSF model requires also the diagonal
of the coefficients matrix D, hence an array of 35 elements. The following tables contains a
description of the required data types to be added to the current PhotPipe DM; corresponding
types will be needed for the MDB DM to store the LSF basis functions in the MDB.

PhotPipeDm:ExtBqsSet
alpha double Tail function parameter.
beta double Tail function parameter.
dof int Degrees of freedom.
dim int Number of basis functions.
scalingFactor double Optional scaling parameter.
coeffs Array of double [byte] bi-quartic spline coefficients.
tailsPos Array of double [byte] Positive tail functions scaling parameter.
tailsNeg Array of double [byte] Negative tail functions scaling parameter.

TABLE 3: Data type to hold necessary quantities for the bi-quartic B-spline modelling of a
GPCA left matrix (AL dependencies): for the mean LSF case tailsPos and tailsNeg host the
two coefficients for the linear fit of the scaling factor as function of wavelength; in the other
case they are two arrays of length equal to the number of bases.
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PhotPipeDm:ExtCsSet
pieces int Number of spline pieces.
order int Order of the spline.
dim int Number of basis functions.
knots Array of double [100] Knots positions.
coeffs Array of double [short × byte] Spline coefficients.

TABLE 4: Data type to hold quantities for the cubic spline modelling of a GPCA right matrix
(wavelength dependencies).

PhotPipeDm:ExtGpcaSet
left ExtBqsSet Left bases.
right ExtCsSet Right bases.

TABLE 5: Data type to collect left and right GPCA matrices.

PhotPipeDm:ExtLsfBases
mean ExtGpcaSet Mean LSF bases.
bases ExtGpcaSet LSF bases.

TABLE 6: Data type to collect all required quantities for the XP LSF model.
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.1 Acronyms

The following is a complete list of acronyms used in this document. The following table has
been generated from the on-line Gaia acronym list:

Acronym Description
AC Across scan
AF Astrometric Field (in Astro)
AL Along scan
ASI Agenzia Spaziale Italiana
BP Blue Photometer
DFT Discrete Fourier Transform
DM Data Model
FWHM Full Width at Half-Maximum
INAF Instituto Nazionale di Astrofisica (Italy)
LSF Line Spread Function
MDB Main DataBase
MTF Modulation Transfer Function
PCA Principle Component Analysis
PSF Point Spread Function
PhotPipe Photometric Pipeline (CU5 / DPCI)
RMS Root-Mean-Square
RP Red Photometer
SED Spectral Energy Distribution
SVD Singular Value Decomposition
SVN SubVersioN
TDI Time-Delayed Integration (CCD)
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WFE WaveFront Error
XP Gaia photometers BP and RP
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