ISDC for the INTEGRAL USERS GROUP Carlo Ferrigno (ISDC) ESOC, 11-12 June 2019 ## Organization status - Swiss funding for 2019: approved with minimal direct funding (1 FTE). Operations guaranteed. - Funding for 2020 asked and expected at the same level. - Manpower allocation: ½ operator, ½ scientist. Contribution from infrastructure (CDCI project, led by S. Paltani) for web mastering, DB support and webanalysis. Contribution from ESA for operations. - Synergies with other projects and past savings is essential. ½ scientist in 2019 from ESA. - Operator retires in November 2019, very difficult to replace him. Started hiring process. ## Routine tasks - Updates of IC files provided by instrument teams - monitoring of SPI gain at each revolution with automated procedure - SPI gain coefficients updated last time in 2018 - Processing and archiving of CONS data - Solve issues in transmission of aux files from MOC ## ISDC Operations/data distribution - NRT data are available within 3 hours. Smooth processing (monitoring issues more closely now for MMA). - Page to distribute data since AO13, public for serendipitous science. Handled Russian peculiarity. - Need for OSA energy reconstruction step both for JEM-X and ISGRI. NRT data for JEM-X2 are not always available due to difficult energy reconstruction. - Occasional gaps in NRT telemetry due to hardware failure of the University infrastructure supporting the data transfer (switch). - CONS data are obtained now from virtualized DVD transfer from MOC - Service widely used for SPI-ACS data in NRT ## INTEGRAL SPI-ACS public data service In 2011, a public service was set up to promptly provide SPI-ACS data with the best timing accuracy It was extensively used for years by IPN and Konus colleagues Since 2015, Fermi/GBM team used the service to verify their detections and challenge SPI-ACS Several other groups started to use it. In total >100 Gb has been served. Try using the script to access the lightcurves RESTful service, providing various public INTEGRAL data as well as auxiliary information ## Quick look analysis of INTEGRAL data - No GRB in the IBIS FOV in 2019, 7 in 2018 (IBAS energy calibration not updated, waiting for D. Goetz's input). - ~200 GRB/year in SPI ACS. Used for IPN triangulation. - Inform all PIs of data rights only in case of outstanding problems or relevant serendipitous sources (no data rights). - 14 ATeLs (3 lead by ISDC) and 23 GCNs related to INTEGRAL discoveries in 2019 (included GW and neutrino follow-up) ## Telemetry CONS / NRT, rev. 2011 - 2089 ### Operations: Good times vs programmed 2009 – 2089 #### Operations: Good times 1904 – 2008 ## Delay between observation and distribution rev. 2008 - 2089 #### Browse unique visitors #### Number of visitors #### FTP access statistics #### Bandwidth (GB) ### Rsync ## High level quick-look products, HEAVENS - Development on hold - Used OSA9 ~60 single accesses per month ### Cross calibration - We are working on integrating the dashboard concept to a living cross calibration archive (sketched at IACHEC) - We will implement automatic fetching of calibration observations from IACHEC and provide comparison with INTEGRAL - We plan to perform automated tests to check the cross-calibration of INTEGRAL instruments - This is very relevant also for the development of ISGRI calibration ## INTEGRAL conference + AHEAD workshop → INTEGRAL LOOKS AHEAD TO MULTI-MESSENGER ASTROPHYSICS 12th INTEGRAL Conference - 1st AHEAD Gomma-roy Workshop #### Invited Speakers Marine Branches (Cres France) Spill Francesco Victoria (School) Spill Marine, School (School) Andre Spilling France Marine, Antreason County Marine, Antreason France Spilling Marine, Antreason Spilling Spilling Marine, Antreason Spilling Spilling Thomas Spilling Spilling Marine, Marine Spilling Thomas Spilling #### Scientific Organishing Committee #### Local Departition Controlline Control World State Common Stat Harrison are only a first spoken ## INTEGRAL conference 2019 https://www.astro.unige.ch/integral2019/ - 11-15 February 2019 at Campus Biotech in Geneva - Co-organized AHEAD workshop on future gamma-ray missions (two half days) - Fee was 200 CHF per person including three lunches (several waived) - 146 participants + a couple local ones - 106 presented: 14 invited, 33 solicited, 41 contributed, 18 posters - We received 50 proceeding contributions so far. Maybe a few more will arrive in the next days - The Mike Revnivtsev prize was given to T. Siegert - Dinner at Ecole hoteliere de Geneve - Conributions from ESA, INAF, UNIGE, Ville de Geneve ## OSA 11 and catalog 42 - Released catalog v. 41 in June 2018 - Released catalog v. 42 in December 2018 - OSA 11 was released on 19 October 2018 - 4 Linux binaries, source code, docker image for portability on all platforms - New JEM-X light-curve extraction method with j_ima_iros - Automatic burst detection in JEM-X - SPI: implemented the PE, SE discriminator and tool to stich spectra in different energy ranges with flatfield background - New ISGRI energy calibration and response from rev 1627 - No Updates for OMC ### Evolution of low threshold Due to drift of gain, the energy scale is much more compressed and signal starts at ~25 keV rather than at ~15 keV as at the mission start ## User manuals - We updated the User manuals and the installation guide - We updated the "known issues" in collaboration with instrument teams. - ISDC did not and (will not) update any inter-calibration document or advanced analysis guide etc. - No additional documents are currently foreseen - No major revision is feasible ## OSA downloads (since release and until 5 June) - 220 downloads - 3 source code (often the same user as for binaries) - 63 test data - 200 catalog bundles - >1400 pulls of the docker image (not possible to trace provenance on dockerhub) ## OSA future activities - ~200 more revolutions of ISGRI calibration files in second half 2019 to cover from rev ~1400. - Soon after, completing the mission life time with ~100 revolution/month (or larger chunks) - Discussion to support Volodymyr with a bright Swiss trainee at ESA - Outcome of collaboration could be also an ISGRI calibration document in collaboration with the IBIS team - Waiting for Compton imaging from Paris to release a delta version of OSA (11.1) with updates also for JEM-X ## From ISDC to CDCI - Raw data are not enough, we need to have the ability to run a stramlined analysis and easily access high-level data. - Unige has obtained financial support for a common data center infrastructure (CDCI) - As part of this, we are making a pilot project for an online tool for INTEGRAL data analysis and long-term preservation of S/W and archive - It was extended also to another missions at UNIGE: Polar ## Offline Data Analysis (from OSA to ODA) - We run OSA executable from a web tool (only IBIS/ISGRI for now and 50 scw per chunk). - We will have a public version for public data (~1-year old) - We have a private internal version with access to NRT data for operations and transients. ## ODA v 1.0 - Imaging Possible to make images in one energy range ## ODA 1.0 - Central role of the catalog - Easy handling of source catalog. - You can delete, add sources found from imaging - You can load a catalog from a file. ## ODA 1.0 - Spectra and online fitting From the catalog, you get all spectra simultaneously at full 256 channel resolution Fit individual spectra and download in fits format ## **ODA 1.0 Light curves** - From the catalog, you can create light curves with time bins larger than 10 seconds as for OSA limitations and display them individually - Here at science window resolution - Downloaded in OGIP format ## Reproducible and storable - The system is built with internal cache to save intermediate products. - The second time you make the same query, results are almost instantaneous. - Backend can be deployed virtually anywhere, because it is based on a "singularity" cluster, which runs science windows in parallel. - Singularity is very similar to docker as a principle, it runs virtual machines with OSA inside and passes commands while returning results ## **ODA** current limitations - We have very limited computing resources and virtually no sysadmin supports (self administrated cluster) - We need to limit science window number to 50 to avoid overcharge (it can be changed) - We have very limited human resources (~2 FTEs) - We have implemented Polar, SPI-ACS, IBIS VETO, and JEM-X. ## Dynamic worklflows instead of data - The abstract concept of workflow is a "morphism of data": the full procedure bringing from raw data to usable results and also their standardized analysis - The workflow is based on a backend that builds the arborescence using the concept of class inheritance (with python). OSA is plugged into this framework using deployable software containers. - Workflow can be materialized into a web interface - Workflow can be materialized into a jupyter notebook - Reproducibility is ensured, because changes are tracked into repositories (github) and they could, in principle, be explored. - The building blocks are already available, but we need to develop usability. ## Future plans and wishes - The current archive of cached data is constructed with a lineage of data and dependencies as in a arborescence, a noSQL database. - User requests will effectively create an archive of results accessible with a limited latency. - For a legacy archive, we should also create a SQL data base of pre-computed results with active links to the processing. This will allow an easy access to spectra, light curves and images. ## A prototype of data gallery - We plan to populate an archive of relevant results with links to the online analysis results (images, spectra lightcurve), but above all to the workflow having generated it. - With a simple click, we can pass from the image to the workflow producing it. Access source files and in case modify the analysis. ### Transient event dashboard - Every input (GCN notice) is automatically processed and it generates results. - We developed a repository of "manually checked" results with public static results (layout to be improved) - Link to the workflow is private - Limiting factor in development is manpower ## The private dashboard to work on data https://analyse.reproducible.online/transie nts/dashboard/ #### **INTEGRAL** status Snapshot at 2019-06-09T18:16:25 UTC Orbit 2100, 151.93 Mm to Earth | | State/last | Latency | RA | Dec | | |-----------|--------------|---------|-------|-------|--| | Real-time | ONLINE | 66.0 s | 4.7 | 59.6 | | | NRT | 210000250010 | 1.2 h | 4.3 | 61.7 | | | CONS | 209000990010 | 25.3 d | 320.0 | -45.0 | | INTEGRAL status Schedule next break in data in 29 hr: 2019-06-10T23:32:59, for 9.6 hr #### Gravitational Wave Detector Network Operational Snapshot as of Jun 09, 18:16 UTC | Detector | Status | Duration | |--------------------|-----------------|----------| | GEO 600 | Observing | 2:40 | | LIGO
Hanford | Observing | 15:40 | | LIGO
Livingston | Observing | 9:08 | | Virgo | Troubleshooting | 2:53 | | KAGRA | Future addition | | Detector status summary LVC pages links ■ Events ▼ Observations ▼ LIGO/Virgo ▼ AMON/IceCube ▼ INTEGRAL ▼ SPI-ACS ▼ Fermi で All | Event | Origin | Role | итс | Sky
Location | Orientation (θ, φ) | FoV exposure | ScW | Data | Visibility | Planning
urgency | Raw
Notice | |--------------------|---------------|-------------|-----------------------|-----------------|-----------------------------|--------------|--------------|------|------------|---------------------|-----------------| | T S190602aq | LIGO
Virgo | observation | 2019-06-02T17:59:27.0 | 73.39
-7.03 | bottom
(127.8,
-20.2) | 0.0 ks | 209700520010 | NRT | 1.3% | | VOEvent
JSON | | ▼
S190602aq | LIGO
Virgo | observation | 2019-06-02T17:59:27.0 | 73.39
-7.03 | bottom
(127.8,
-20.2) | 0.0 ks | 209700520010 | NRT | 1.3% | | VOEvent
JSON | | ▼
S190602aq | LIGO
Virgo | observation | 2019-06-02T17:59:27.0 | 73.39
-7.03 | bottom
(127.8, | 0.0 ks | 209700520010 | NRT | 1.3% | | VOEvent
JSON | ## An internal limited interface (with public links) ## https://www.astro.unige.ch/cdci/mm-events ## The complete set at LIGO and Virgo #### GraceDB — Gravitational Wave Candidate Event Database | t_end FAR (Hz) 33586.346191 1.901e-09 08746.133301 6.971e-09 | 2019-06-02 17:59:51 UTC | |--|---| | 33586.346191 1.901e-09 | Created
2019-06-02 17:59:51 UTC | 2019-06-02 17:59:51 UTC | | | | | 8746.133301 6.971e-09 | 2010 05 24 04 52 20 UTC | | | 2019-05-24 04:52:30 UTC | | 59858.642090 3.168e-10 | 2019-05-21 07:44:22 UTC | | 12968.888184 3.801e-09 | 2019-05-21 03:02:49 UTC | | 5.702e-09 | 2019-05-19 15:36:04 UTC | | 1.004e-08 | 2019-05-18 19:19:39 UTC | | 07480.994141 2.373e-09 | 2019-05-17 05:51:23 UTC | | .6087.869141 3.734e-13 | 2019-05-13 20:54:48 UTC | | .9653.518066 1.901e-09 | 2019-05-12 18:07:42 UTC | | 92398.293185 8.834e-09 | 2019-05-10 03:00:03 UTC | | 1.636e-09 | 2019-05-03 18:54:26 UTC | | 27334.353516 1.947e-08 | 2019-04-26 15:22:15 UTC | | 5504.018242 4.538e-13 | 2019-04-25 08:18:26 UTC | | 7955.409180 1.489e-08 | 2019-04-21 21:39:16 UTC | | 32263.229492 1.683e-27 | 2019-04-12 05:31:03 UTC | | 32701.359863 2.811e-18 | 2019-04-08 18:18:27 UTC | | .5309.863646 2.141e-04 | 2019-04-05 16:01:56 UTC | | 122 | 2968.888184 3.801e-09
5363.676270 5.702e-09
2380.922655 1.004e-08
7480.994141 2.373e-09
5087.869141 3.734e-13
9653.518066 1.901e-09
2398.293185 8.834e-09
4863.422852 1.636e-09
7334.353516 1.947e-08
5504.018242 4.538e-13
7955.409180 1.489e-08
2263.229492 1.683e-27
2701.359863 2.811e-18 | ## Time-domain astronomy - MoU with Antares - MoU with IceCube for non-public alerts - LVC issues public notices - Implemented the real-time dump of SPI-ACS stream to be used in fast triangulation with GBM and IPN satellites. - Developed an API to access real-time services via python notebook and quickly react to alerts - System of "burst advocates"