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FIGURE 11: Typical reconstruction error as function of the number of basis functions used.
The two examples represent the interquartile range in the RMSE distribution.
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FIGURE 12: Distribution of the average reconstruction error obtained with three different
model(‘ 1; ‘ 2) order pairs.

model con�guration.

5 Basis Functions interpolation

5.1 Left Basis Functions

The numerical basis functions contained in matrixU span the interval� 26 � u � +26 pixel in
steps of 0.0625 pixel while those contained in the right matrixW span the interval288:4 � � �
1153:6 nm with a sampling scheme set by Eq. 7. The most suitable interpolation method for
the set ofU basis functions has been described by Lindegren (LL-046): the bi-quartic B-spline
function consists of a normalised cubic B-spline on a knot sequence with interval 0.5 pixels and
convolved with a centred rectangular function of unit area and width. Alternatively it can be
seen as the sum of two adjacent quartic B-splines on a regular knot sequence. This function
has the remarkable property to satisfy the ’shift-invariant sum’ condition (i.e. preserve the
underlying function normalisation independently from the sub-pixel position of the sampling
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FIGURE 13: Blue points represent a numerical basis function, red line is the spline+tail �t,
magenta squares are the spline knots.Top: the knots cover the whole function domain;bottom:
5 extra-knots have been added to provide full support in the basis function domain.

grid). Formally a bi-quartic B-spline can be considered as a 6th order spline, thus ifxk =
0:5 k + � is the knot sequence (being� a �xed number), the kth bi-quartic B-spline termBk(x)
is non-zero only on the interval[xk � 3; xk+3 ]. Moreover for anyu 2 [x ‘ ; x ‘ +1 ) there are at
most 6 non-zero B-splines, which are denoted byB ‘ � 5(u); B ‘ � 4(u); : : : ; B ‘ (u). Lindegren (LL-
084) assumed the knots sequence to bexk = � � + 0 :5k, with k = 0 ; 1; : : : ;4 � , so that
the �rst and last knots are set equal to the pixel coordinate of the �rst and last basis function
element. However B-splines have a full support interval that is narrower than the knots interval
(B-splines naturally tend to zero at the edges of the support interval). As a consequence the
spline approximation done by Lindegren on his basis functions showed some residual ’wiggles’
at the edges of the �tting interval that was erroneously interpreted in LL-084 as a mismatch
between the slopes of the basis function and that of the tail function. To overcome this problem
one can add a number of extra-knots equal to the spline degree at both ends of the required
support interval so thatxk′ = � � + 0 :5k0, with k0 = � 5; � 4; : : : ;4 � + 5 ; the apex ink0 is
set to remark the fact that this index can assume negative values, while we would have used
k = k0 + 5 to designate the traditional array index. Fig. 13 shows the effect of adding these
extra-knots on the residuals of the �t to the basis functions. The bi-quartic B-spline for the ith

basis function can then be written as:

Si (u) =
‘X

k′= ‘ � 5

sik ′ Bk′(u) (29)

which is strictly valid in the full interval support� � � u � � : the ’left’ index ‘ spans the range
(0; 4� � 1). To summarise, since in the present study we have set� = 26, the total number of
spline knots isnknots = 4 � + 1 + 10 = 115 , the number of spline coef�cientssik ′ is equal to
the number of degrees of freedom ofSi (u), i.e. ncoef fs = nknots � 6 = 109.

To extend theU basis functions beyond the pixel� = � 26, we use the special tail functions
already introduced in Sect. 3.2, so that the ith basis function is approximated as:

Ui (u) = Si (u) + s�
i t(� u) + s+

i t(u) (30)
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FIGURE 14: Examples for the spline+tail approximation for rightU basis functions (left) and
corresponding residuals (right).

wheret(u) is the tail function and the two coef�cients are

s�
i =

Ui (� � )
t(� )

; s+
i =

Ui (� )
t(� )

(31)

to make the approximation continuous atu = � � . The spline coef�cientssik are computed by
�tting Eq. 29 to the functionUi (u) � s�

i t(� u) � s+
i t(u). The integral for the approximating

function (Eq. 30) is given by

Z 1

�1
Ui (u) du =

4� � 1X

k′=0

sik ′ + s�
i + s+

i (32)

Fig. 14 shows the spline+�t approximation for two basis functions (U1 andU5) and the relative
residuals. RMS of the residuals ranges from4:8 � 10� 5 for U1 to 4:8 � 10� 4 for U10: the
total RMS due to the spline approximation is expected to be much smaller than the typical
reconstruction error seen in Fig. 11. To verify this we have �tted a random numerical LSF
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FIGURE 15: Example of the bi-quartic B-spline approximation for a random numerical LSF.
Vertical scale has been magni�ed by a factor of103; only the central 8 pixel are shown along
the y-axis.

computed for the present analysis with the spline+tail approximation and the residuals of the �t
are shown in Fig. 15: the maximum of the residuals and the global RMS error are both a factor
10 smaller than the typical reconstruction error shown in Fig. 11.

5.2 Right Basis Functions

The interpolation for the right basis functionsW can be done using a cubic spline. Since the
wavelength support interval spans the range288:4� 1153:6 nm which is wider than that covered
by XP photometers, there is no need to extrapolate the basis functions outside this interval.

6 Mean LSF representation

The mean LSF has been computed on the same AL and wavelength sampling grids of the
numerical LSF, hence we have to settle a method to interpolate/extrapolate it in the AL direction
and to interpolate in the wavelength direction. In principle the interpolation/extrapolation in AL
coordinate could be done with the same algorithm adopted for the leftUi basis function seen
in Sect. 5.1. On the other hand interpolation in the wavelength space is more problematic
because of the relative coarse sampling density which makes linear or spline interpolation not
enough accurate. However GPCA can come the handy to solve the problem: the idea is to
use algorithm seen in Sect. 4 to express the mean LSF asL � UL � DL � WL

T such that the
errorEL = kL � UL � DL � WL

T kF is minimal. The columns of the right matrixWL can then
be interpolated with a cubic spline to the desired wavelength grid, providing the oversampled
matrix gWL which is used to �nally reconstruct the interpolatedL as

L I = UL � DL � gWL
T
: (33)
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FIGURE 16: Detail of 1nm-wavelength interpolated mean LSF (logarithmic scale).Left: bi-
linear interpolation;right: GPCA-based interpolation.

Fig. 16 shows a comparison between the result of bi-linear interpolation and the proposed
GPCA-based interpolation scheme, where the mean LSF has been oversampled to a wave-
length grid of 1 nm spacing. Only a limited range in both x and y axis is shown to empha-
sise the different quality of the interpolation which is more evident in the LSF diffraction pat-
terns that appear smoother in the GPCA case. The residuals of the mean LSF reconstruction,
L � UL � DL � WL

T , computed for subspace dimensionality(‘ 1; ‘ 2) equal to(20; 20)and(35; 35)
are shown in Fig. 17. The 2nd con�guration has been also used to produce the GPCA interpola-
tion of Fig. 16
The bi-quartic B-spline interpolation scheme can be used to interpolate the basis functionsUL :

FIGURE 17: Error of the reconstructed mean LSF for a(20; 20)-dimensional (left) and for
a (35; 35)-dimensional (right) representation. The two z-scales have been magni�ed respec-
tively by a factor of104 and106.
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FIGURE 18: Left: Error in the reconstructed mean LSF produced by the bi-quartic B-spline
interpolation.Right: Mean LSF reconstruction error introduced by the diagonalization of the
coef�cients matrixDL : the vertical scale has been enlarged by a factor107.

even if these are dominated by the mean LSF diffraction patterns and hence are much more
complicated with respect to previousU bases, the overall reconstruction error due to the bi-
quartic B-spline approximation, shown in Fig. 18, has the same magnitude as the one obtained
by �tting the numerical LSF of Fig. 15. The extrapolation beyondu = � � can be done with
the tail function of Eq. 9 but we need to keep into account considerations done in Sect. 3.2:
in particular, the tails scaling factorss+ ands� (which in the case of the mean LSF should be
identical) must be computed with Eq. 15, where the coef�cientsc�

0 ; c�
1 are computed by linear

�tting the mean LSF borders as function of� . However this tail scaling cannot be applied to
the basis functionsUL because GPCA decomposition has disentangled the wavelength depen-
dencies in the rightWL matrix. The only possibility is to subtract the tail model scaled through
Eq. 15beforethe GPCA decomposition, i.e. rather thanL we decompose the matrixL mod

whose(i; j )th element is given by:

L mod
i;j = L i;j �

�
c+

0 + c+
1 � j

�

t(� )
t(ui ) �

�
c�

0 + c�
1 � j

�

t(� )
t(� ui ) (34)

Once the GPCA is applied, the matrixUL columns are �tted with a bi-quartic B-spline, while
those ofWL with a cubic spline; to get the value to a given(u; � ) pairs, �rst the interpolated
matrix rowsUu andW� are computed, then the corresponding mean LSF value is evaluated as:

L (u; � ) = Uu � DL � W�
T +

�
c+

0 + c+
1 �

�

t(� )
t(u) +

�
c�

0 + c�
1 �

�

t(� )
t(� u) (35)

Finally it is worth noticing that the matrixDL has off-diagonal elements that are nearly zero:
if we set these elements to zero and compute the error in the reconstructedL produced by this
approximation we obtain the residuals shown in the right panel of Fig. 18. The resulting error
is completely negligible with respect to the reconstruction error budget seen so far, thus this
kind of optimisation is acceptable and useful to speed up the mean LSF evaluation process.
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Moreover columns ofWL matrix can be scaled once for corresponding diagonal elements of
DL matrix thus simplifying further the evaluation process and the data model because of the
needlessness to store separately theDL array.

7 Data Model

The basis functions AL sampling grid ranges from� = � 26 to � = +26 , hence the knot
sequence for bi-quartic spline interpolations ranges from� � � 2:5 to + � +2 :5 and is composed
of 115points. The only quantity needed for the reconstruction of the knots sequence to be stored
in the data model (DM) is the� value while the other tail function parameter� is necessary to
completely characterise the LSF tails model. The number of degrees of freedom for the bi-
quartic spline is then115� 6 = 109 and this corresponds to the number of spline coef�cients to
be saved for each left basis function (i.e. bothU andUL columns). EachU basis function needs
also two more parameters which are the positive and the negative tail scaling factors, while,
in the case of the mean LSF model, these tail factors are computed through the polynomial
relations of Eq. 15: in this case the DM will store only two coef�cients for the positive tail and
two for the negative one. The total number of left basis functions to be stored are20 for U and
35 for UL . The wavelength sampling for the rightW andWL matrices is made of 100 points,
hence the corresponding number of cubic spline coef�cients is99 � 4 for each basis function
(10 bases forW and 35 for WL ). Finally the mean LSF model requires also the diagonal
of the coef�cients matrixD , hence an array of35 elements. The following tables contains a
description of the required data types to be added to the current PhotPipe DM; corresponding
types will be needed for the MDB DM to store the LSF basis functions in the MDB.

PhotPipeDm:ExtBqsSet
alpha double Tail function parameter.
beta double Tail function parameter.
dof int Degrees of freedom.
dim int Number of basis functions.
scalingFactor double Optional scaling parameter.
coeffs Array of double [byte] bi-quartic spline coef�cients.
tailsPos Array of double [byte] Positive tail functions scaling parameter.
tailsNeg Array of double [byte] Negative tail functions scaling parameter.

TABLE 3: Data type to hold necessary quantities for the bi-quartic B-spline modelling of a
GPCA left matrix (AL dependencies): for the mean LSF case tailsPos and tailsNeg host the
two coef�cients for the linear �t of the scaling factor as function of wavelength; in the other
case they are two arrays of length equal to the number of bases.
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PhotPipeDm:ExtCsSet
pieces int Number of spline pieces.
order int Order of the spline.
dim int Number of basis functions.
knots Array of double [100] Knots positions.
coeffs Array of double [short� byte] Spline coef�cients.

TABLE 4: Data type to hold quantities for the cubic spline modelling of a GPCA right matrix
(wavelength dependencies).

PhotPipeDm:ExtGpcaSet
left ExtBqsSet Left bases.
right ExtCsSet Right bases.

TABLE 5: Data type to collect left and right GPCA matrices.

PhotPipeDm:ExtLsfBases
mean ExtGpcaSet Mean LSF bases.
bases ExtGpcaSet LSF bases.

TABLE 6: Data type to collect all required quantities for the XP LSF model.
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.1 Acronyms

The following is a complete list of acronyms used in this document. The following table has
been generated from the on-line Gaia acronym list:

AcronymDescription
AC Across scan
AF Astrometric Field (in Astro)
AL Along scan
ASI Agenzia Spaziale Italiana
BP Blue Photometer
DFT Discrete Fourier Transform
DM Data Model
FWHM Full Width at Half-Maximum
INAF Instituto Nazionale di Astro�sica (Italy)
LSF Line Spread Function
MDB Main DataBase
MTF Modulation Transfer Function
PCA Principle Component Analysis
PSF Point Spread Function
PhotPipe Photometric Pipeline (CU5 / DPCI)
RMS Root-Mean-Square
RP Red Photometer
SED Spectral Energy Distribution
SVD Singular Value Decomposition
SVN SubVersioN
TDI Time-Delayed Integration (CCD)
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WFE WaveFront Error
XP Gaia photometers BP and RP

Technical Note 29


	

