
Cross-matching Gaia objects

L. Lindegren

GAIA–LL–060 (V1, 9 August 2005)

Abstract. The cross-matching problem for Gaia is reviewed in the context of
standard statistical procedures for classification and cluster analysis. Classifica-
tion is the appropriate method when an input catalogue of sources is available.
Observations not cross-matched against a catalogue should instead be subject
to cluster analysis to identify new sources. A procedure for cluster analysis that
takes proper motion into account is developed and demonstrated. A coherent
procedure for cross-matching according to these principles is outlined.

1 Introduction

Cross-matching is a central algorithm in the Gaia data analysis because very little sensible
processing can be done to the elementary observations before they have been cross-matched
to a source or to each other – thus forming a source. In this document, the function of the
cross-matching is analyzed and suitable algorithms identified and discussed. The present
work is directly relevant for Work Packages C3–9 and C3–11 of [5].

Because of the way the Gaia instruments are operating, cross-matching applies to ob-
jects created through the on-board detection process, including confirmation, using the
skymappers. The assumption is that the observations on subsequent CCDs (in the AF,
MBP or RVS) implicitly refer to the same source, so that they do not have to be considered
separately.

The following terminology will be used:

• An observation is the result of a single confirmed detection by one of the skymappers
and subsequent CCDs. For cross-matching, the data needed from the observation
are: the time and two-dimensional position of the detection, the magnitude, and (for
solar system objects) an instantaneous proper motion vector. Uncertainties may also
be required. To obtain these data requires some pre-processing to take into account
current FOV, calibration and attitude information, and correct for aberration (satellite
velocity). Each observation has a unique identifier O.

• A source is the entity on the sky assumed to generate observations. A source is described
by a set of astrometric and photometric parameters. Each source has a unique identifier
S.

• A cluster is a set of observations tentatively associated with same source. It is described
by the membership list C = {O1, O2, . . . On}, where n ≥ 1 is the number of observations
in the cluster.

• An object can be either an observation, a cluster, or a source.

1

Observations

Cross-matching

Input sources

[optional]

Link data

Output

sources

(GIS loop)

Figure 1: Functional diagram of the cross-matching algorithm.

The purpose of the cross-matching is to assign exactly one source to each observation. It
corresponds to dividing all the observations into mutually exclusive clusters and making
a one-to-one association between clusters and sources.

The function of the cross-matching algorithm is further illustrated by the simplified data
flow diagram in Fig. 1. The input consists of a set of observations and, optionally, a set
of input sources. The output consists of a set of output sources and link data associating
every observation with exactly one output source. The output sources are of three kinds:
(1) new, linked sources; (2) old, linked sources; and (3) old, unlinked sources. If no input
sources are given, there will be no output sources of kind 2 and 3. The cross-matching
may be part of a larger iteration loop (e.g., the GIS) in which both the input catalogue
and the observations are successively improved, the latter through the improved attitude
and instrument calibration.

The cross-matching algorithm used in GDAAS (see [3] and the present Appendix) matches
a list of observations to a given list of sources based purely on positional coincidence. Thus
it performs part of the function described in Fig. 1. We wish to consider a generalized
algorithm that can also match observations without an input source list and take into
account proper motions and possibly more complex source models as well.

2 Cross-matching as a statistical problem

Cross-matching is closely related to two well-known statistical procedures, namely classi-
fication (assigning cases to one of a fixed number of possible classes) and cluster analysis
(partitioning cases into subsets of similar cases).1 The data case is, in our terminology,
the observation; the class is the source; and the subset of similar cases is the cluster. The

1There is a great deal of variation in terminology depending on the area of application (classical multi-
variate data analysis, machine learning, data mining, ...). For example, classification is sometimes regarded
as the more general procedure, with cluster analysis a form of unsupervised classification.

2

cross-matching of observations to a given set of input sources is an example of classifi-
cation, while the cross-matching of observations without input sources is an example of
cluster analysis. Let us therefore discuss some classification and cluster analysis algorithms
and see how they can be adapted to the cross-matching.2

2.1 Classification

Simple classification algorithms that appear suitable for cross-matching with given input
sources are the nearest-neighbour algorithm and Bayesian classification.

The nearest-neighbour algorithm links each observation to the nearest source. Formally, it
requires that a distance measure D(O,S) can be computed for every possible combination
of observation (O) and source (S); then, for each O, a link is established to the S with
the smallest D(O,S). The distance measure could in the simplest case be just the angular
distance between the observation and source, but it could also take into account a mismatch
in magnitude (Sect. 3.5.3), or any other data, through some more general metric, e.g.,

D(O, S) =
∑

k

wk [xk(O)− xk(O|S)]2 (1)

Here, xk(O) (k = 1 . . .K) are the components of the observed data vector x(O), of di-
mension K, and xk(O|S) are the corresponding data predicted on the assumption that
observation O was produced by source S. wk are pre-assigned weights making it possible,
for example, to compare a mismatch in magnitude against that in position. We shall write
(1) more concisely

D(O, S) =
∥∥x(O)− x(O|S)

∥∥2 (2)

where the weights w (if required) are implied in the norm. We may also refer to x(O) as
the observed ‘coordinates’, even though the vector could include non-positional data.

Bayesian classification uses Bayes’ rule to compute for each source the probability p(S|O)
that this particular source was responsible for producing the observed coordinates; then
the most probable source is selected. According to Bayes’ rule we have

p(S|O) =
p(S)p(O|S)∑
S′ p(S′)p(O|S′) (3)

where p(S) is the prior probability of S and p(O|S) is the probability density of the
observed data on the assumption that they were generated by S (i.e., the likelihood of S
for the given data). Since the denominator in (3) is independent of S we only need to
consider the numerator to select the most probable source. If we assume that all the input
sources are bright enough to be detected with high probability, there is no a priori reason
why a particular source should be considered more probable than any other; thus p(S)
will be the same for all sources. Moreover, if the probability density model for p(O|S)
is gaussian with uncorrelated variables xk of standard deviation σk, and if we choose
wk = σ−2

k in (1), then

p(S|O) ∝ exp
[
−1

2
D(O, S)

]
(4)

2The literature on these techniques is enormous but much of it irrelevant for the present, relatively
straightforward applications. See, for example, [2] for a good general reference and introduction.

3

where the constant of proportionality only depends on O. This means that the source
with the smallest D(S|O) also gives the highest posterior probability p(S|O). Thus, under
assumptions that are reasonable enough for the cross-matching problem, the nearest-
neighbour algorithm is practically equivalent to Bayesian classification. [The argument
provides some guidance for the choice of weights wk in (1): they should be inversely
proportional to the variances, taking into account, for example, variability in the case
of a magnitude variable.] Consequently, the nearest-neighbour criterion is subsequently
adopted and Bayesian classification not further considered below.

2.2 Cluster analysis

Cluster analysis is based on some measure of dissimilarity ∆(Ci, Cj) between two disjoint
clusters Ci and Cj .3 Since a cluster may consist of a single observation (n = 1), we can
also measure the dissimilarity between two observations, or between an observation and
a cluster. We shall return later to the exact definition of the dissimilarity measure for
cross-matching.

The problem is to find the optimum partitioning C1 ∪C2 ∪ · · · ∪CM of the complete set of
observations, in the sense of maximizing the inter-cluster dissimilarities ∆(Ci, Cj) (i 6= j)
while minimizing the intrinsic dissimilarities of each cluster, ∆(Ok, Ci \ Ok) (∀Ok ∈ Ci).
As can be expected, the result depends on how much emphasis is put on the inter-cluster
dissimilarities versus the intrinsic dissimilarities. At one extreme all observations are put
in a single cluster, making the inter-cluster dissimilarity zero; at the other extreme each
observation forms its own cluster, making the intrinsic dissimilarities zero. The optimum
solution is somewhere in between these extreme cases. A reasonable way to achieve this
for the cross-matching is to set an upper limit on the intrinsic dissimilarity of any cluster.

Of the many methods available for cluster analysis (hierarchical, partitioning, graph meth-
ods, ...), only hierarchical agglomerative algorithms are considered here, because one vari-
ant of it, the minimum variance method discussed below, appears particularly well adapted
for the cross-matching.

The basic idea of hierarchical agglomeration is very simple and can be described in the
following steps (Algorithm HA):

1. Starting with N observations, make one cluster for each observation. The number
of clusters is M = N .

2. Compute the M(M − 1)/2 dissimilarities among the M clusters.

3. Find the pair (Ci, Cj) with the smallest dissimilarity.

4. Agglomerate Ci and Cj into a single cluster, decreasing M by 1.

5. Repeat steps 2 through 4 until M = 1.

3We distinguish here between the dissimilarity measure, which applies to two objects of the same kind
and obeys the symmetry relation ∆(Ci, Cj) = ∆(Cj , Ci), and the distance measure which is asymmetric
as shown by (2).

4

The scheme of successive agglomerations can be represented by a tree or dendrogram,
which explains why the algorithm is called hierarchical.

Standard agglomerative algorithms differ in principle mainly in how the dissimilarity be-
tween the agglomerated cluster Ci∪Cj and another cluster Ck is computed. Two common
choices are the so-called ‘single link’ and ‘complete link’ methods,

∆(Ci ∪ Cj , Ck) = min [∆(Ci, Ck), ∆(Cj , Ck)] (single link) (5a)

∆(Ci ∪ Cj , Ck) = max [∆(Ci, Ck), ∆(Cj , Ck)] (complete link) (5b)

Single link allows the formation of elongated clusters (since only the dissimilarity with the
nearest neighbour counts), while complete link favours compact clusters (since only the
dissimilarity with the most distant member counts). Neither property appears particularly
attractive for the cross-matching problem.

Much more promising is Ward’s minimum variance method [8, 6, 7], especially when
generalized as discussed in Sect. 3.4. In this method4 the intrinsic dissimilarity of a cluster
is measured by the sum of squared residuals (SSR) with respect to the cluster centre,

R(C) =
∑

O∈C

∥∥x(O)− x(C)
∥∥2 (6)

[Weight factors may be implied in the above expression as in (2).] The coordinates for the
cluster centre, x(C), are chosen to minimize the SSR. In the linear case they are simply
given by the centre of gravity of the member coordinates:

x(C) =
1

n(C)

∑

O∈C

x(O) (7)

where n(C) is the number of observations in C.

It is readily seen that the agglomeration of two disjoint clusters Ci and Cj results in a
cluster C = Ci ∪ Cj with coordinates

x(C) =
n(Ci)x(Ci) + n(Cj)x(Cj)

n(Ci) + n(Cj)
(8)

If the original clusters have SSR R(Ci) and R(Cj), respectively, it can be shown (cf.
Sect. 3.4.1) that the SSR for the agglomerated cluster is

R(C) = R(Ci) + R(Cj) +
n(Ci)n(Cj)

n(Ci) + n(Cj)

∥∥x(Ci)− x(Cj)
∥∥2 (9)

The third term on the right-hand side is the penalty, in terms of the SSR, for agglomerating
Ci and Cj . Only if the cluster centres coincide will there be no penalty. In the minimum
variance method, this term is taken as the measure of dissimilarity between the clusters:

∆(Ci, Cj) =
n(Ci)n(Cj)

n(Ci) + n(Cj)

∥∥x(Ci)− x(Cj)
∥∥2 (10)

4A description of the algorithm is found in Chapter 3 of [6]. Fortran listings are given in that reference
and on the web [7]. Note, however, that the discussion in [6] of the mathematical properties of the method
confuses the variance with the sum of squared residuals.

5

A

D

C
B

E

Figure 2: Illustrating the nearest-neighbour chain algorithm: starting from the ar-
bitrary point A, its nearest neighbour NN(A) = B is found, then NN(B) = C and
NN(C) = D. The chain ends here since NN(D) = C. Thus C and D are mutual nearest
neighbours and may be agglomerated. (Figure based on [6].)

In the general Algorithm HA described above, the agglomeration is carried all the way
to the point where all observations are in a single cluster (M = 1). However, for the
cross-matching this makes little sense. It is more natural to stop agglomerating once the
dispersion of residuals within the clusters have reached a certain limit corresponding to the
estimated uncertainties in the observations, attitude, etc. The minimum variance method
allows to define such a stopping rule in a simple way. We note that a cluster containing
only one observation has R = 0. As clusters are built up by agglomeration, their R values
increase by accumulation of the corresponding dissimilarities. Thus we can easily keep
track of R(C) and n(C) as the agglomeration proceeds. We can then introduce the rule
that an agglomeration is only allowed if the resulting internal variance R(C)/n(C) of the
agglomerated cluster is below a given limit. A cluster becomes non-agglomerable when
it is not allowed to agglomerate with any other cluster. The hierarchical agglomeration
stops when all clusters are non-agglomerable, or when M = 1.

A Fortran implementation (hcon2.f) of the HA algorithm using the minimum variance
criterion was given by F. Murtagh [7]. In Sect. 4 we describe numerical experiments
performed with a routine based on hcon2.f but modified to use the internal variance of a
cluster as the stopping criterion, as well as some other refinements to be discussed below.
In a number of test cases the resulting algorithm appears to function as well as can be
expected.

One problem with clustering algorithms is that they may require the calculation of very
many dissimilarities, in the worst case for all possible pairs of coordinates. This tends to
give computing times that increase quadratically with the number of observations. For
example, in Algorithm HA, the clusters to be agglomerated at each step are the ones with
the smallest dissimilarity. To find this pair may require that all M(M−1)/2 dissimilarities
are computed, where M is the current number of clusters. It is difficult to avoid the
quadratic behaviour altogether but various tricks can be used to mitigate the problem.

Murtagh’s implementation uses the ‘nearest-neighbour-chain’ (NNC) algorithm to reduce
the number of tests required. This device takes advantage of the circumstance – valid
under conditions that hold for the minimum variance method – that two clusters may be

6

agglomerated if they are mutual nearest neighbours, independent of the size of their dis-
similarity. That is, the hierarchy of clusters obtained will be the same as if agglomerations
were made strictly in the sequence of increasing dissimilarity. The NNC algorithm builds
a chain of nearest neighbours, starting from an arbitrary (agglomerable) cluster, until a
pair of mutual nearest neighbours has been found (Fig. 2). This pair is then agglomerated,
the chain is correspondingly modified, and the procedure continues until there is only one
cluster in the chain. Then a new chain is initiated, and so on. In our case, where we have
a definite upper limit on the internal variance of a cluster, it is furthermore possible to
limit the search for the nearest neighbour to a certain radius.

3 Generalized cross-matching

In this section we attempt to formulate a generalized cross-matching algorithm based on
the concepts of classification and cluster analysis. In particular, the generalized method
should be able to take into account proper motions. For, although the fraction of high-
proper motion stars that Gaia will observe is small, their absolute number is not. As
the acceptance criteria for the cross-matching are successively sharpened during the GIS
process (Fig. 1), an increasing number of stars will be problematic for the cross-matching,
unless their proper motions can be taken into account.

3.1 Applicable (linear) source models

The inclusion of proper motions, or indeed of arbitrarily complex source models, is in
principle straightforward for the classification problem. This can be seen from (2), where
the distance measure D(O, S) is readily computed from the coordinates x(O|S) of source S
at the known epoch of observation O. The situation is not so simple for the cluster analysis
problem. However, it will be shown in Sect. 3.4 that the cluster analysis algorithm using
the minimum variance criterion can be generalized to any linear source model. Let us first
clarify exactly what this means.

The motion of a source on the sky may be described by a two-dimensional model in
the tangent plane, [ξ(t), η(t)], or by the coordinates (direction cosines) [x(t), y(t), z(t)]
on the unit sphere in three-dimensional space – the choice of coordinates is discussed in
Sect. 3.5.2. We note that the distance measure for classification and the dissimilarity
measure for cluster analysis are both defined as sums over the different components of the
coordinate vector. Thus it is sufficient to consider a single component of the coordinates.

Accordingly, let u(t) be any of the functions ξ(t), η(t), x(t), y(t), or z(t). A source
model is linear if u(t) =

∑
k akfk(t), where fk(t) are known functions and ak the (initially

unknown) astrometric source parameters.

Among possible linear models the following three are most relevant:

u(t) = u0 (order 0) (11a)
u(t) = u0 + u1t (order 1) (11b)
u(t) = u0 + u1t + u2pu(t) (order 1.5) (11c)

7

u0 is the mean position (or position at epoch t = 0); u1 is the proper motion, and u2

the parallax. pu(t) is the known parallax factor in u. Time t should be reckoned from an
origin close to or during the mission. (The coordinate components are not independent
when parallax is included, since u2 must be the same for each coordinate.)

The cross-matching discussed in previous sections did not allow for proper motion or
parallax, and therefore corresponds to the zeroth-order model (11a). The general case of
a linear model of arbitrary order >1 will be considered in following sections.

3.2 Information model

The inclusion of proper motions in the cluster analysis poses an interesting problem. We
must be able to compute the dissimilarity ∆(Ci, Cj) between arbitrary (disjoint) clusters.
But the clusters may initially consist of just a single observation each. How can we compute
the dissimilarity between two positional observations at different epochs? If proper motion
is allowed, it will be possible to match any two non-simultaneous observations perfectly,
i.e., with zero dissimilarity. This shows that cluster analysis is impossible without an
a priori constraint on the magnitude of proper motions.

It is natural, therefore, to take a Bayesian approach and introduce a prior probability
density for the proper motion component u1. A reasonable choice is to assume u1 = 0
with an uncertainty large enough to accommodate high-proper motion stars. Adding
observations to the cluster eventually leads to an improved estimate of u1, in the end
converging to a value not far from the true proper motion.

Since the two parameters u0 and u1 are coupled to each other for every epoch t 6= 0, it is
necessary to consider the joint probability density of u0 and u1. Using a gaussian model,
the probability density of u = (u0, u1) may be specified by its current estimated value
û and covariance matrix V . There are however several equivalent representations of the
gaussian information to choose from. For example, the normal matrix N = V −1 can
be used instead of V , and the right-hand side of the normal equations Nû can be used
instead of û. Yet another choice is discussed in Sect. 3.4.2.

Presently we adopt the normal matrix N and estimate û to represent the state of knowl-
edge of u for any observation, cluster or source. Furthermore, we will use an unscaled
version of the normal matrix, where the upper-right element is simply the number of
observations, N00 = n(C), because this offers the most direct analogy with the zeroth-
order treatment in Sect. 2.2. Thus V = σ2N−1, where σ is the standard error of each
observation. There is another, more fundamental reason for using the unscaled version
of the normal matrix instead of V −1. The current state of knowledge [N û] can be
regarded as the result of the least-squares estimation problem minu‖Au − b‖2, namely,
û = (A′A)−1A′b with N = A′A. This is consistent with the use of R = ‖Aû − b‖2 as
a measure of the internal dispersion of the cluster, expressed in a physical unit (angle).
This would not be possible if the data equations were scaled by their uncertainties, except
in the trivial case when a constant standard deviation σ were assumed for all observations
(and in that case it would merely represent a change of unit).

The general formulae for agglomeration and dissimilarity in terms of N , û and R are

8

derived in Sect. 3.4.1. It will be seen that they are exactly analogous to the zeroth-order
formulae in Sect. 2.2.

3.3 Specification of the proper motion prior

Consider a single observation in u, obtained a epoch t with a precision σu that will include
current attitude errors, etc. Adopting the linear model (11b), with source parameter
vector u =

[
u0 u1

]
, the data equation is

[
1 t

]
u ∼= u (±σu) (12)

Recall that we wish to work with unscaled normal matrices for the clustering algorithm;
thus the relevant matrix for this observation is

N =

[
1 t

t t2

]
(13)

independent of σu. Now suppose we wish to add prior knowledge of proper motion corre-
sponding to the data equation

[
0 1

]
u ∼= ũ1 (±σ̃1) (14)

(typically we would use ũ1 = 0 with a fairly large σ̃1). How can this be expressed as
‘unscaled’ normal equations, i.e., compatible with (13)? The solution is to multiply the
data equation with L = σu/σ̃1 (having dimension of time), yielding

[
0 L

]
u ∼= Lũ1 (±σu) (15)

Since this has the same statistical weight as (12), they can be combined without scaling
to give the normal equations

[
1 t

t t2 + L2

] [
u0

u1

]
=

[
u

tu + L2û1

]
(16)

The normal matrix to be used is therefore

N =

[
1 t

t t2 + L2

]
(17)

together with the estimate obtained by solving (16),

û =

[
u− tû1

û1

]
(18)

3.4 Cluster analysis and the least-squares criterion

The least-squares formalism is clearly central for the definition of dissimilarity when using
the minimum-variance criterion. (Not surprising, since ‘minimum variance’ is just another

9

expression for ‘least squares’.) Indeed we can formulate the agglomeration and dissimilar-
ity directly in terms of the data equations [Ai bi] and [Aj bj] for two clusters Ci, Cj . The
parameters of the agglomerated cluster are obtained by minimizing the total SSR

R =
∥∥Aiu− bi

∥∥2 +
∥∥Aju− bj

∥∥2 (19)

The dissimilarity is simply the increase in R when using a common u in (19), compared
to the value obtained when the two terms are separately minimized.

One way to solve least-squares problems is by means of normal equations, as will be done in
Sect. 3.4.1. However, textbooks on numerical methods (e.g., [4]) generally discourage the
use of normal equations for least-squares problems, because this method is more susceptible
to roundoff errors than alternative algorithms operating directly on the data equations.
In Sect. 3.4.2 we consider a different formalism that takes this aspect into account, at the
expense of more computations.

3.4.1 Cluster analysis using normals

The observations for the two disjoint clusters Ci and Cj give the data equations

Aku ∼= bk (k = i, j) (20)

which can be solved separately by the method of least-squares. The normal equations are

Nku = hk (k = i, j) (21)

with Nk = A′
kAk and hk = A′

kbk, from which follow the least-squares estimates

ûk = N−1
k hk (k = i, j) (22)

and finally the sums of squared residuals

Rk =
∥∥bk −Akûk

∥∥2 =
∥∥bk

∥∥2 − û′kNkûk (k = i, j) (23)

In practice we do not keep the complete data equations (20) for each cluster, but only
Nk, ûk, and Rk as explained previously. We note that the right-hand sides of the normal
equations can be computed from these data as hk = Nkûk.

Now if we consider the agglomerated cluster C = Ci ∪ Cj , its normal equations are, of
course,

(N i + N j)u = hi + hj

= N iûi + N jûj

(24)

This gives the following rule for agglomerating coordinates:

û = (N i + N j)−1(N iûi + N jûj) (25)

which is a direct generalization of (8). The use of prior information on the proper motions
will guarantee that the inverse exists. The normal matrix for the agglomerated cluster is
of course

N = N i + N j (26)

10

(see, however, Eq. 31 below), and its SSR is

R =
∥∥bi

∥∥2 +
∥∥bj

∥∥2 − û′Nû (27)

Defining the dissimilarity in analogy with Sect. 2.2, i.e., as the penalty in the SSR when
agglomerating Ci and Cj , we find

∆(Ci, Cj) = R−Ri −Rj (28a)

= û′iN iûi + û′jN jûj − û′Nû (28b)

= û′iN iûi + û′jN jûj − (û′iN i + û′jN j)N−1(N iûi + N jûj) (28c)

= û′i(N i −N iN
−1N i)ûi − û′iN iN

−1N jûj

− û′jN jN
−1N iûi + û′j(N j −N jN

−1N j)ûj

(28d)

= û′iN iN
−1N jûi − û′iN iN

−1N jûj

− û′jN jN
−1N iûi + û′jN jN

−1N iûj

(28e)

= û′iN iN
−1N j(ûi − ûj)− û′jN jN

−1N i(ûi − ûj) (28f)

In going from (28d) to (28e) the expansions N i = N iN
−1(N i + N j) = N iN

−1N i +
N iN

−1N j (etc) have been used to simplify the expressions in parentheses. Moreover,

N iN
−1N j = N iN

−1(N −N j)

= N i −N iN
−1N i

= N i − (N −N j)N−1N i

= N jN
−1N i

(29)

Since normal matrices are symmetric and non-negative definite, it follows that (29) is also
symmetric and non-negative definite. Thus,

∆(Ci, Cj) = (ûi − ûj)′N i(N i + N j)−1N j(ûi − ûj) ≥ 0 (30)

in complete analogy with (10). In fact, for the zeroth-order model, where the normal
matrices are of dimension 1× 1, the above equation reduces to (10), which has therefore
been proved.

There is however one small problem with these formulae when used together with the
prior information in proper motion proposed in Sect. 3.3. As more and more observations
agglomerate, the weight of the prior increases in proportion to the number of observations.
This is unreasonable, since the prior information on a particular source cannot depend on
the number of times the source was observed. No unexceptionable solution has been found
to this problem, but the following ad hoc procedure it proposed: after agglomerating the
data according to (25), the normal matrix for the new cluster is computed as

N = N i + N j −
[
0 0

0 L2

]
(31)

11

instead of (26). The last term prevents the weight of the prior information to increase
during agglomeration. It will however introduce a small error in R as it is built up through
accumulation of dissimilarities.

3.4.2 Cluster analysis using orthogonal transformations

As an alternative to the use of normal equations, we consider briefly a formalism for the
agglomeration and dissimilarity calculations based on orthogonal transformations applied
to the data equations. This should be the preferred method if higher-order source models
are used (e.g., including parallax), resulting in normal matrices of dimension greater than
2× 2. However, it is not likely that this is really required for cross-matching.

The method is based on the principle that the SSR is preserved by any orthogonal trans-
formation Q applied to the data equations:

R ≡ ∥∥Au− b
∥∥2 =

∥∥QAu−Qb
∥∥2 (32)

With n denoting the number of data equations (number of observations in the cluster)
and m the number of unknowns, the dimensions are: A[n×m], u[m], b[n], Q[n× n].

It is always possible to find an orthogonal transformation such that QA is zero below the
diagonal; thus

QA =

[
R

0

] } m

} n−m
(33)

where R is an upper-triangular matrix of dimension m×m. With a corresponding parti-
tioning of the right-hand side,

Qb =

[
z

e

] } m

} n−m
(34)

the SSR can be written

R =

∥∥∥∥∥

[
R

0

]
u−

[
z

e

]∥∥∥∥∥

2

=
∥∥Ru− z

∥∥2 +
∥∥e

∥∥2 (35)

which is minimized for
û = R−1z (36)

yielding R = ‖e‖2. The ‘square root information’ array
[
R z

]
clearly holds the same

information as the normal equations array
[
N h

]
in (21), since N = R′R and h = R′z,

while R has the same meaning as before; therefore we can use R, z and R to describe the
current knowledge of u.

The agglomeration of two clusters with square root information arrays
[
Ri zi

]
and[

Rj zj

]
is obtained by minimizing

R =
∥∥Riu− zi

∥∥2 +
∥∥ei

∥∥2 +
∥∥Rju− zj

∥∥2 +
∥∥ej

∥∥2 = Ri + Rj +

∥∥∥∥∥

[
Ri

Rj

]
u−

[
zi

zj

]∥∥∥∥∥

2

(37)

12

Applying an orthogonal transformation Q (2m×2m) to the augmented information array
such that

Q

[
Ri zi

Rj zj

]
=

[
R z

0 e

]
(38)

with upper triangular R, yields

R = Ri + Rj +
∥∥Ru− z

∥∥2 +
∥∥e

∥∥2 (39)

which is minimized for û = R−1z. From the last equation we also conclude that

∆(Ci, Cj) =
∥∥e

∥∥2 (40)

One way to compute the dissimilarity between
[
Ri zi

]
and

[
Rj zj

]
is therefore to

triangularize the first m columns of the augmented information matrix, of dimension
2m × (m + 1), by orthogonal transformation.5 A compact and efficient algorithm for
the partial triangularization of a matrix, using Householder transformations, is given in
Appendix VII.B of [1]. The implementation of this routine requires (20m3+45m2+37m)/6
floating-point operations6 to triangularize the first m columns of an 2m× (m+1) matrix.
To this should be added 2m− 1 operations to compute ‖e‖2. Thus for m = 2, 3, 4, 5, the
number of operations needed is 72, 181, 365, and 644. The count for m = 2 is about twice
what a straightforward implementation of (30) requires, while the present method may be
competitive, and certainly more accurate, for higher m.

In practice the transformation in (38) is needed for each component of the spatial coor-
dinate. If only proper motion is considered (not parallax), the left-hand side of the data
equations is the same for each component; thus the same orthogonal transformation Q
applies. This is efficiently implemented by augmenting (38) with one set of vectors zi, zj

per component. The dissimilarity is the sum of ‖e‖2 over the components.

3.5 Additional considerations

3.5.1 Choice of batch size

Cluster analysis is intrinsically an O(N2) process, where N is the number of observations.
This behaviour can be somewhat mitigated by various tricks, such as the NNC algorithm
described in Sect. 2.2 and by restricting the search for the nearest neighbour among sorted
data, but not completely eliminated. Thus it is preferable to do the cross-matching in
batches with small N . The batches cannot be made arbitrarily small, though: obviously
they must correspond to areas of the sky that are at least several times the positional
uncertainty per observation, including proper motion effects. Thus it is hardly reasonable
to consider areas smaller than of order an arcmin. In high-density regions such an area
would contain hundreds of stars, in low-density regions only a few stars. However, the use
of small areas incurs another penalty: it will be necessary to consider also all observations
in a border area around the chosen patch, thus effectively doing the cross-matching in

5It would seem possible to construct a more efficient way to compute ∆, by taking into account that
Ri and Rj are already in square root form, but I have not found any such algorithm in the literature.

6All operations +, −, ×, /,
√

counted with equal weight.

13

slightly overlapping areas. The penalty comes from having to treat some of the data at
least twice, because of the overlap, plus some administration to keep track of the status of
data in the overlap areas. The relative amount of overhead due to the overlap will decrease
as (area)−0.5, while the amount of computation per source for the cluster analysis scales
as (area), so there should be an optimum size possibly depending on the star density. It
is difficult to estimate the optimum size without a detailed implementation of the whole
process, including the data access, but it seem unlikely to be much greater than several
arcmin. (Data retrieval could be made in larger batches that are then subdivided for the
cross-matching.) Thus we may assume that the cross-matching will be made in areas that
cover only a very small part of the sky.

3.5.2 Choice of rectangular coordinates

As mentioned in Sect. 3.1, the cross-matching could use any cartesian coordinate system
allowing the expansion of stellar motion in a linear model like (11). The two most obvious
choices are

• Standard coordinates (ξ, η): these are local rectangular coordinates in the tangent plane
of the unit sphere, valid (to sufficient accuracy) over areas that may extend up to a few
degrees.

• Three-dimensional coordinates (x, y, z) on the unit sphere: these are global coordinates
valid over the whole sphere.

The advantage of standard coordinates is the economy of computation in using them, once
they have been computed; the disadvantage is that they are local and perhaps unique for
each cross-matching area (as discussed in Sect. 3.5.1). In overlap areas the same data may
thus be represented by different standard coordinates, which is clearly inconvenient. These
complications, as well as the need to specify tangent point coordinates and making the
transformations, are avoided if three-dimensional coordinates are used; on the whole these
seem to allow the simpler and safer treatment. The disadvantages of the three-dimensional
coordinates are that more space is needed for their storage and more arithmetic operations
are required, e.g., for computing dissimilarities (these being quadratic sums over three
instead of two coordinate components).

It is not a priori obvious which coordinate representation should be chosen. On the other
hand, as long as the source model does not go beyond first order (i.e., including position
and proper motion, but not parallax), the detailed implementation of the classification
and cluster analysis algorithms could be completely general with respect to this choice. It
is therefore recommended that both options are retained for the time being.

3.5.3 Use of magnitude criterion

Both the distance measure for classification and the dissimilarity measure for cluster analy-
sis could take into account the magnitude difference between the source and observation,
or between two clusters. The extension if straightforward, and only requires the specifi-
cation of a scale factor to make a magnitude error comparable with an error in position.
In uncrowded areas there may not be any need to use the magnitude criterion, but in
crowded areas it could significantly improve the cross-matching (cf. Sect. 4.3).

14

Including the magnitude criterion will of course create problems for variable stars. What
may happen is that several sources are created at approximately the same position but
with different mean magnitudes. Such cases could however be detected by proper post-
processing, cf. Sect. 3.5.5.

The cross-matching algorithm should be flexible enough to permit a manual (or automatic)
choice on whether to use the magnitude criterion.

3.5.4 Solar system objects

Many solar system objects move fast enough that their proper motions are detected already
with the skymapper/confirmation observation. Until the special cross-matching for solar-
system objects has been fully defined, it is not clear if such observations would be filtered
out already before the cross-matching procedure considered here. It should be noted
however that the proper motion formalism developed in Sect. 3.3 and the subsequent
cluster analysis could be applied to solar system objects as well, to the extent that their
motions on the sky are uniform over a certain time interval. For example, this might
identify successive transits of a fast-moving object on consecutive scans.

3.5.5 Breaking and joining clusters

In addition to the classification and cluster analysis algorithms, the full cross-matching
procedure must include criteria and methods to break and join clusters as part of the
post-analysis of the clustered observations. One important reason for breaking up a cluster
into two (or more) clusters is that it contains quasi-simultaneous observations, i.e., more
than one detection made on the same FOV crossing: by definition, a source can only be
observed once per FOV transit. (Alternatively, the epoch condition might be built into
the classification/clustering algorithms.)

There could be many reasons for joining clusters into a single one. Objects representing
distinct sources in an earlier cross-matching may later turn out to be similar enough to be
considered the same source. If the magnitude criterion is used, variable stars may produce
multiple sources at the same position.

The post-processing algorithms needed to detect and correct these and other cases are at
the moment completely undefined.

3.6 Synthesis

The general cross-matching algorithm is a combination of classification and cluster analy-
sis. A natural division between the two procedures could be as follows: first classify as
many of the observations as possible (i.e., matching them to known sources); then apply
cluster analysis on the remaining (unmatched) observations. The classification must in-
clude a special class holding the unmatched observations that will be fed to the cluster
analysis. The scheme must be complemented with procedures for pre- and post-processing
of the data, handling of overlap areas (Sect. 3.5.1), and for the joining and breaking of
clusters (Sect. 3.5.5).

15

The complete cross-matching could then consist of the following steps. It is assumed that
observations and sources (for the input catalogue) are stored in the database by position,
e.g., according to the HTM system.

1. Set parameters for the cross-matching, in particular the estimated σu and the upper
limit on the internal variance of a cluster, whether the cluster analysis should take
proper motions into account and if so the relative prior weight (L) of the proper
motions

2. Select the region of the sky to be cross-matched (e.g., whole sky)

3. If the selected region is larger than the optimum batch area, subdivide it into batch
areas of suitable size. Steps 4–9 are performed for one batch area at a time.

4. Add a margin area along the border, defining the extended batch area

5. Extract all sources in the batch area and all observations in the extended batch area

6. Do the classification of observations against sources

7. For each source, check that all the matched observations were made at distinct
epochs; if not, release the more distant observation

8. For all remaining (unmatched) observations, do the cluster analysis

9. For each cluster, check that the observations were made at distinct epochs; if not,
release the more dissimilar observation

10. Store the results for the sources/clusters whose positions (at the reference epoch) fall
inside the batch area, and mark the corresponding observations as matched; all other
clusters are dissolved and the corresponding observations marked as unmatched. The
computed source parameters constitute an updated input catalogue.

11. Check the whole region for unmatched observations (except along the border of the
region); if there are unmatched observations, goto 6; otherwise stop.

4 Explorative tests of the cluster algorithm

The cluster algorithms described in Sect. 2.2 (without proper motions) and Sect. 3.4.1
(including proper motions) were briefly tested on ad hoc simulated data. The purpose
was not to thoroughly test the algorithm on realistic data, but merely to demonstrate
that it works in principle as expected. There are many details of the implementation
that remain to be worked out and very little has been done to optimize the algorithm in
terms of the several parameters that may influence the performance (limits for the internal
dispersion, weight of prior data, search radius, etc).

Primarily two aspects of the cluster analysis algorithm were tested: the statistical cor-
rectness of the cluster assignment as function of stellar density, and the convergence of
the first-order model in the presence of a high-proper motion star. The simplicity of the
simulated data reflects the limited scope of these tests.

16

 0

 5

 10

 15

 20

 25

 30

 35

18.0 18.5 19.0 19.5 20.0 20.5 21.0

N
um

be
r

of
 e

po
ch

s

True G [mag]

Figure 3: Simulation of a fuzzy detection limit: The diagram shows the number of
observations (epochs) per star as function of its true magnitude (G). The region was
assumed to be scanned 30 times, which was thus the maximum number of observations
per star. (The ordinates were randomized to within ±0.5 units.)

4.1 Simulated data

Data were simulated in two steps: first a random field of sources (stars) was generated,
then their observations at specific epochs. Each source was specified by its position x, y
(in arcsec) and magnitude G; observations of the same quantities were obtained by adding
gaussian noise. A fuzzy detection limit was implemented as described below.

The rectangular stellar field was specified by the limits in x, y and G, and by the stellar
density law, which was of the form Σ(G) = Σ(20) exp[α(G− 20)] with α = 0.7.

The epochs of scans across the region were assumed to be equidistant in time – not
quite realistic, but sufficient for a first test – with 6 epochs per year during 5 years.
Thus, at most 30 observations could be obtained per star. However, whether or not
a certain star was observed at a certain epoch was determined by the random number
generator, in such a way that the probability of observation was 0.9 for stars well above the
detection limit. For fainter stars a fuzzy detection limit was implemented in the following
simplistic manner. Given the true magnitude G, the standard error in magnitude per
observation was computed as σG(G) = σ(20) exp[β(G − 20)], with σG(20) = 0.15 mag
and β = 0.6. For every potential observation a ‘detection magnitude’ was generated as
Gdet = G + σG(G)N(0, 1), and the star was assumed to be observed only if Gdet ≤ 20. In
the subsequent analysis, all detected observations were considered, even when a star only
received one observation. Figure 3 shows the resulting number of observations as function
of the true magnitude for a field with ∼400 observed stars.

17

For each observation, ‘observed’ values of x, y and G were generated by adding gaussian
errors. A fixed standard deviation σ (usually 1 or 0.5 arcsec) was assumed in x, y, while
the σG(G) law given previously was used for the observed magnitude.

4.2 Defining the success rate

For subsequent experiments it is desirable to quantify the success of the cluster analysis
in a single number. This can then be used not only to characterize the performance in a
given situation, but to tune the parameters of the cluster analysis in order to optimize the
performance. It is not immediately obvious how to define such a number.

From the simulations we know of course the correct assignment of every observation to a
unique source. Having performed the cluster analysis, each observation has been assigned
to a cluster. In the ideal case every cluster corresponds to exactly one source, and in
that case it is straightforward to decide for each observation whether it was assigned
to the correct source or not. But the more typical result is that there is no one-to-one
correspondence between the true sources and derived clusters.

A solution then is to look at observation pairs. Among N observations there are N(N−1)/2
distinct pairs (i, j), i.e., for 1 ≤ i < j ≤ N . For any i, j it is easy to decide (a) if they
were generated by the same source in the simulations; and (b) if they were assigned to the
same cluster in the analysis. The clustering was completely successful if and only if, for
every pair, (a) gives the same answer (true or false) as (b). Thus, define for each pair

Aij =

{
1 if i, j are generated by the same source,
0 otherwise

(41)

Bij =

{
1 if i, j are in the same cluster,
0 otherwise

(42)

Then count the number of pairs with different combinations of the two outcomes,

M00 =
N−1∑

i=1

N∑

j=i+1

(1−Aij)(1−Bij) (correctly unpaired) (43a)

M01 =
N−1∑

i=1

N∑

j=i+1

(1−Aij)Bij (incorrectly paired) (43b)

M10 =
N−1∑

i=1

N∑

j=i+1

Aij(1−Bij) (incorrectly unpaired ≡ missed) (43c)

M11 =
N−1∑

i=1

N∑

j=i+1

AijBij (correctly paired) (43d)

with M00 + M01 + M10 + M11 = N(N − 1)/2. Finally the success rate is calculated as

F =
M11

M11 + M10 + M01
(44)

18

 0

 20

 40

 60

 80

 100

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

S
uc

ce
ss

 r
at

e
[%

]

log σ2Σ

A

B

Figure 4: Success rate F as function of the dimensionless quantity σ2Σ, where σ is
the positional error per observation and Σ the density of the observed stars. The data
were generated without proper motions and analyzed by the zeroth-order model. Curve
A was obtained without taking the observed magnitudes into account; for Curve B the
dissimilarity included the magnitude mismatch, with a 0.25 mag error equivalent to a
positional error of the assumed σ.

A success rate F = 1 means that all true pairings were found, and no false pairing.
Evaluation of F in some other (extreme or typical) cases suggests that F always gives a
fair impression of the success of the cluster analysis. For example, if all but one out of N
observations were assigned to the ‘correct’ cluster, we will get F ' 1− 4/N if N is large.
Assigning one cluster to each observation gives F = 0, while assigning all observations to
the same cluster gives F ' 1/m, if m is the true number of sources. Finally, if the sources
are clumped together two and two in the clusters, so that only half the actual number of
sources are found, we would get F ' 0.5 in the limit of large N .

4.3 Success rate as function of star density

In this first test, a random star field with ∼500 sources was generated (without proper
motions) and the density Σ was then varied by scaling the size of the field. The positional
uncertainty was fixed at σ = 1 arcsec. It is clear that, other factors remaining unchanged,
the success of the cross-matching should only depend on the dimensionless quantity σ2Σ,
i.e., the expected number of sources in a square of side length σ.

Figure 4 shows the run of the success rate F as function of log σ2Σ (Curve A). A high
success rate seems to require that σ2Σ is of order 0.001 or less. However, if the magnitude
criterion is used (Sect. 3.5.3), a somewhat higher density can be handled (Curve B).

19

The maximum expected star density is Σ = 3 × 106 deg−2 = 0.23 arcsec−2. It is clear
that such a density cannot be successfully analyzed with a positional error of σ = 1 arcsec
(for which log σ2Σ = −0.64), but may be possible with σ = 0.1 arcsec (log σ2Σ = −2.64),
especially if the magnitude criterion can be used.

4.4 Tests including proper motion

The purpose of these tests was to demonstrate the possibility, at least in principle, to
perform cluster analysis on position and proper motion data as described in Sect. 3.4.1.
More precisely, we wish to show that the algorithm converges to the correct solution
(success rate F = 1) as the positional standard error σ is reduced. To this end, a very
small field (40 × 40 arcsec2) was considered and a moderate star density, 81 000 deg−1,
giving only 10 observed sources in the field. The magnitude criterion was not used in these
tests. No proper motions were simulated, except for one of the stars (at G = 18.6, with
28 observations), which was sometimes given a high proper motion of '1.3 arcsec yr−1.

Figures 5–10 show the simulations and results plotted with different symbols in the field.
The true position of a source is marked with a big plus sign (+). The observations are
marked with small crosses (×), except those of the high-proper motion star (in Figs. 7–
10 only), which are marked with small squares (¤). The clusters derived by the cluster
analysis are shown as circles of radius (R/n)1/2 centred on the cluster centroids.

4.4.1 Tests with the zeroth-order model

For the experiments shown in Figs. 5–8, the cluster analysis was made with the zeroth-
order model, i.e., not taking into account proper motion. In Figs. 5–6 the stars did not
have any proper motion, and the results converged as expected to the correct pairings: the
success rate increased from F = 0.981 for σ = 1 arcsec (Fig. 5) to F = 1 for σ = 0.5 arcsec
(Fig. 6).

In Figs. 7–8, the star at (x, y) ' (13, 24) arcsec was given a proper motion of (0.6, 1.2) arc-
sec yr−1. In this case the zeroth-order cluster analysis did not converge to the correct
pairings as the positional errors decreased; on the contrary, the data for the high-proper
motion star were increasingly fragmented into smaller clusters, as could be expected. This
shows that a high-proper motion star could be a problem for the simplest (zeroth-order)
clustering algorithm.

4.4.2 Tests with the first-order model

Figure 9 shows the same data as in Fig. 7 but analyzed with the first-order model allowing
proper motion. The parameter for the prior information was set to L = 0.1 yr. The
algorithm now correctly recognized the high-proper motion star and gave a significantly
improved success rate (F = 0.898 versus 0.810 in Fig. 7). Reducing the positional error
to 0.5 arcsec retrieved the correct pairings, F = 1 (Fig. 10).

In Figs. 9–10 the clusters are shown elongated by the derived proper motion. It can be
noted that the cluster results for the non-proper motion objects were not much deteriorated
by the additional degrees of freedom introduced by the first-order model: the derived

20

proper motions were small and did not disturb the cross-matching. Of course, such benign
behaviour cannot be expected in severely crowded regions. Nevertheless, the test shows
that cluster analysis based on the first-order model may work even when the motions are
comparable to the distances between sources.

5 Conclusions

We have shown that the cross-matching problem for Gaia can be solved by application
of well-known statistical procedures, namely classification and cluster analysis. Suitable
algorithms for this have been identified, modified to accommodate proper motions, and
tested on simulated data. Results are promising in terms of performance, but the cluster
analysis algorithm in particular may be significantly more demanding in terms of com-
putation than previous algorithms. Much work remains on fitting together the different
elements, as outlined in Sect. 3.6, and defining various post-processing algorithms.

References

[1] G.J. Bierman, Factorization Methods for Discrete Sequential Estimation (Mathemat-
ics in Science and Engineering, Vol. 128), Academic Press, 1977

[2] W.J. Krzanowski, Principles of Multivariate Analysis: A User’s Perspective, 2nd ed.,
Oxford University Press, 2000

[3] M.G. Lattanzi, X. Luri, A. Spagna, J. Torra, C. Jordi, F. Figueras, R. Morbidelli,
A. Volpicelli, Cross-matching implementation in the GDAAS context, GDAAS–TN–
005, V1.2, 24 June 2001

[4] C. Lawson & R. Hanson, Solving Least Squares Problems, Prentice-Hall, 1974

[5] F. Mignard, C. Bailer-Jones, A Model for the Gaia Data Analysis Consortium,
DACC–CHAIR–002, V2.0, 26 July 2005

[6] F. Murtagh & A. Heck, Multivariate Data Analysis, Astrophysics and Space Science
Library, Reidel, 1987

[7] F. Murtagh, Fionn Murtagh’s Multivariate Data Analysis Software and Resources
Page, http://astro.u-strasbg.fr/∼fmurtagh/mda-sw/

[8] J.H. Ward, Hierarchical Grouping to Optimize an Objective Function, J. Am. Stat.
Assoc., 58, 236, 1963

21

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

y
[a

rc
se

c]

x [arcsec]

Figure 5: Test of the 0th order model on data without proper motion. Positional
standard error σ = 1 arcsec, success rate F = 0.981. See text for explanation of symbols.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

y
[a

rc
se

c]

x [arcsec]

Figure 6: Test of the 0th order model on data without proper motion. Positional
standard error σ = 0.5 arcsec, success rate F = 1.

22

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

y
[a

rc
se

c]

x [arcsec]

Figure 7: Test of the 0th order model on data with proper motion on one star (small
squares). Positional standard error σ = 1 arcsec, success rate F = 0.810.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

y
[a

rc
se

c]

x [arcsec]

Figure 8: Test of the 0th order model on data with proper motion on one star (small
squares). Positional standard error σ = 0.5 arcsec, success rate F = 0.834.

23

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

y
[a

rc
se

c]

x [arcsec]

Figure 9: Test of the 1st order model on data with proper motion on one star (same
data as in Fig. 7). Positional standard error σ = 1 arcsec, success rate F = 0.898.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

y
[a

rc
se

c]

x [arcsec]

Figure 10: Test of the 1st order model on data with proper motion on one star (same
data as in Fig. 8). Positional standard error σ = 0.5 arcsec, success rate F = 1.

24

Appendix: The Torino Object Matching Algorithm

For reference, the object matching (OM) algorithm currently used in GDAAS [3] is briefly
described in this Appendix. It is based on the Fortran routines posmat and match solver
provided by the Torino group (V1.3, October 2003). The present description is not com-
plete but intended to give a general idea about how the algorithm works.

Basically, the OM algorithm compares two lists of objects to find the best positional
matches between them. One list contains observations, the other sources. The goal is that
every observation is assigned to (at most) one source.

For each observation, potentially matching sources are looked for within a given search
radius. If there are more than one source within this radius, then the nearest source is
selected. However, since such an assignment must be considered uncertain, a record of the
remaining potential matches is kept.

Next, the uncertain assignments are reviewed by means of the subroutine match solver.
This is invoked for each observation in turn. It checks if there were previous observations
assigned to the same sources, and in that case decides on the optimum assignment. If the
assignment of a previous observation were changed by this decision, then it is necessary
to review the assignment of that observation again. This is done by recursively calling
match solver.

A flowchart of the main OM algorithm (posmat) is shown in Fig. 11. The match solver
subroutine is shown separately in Fig. 12.

The cross-matching is made in standard (tangential plane) coordinates (ξ, η), thus both
observations and source data are first transformed to this system. The sources are sorted
by η to avoid going through the whole list of sources for every observation. D(obs,src) is
the distance between an observation and a source, cf. (2).

25

Input:

- list of obs

- list of src

Transform:

- obs (α,δ) to (ξ,η)
- src (α,δ) to (ξ,η)
Sort src by η (index j)

Loop

through

obs

Locate limits in src list:

η
min

= η
obs

−ρ @ j
min

η
max

= η
obs

+ρ @ j
max

Set m(obs) = 0

Loop

through

src for index

j = j
min

 to j
max

D(obs,src(j)) < ρ ? Increment m(obs)

m(obs) ≤ m
max

 ?

Add to matching list

for obs:

- separation D: dr

- pointer to src: nmbpo

Next

src

m(obs) > 1 ?

Next

obs

Sort matching list for

obs by increasing D

Loop

through

obs

Call

match_solver

for obs

Next

obs

Output

matching lists

for all obs

Yes

No
Yes

No

Yes

No

Figure 11: Simplified flow chart for the main part of the Torino object matching algo-
rithm, posmat. The subroutine match solver is shown in Fig. 12.

26

Input

argument:

obs

Loop

through the

m(obs)

matched src

Look for previous

observations (obs')

matched to src

Previous match

(obs') found ?

Provisionally

accept the match

(obs, src)

No

D(obs,src) <

D(obs',src) ?

Yes

Next

src

No

Reject (obs',src)

Accept (obs,src)

Call

match_solver

for obs'

Yes

This obs represents

a new source:

(obs,src')

Return

Reject (obs,src)

Subroutine match_solver

(N.B.: Recursive!)

Figure 12: Simplified flow chart for the recursive match solver subroutine used by the
Torino object matching algorithm in Fig. 11.

27

