

SPI Performance Monitoring

MPE Contributions

- SPI spectral response
- ACS Status and Calibration

November 2019

MPE routine monitoring:Spectral Fitting

Routine decomposition of SPI detector spectra

INTEGRAL User Group Meeting, Nov 2019

Roland Diehl

MPE routine monitoring:Spectral Fitting Recent fitting examples for the 882 keV line, rev 2155

MPE routine monitoring:Spectral Fitting Recent fitting examples for the 1764 keV line, rev 2155

Fig. 2.2: SPI camera spectral resolution around the current annealings, no. 27-29

INTEGRAL User Group Meeting, Nov 2019

33rd Annealing

Fig. 1.1: Annealing overview: Cold plate temperature across the annealing period. Note the units and scaling of temperature change from Kelvin to approximately ~°C during the heating period. The SPI switch-on time is marked (dashed line).

Fig. 1.8: Instrument response (198 keV line centroid, i.e. gain) after switch-on, as it evolves with scw's during the first orbit

33rd Annealing (Rev 2140-2145; 22 Sep - 10 Oct 2019)

• The recovery after 33rd annealing is ~ok

------33rd annealing, Revolution 2046: Fitted line width (FWHM, keV)

HV (kV)	1.52	2.03	2.53	3.01	2.03	1.52	2.11
Det							
00	2.35	2.26	2.27	2.26	2.30	2.33	2.24
01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
03	2.42	2.20	2.14	2.15	2.16	2.25	2.12
04	2.60	2.54	2.48	2.43	2.36	2.53	2.45
05	0.00	0.00	0.00	0.00	0.00	0.00	0.00
06	2.14	2.11	2.11	2.06	2.04	2.04	2.07
07	2.35	2.07	2.11	2.00	2.12	2.25	2.07
08	2.69	2.60	2.53	2.50	2.53	2.52	2.51
09	2.01	2.03	2.02	1.93	1.88	1.97	2.00
10	2.54	2.44	2.45	2.42	2.28	2.50	2.27
11	2.31	2.16	2.20	2.17	2.28	2.30	2.16
12	2.27	2.44	2.39	2.49	2.21	2.18	2.30
13	2.11	2.09	2.11	2.08	2.09	2.14	2.06
14	2.52	2.45	2.34	2.27	2.27	2.43	2.21
15	2.26	2.19	2.13	2.16	2.11	2.19	2.11
16	2.39	2.15	2.14	2.16	2.21	2.22	2.08
17	0.00	0.00	0.00	0.00	0.00	0.00	0.00
18	2.17	2.07	2.09	2.09	2.05	2.13	2.03

during the first orbit

Uncertainty in FWHM is estimated as 0.044 keV

• The energy calibration after 33rd annealing is ~ok

Fitte	d line cen	ter (chann	el)					
HV (kV)	1.52	2.03	2.53	3.01	2.03	1.52	2.11	
Det 00 01	1439.8 0.0	1443.1 0.0 0.	1443.1 0 0.0	1443.3 0.0	1440.6 0.0 0.	1437.2 0	1441.8	line center (channel), rev 2146
02 03 04	0.0 1451.2 1450.7	0.0 0. 1456.8 1452.5	0 0.0 1457.2 1452.7	0.0 1457.1 1452.5	0.0 0. 1454.4 1450.7	0 1448.0 1448.7	1455.6 1451.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
05 06 07 08	0.0 1448.2 1431.7 1452.0	0.0 0. 1450.5 1442.1 1454.8	0 0.0 1450.6 1443.3 1454.9	0.0 1450.5 1443.2 1455 1	0.0 0. 1448.1 1439.6 1452 3	0 1445.6 1428.5 1449.2	1449.2 1441.7 1453.6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
09 10 11	1447.2 1445.3 1436.2	1449.7 1453.5 1439.9	1449.5 1454.3 1440.0	1439.1 1449.1 1454.4 1439.8	$1432.3 \\ 1446.8 \\ 1451.1 \\ 1436.9$	1444.1 1442.0 1433.1	1433.0 1447.9 1452.9 1438.3	$\begin{array}{c} 1456 \\ 1454 \\ 1452 \\ 1451 \\ 1450 \\ 1450 \\ 1450 \\ 1450 \\ 1450 \\ 1440 \\ 1440 \\ 1440 \\ 1440 \\ 1440 \\ 1440 \\ 1440 \\ 1440 \\ 1440 \\ 1440 \\ 1440 \\ 1440 \\ 1440 \\ 1440 \\ 1440 \\ 1450 \\ 14$
12 13 14	1447.0 1453.7 1438.7	1449.6 1455.8 1448.7	1450.1 1455.8 1449.7	1450.3 1455.7 1449.7	1447.4 1453.3 1445.7	1444.5 1450.9 1435.1	1448.7 1454.3 1448.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
15 16 17 18	1451.2 1439.2 0.0 1442.4	1453.5 1446.9 0.0 0. 1447.5	1453.6 1448.0 0 0.0 1448.1	1453.5 1448.1 0.0 1448.3	1451.3 1444.7 0.0 0. 1445.3	1448.6 1437.2 0 1439.4	1452.3 1446.7 1446.6	Fig. 1.8: Instrument response (198 keV line centroid, i.e. gain) after switch-on, as it evolves with scw's during the first orbit

Uncertainty in line center is estimated as 0.1

33rd Annealing (Rev 2140-2145; 22 Sep - 10 Oct 2019)

• The most-recent evolution of spectral resolution

Testing Different HV settings (rev 2155)

7	😽 HV i	mpact	t on re	esolut	ion:			Special Hi
	()	Minor i	mprove	ement	at highe	er HV		
		No nee	d for cł	nanges	C			
	1117	I toot D		- 21 E 1.	Eittad lie	م م بين ط با	CEWIIM	1
	ПV 2 1 1			n 2151:			1 (F W HM,	3
пу (ку)	2.11	1.52	2.03	2.32	3.01	2.23	2.11	Ē
Dot								
00	2.27	2.23	2.35	2.28	2.29	0.00	2.24	
01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	À È
02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
03	2.07	2.23	2.14	2.13	2.18	0.00	2.08	1
04	2.40	2.48	2.36	2.47	2.37	0.00	2.37	E
05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
06	2.00	2.06	2.04	2.09	2.13	0.00	2.01	0 <u> </u>
07	2.01	2.27	2.09	2.03	2.01	0.00	2.04	U
08	2.37	2.46	2.49	2.36	2.41	0.00	2.40	
09	1.93	1.99	1.97	1.93	1.97	0.00	1.95	HV (non
10	2.29	2.36	2.17	2.19	2.34	0.00	2.23	
11	2.13	2.23	2.14	2.20	2.14	0.00	2.12	
12	2.21	2.18	2.20	2.18	2.34	0.00	2.17	
13	2.07	2.14	2.07	2.08	2.07	0.00	2.10	
14	2.19	2.41	2.15	2.22	2.17	0.00	2.18	
15	2.08	2.13	2.17	2.12	2.10	0.00	2.09	
16	2.10	2.23	2.16	2.17	2.13	0.00	2.09	
17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
18	2.12	2.16	2.12	2.13	2.08	0.00	2.05	

HV (nominally 1.5kV, 2.0kV and 2.25kV), see OCR#407

Uncertainty in FWHM is estimated as 0.042 keV

Testing Different HV settings (rev 2155)

Fig 1.11: Detector resolutions after 33rd annealing versus during HV test at 5 revolutions later

The annealings in summary

Compare resolution recovery for all annealings: :-(

Fig. 3.1: Spectral resolution before/after the current annealing for two detectors, in context, with data marked from the last annealing

Forecasting the time of the next annealing

• Latest evolution of spectral resolution (rev 2146-2161)

- ☆ Linear extrapolation of degradation, goal~10%, use uncertainties
 - → Next annealing suggested near revolutions [2202-2222]

Forecasting the time of the next annealing

• Latest evolution of spectral resolution (rev 2146-2161)

- ☆ Linear extrapolation of degradation, goal~10%, use uncertainties
 - → Next annealing suggested near revolutions [2201-2228]

Forecasting the time of the 33rd annealing

• From evolution of spectral resolution rev 2056 to 2080

☆ Linear extrapolation of degradation, goal~10%, use uncertainties

Forecasting the time of the next annealing Latest evolution of spectral resolution (rev 2146-2161) ☆ Linear extrapolation of degradation, goal~10%, use uncertainties → Next annealing suggested no later than revolution ~2220 3.3 101201 15% 3.2 -WHM @ 882 keV [keV] 3. 3.4 • Det. 00 • Det. 04 3.2 [ke\ 3.0 annealing [3'0 2.8 after 2.9 FWHM 2.6 2.4 2160 2180 2200 2220 Revolution 2.6 3.0 3.2 3.4 2.2 2.4 2.8 FWHM before annealing [keV] Fig. 3.1: Spectral resolution before/after the current annealing for two detectors, in context, with

Fig. 3.1: Spectral resolution before/after the current annealing for two detectors, in con data marked from the last annealing

ACS Calibration

Regular calibrations of ACS system: threshold steps

- Rate reduction with increasing threshold (32 steps, ~50 loops)
- Compare performance for remaining 89 of 91 FEE rate outputs among successive calibrations

one loop

20

40

FEE number

60

80

2.5×10

2.0×10 1.5×10 2.0×10 1.0×10

5.0×1

Latest ACS Calibration (rev 2143)

Rate reduction with increasing threshold (32 steps, ~50 loops)

 Compare performance for remaining 89 of
91 FEE rate outputs among successive calibrations

revolution 2143

ACS Calibration: Status 2019

B.Sc. Thesis Felix Schmuckermaier (11/2018)

☆ Assessement of Issues

- Missing prelaunch calibrations
- ^CA straightforward (PL, linearity) model fails to describe data
- Residuals show significant unexpected behaviour around 200 keV
- Grouping of FFEs and ACS sub-units possible
- ^{CP} Degeneracies of calibration-data fits to our model: No clear external constraints
- A temporal degradation of ACS detectors could explain observed trend (but so could a change in irradiation/bgd environment)
- → Existing ACS Calibration Data are Insufficient for ACS Response Inflight Calibration

Next: (Jun2019)

- Comparison/Validation on GRB data, ACS and GBM?
 - ☆ Discussions with V. Savchenko et al
- ☆ Detailed description of ACS Response: cmp. VS's approach with our model No progress on that...

Late-Mission Activities @ MPE 2019+

- Routine procedures (XZ) (\rightarrow automatic; documented)
 - ☆ Data import, routine processing
 - ☆ Quality checking
 - ☆ Spectral fitting → response database
 - ☆ Performance validation (incl annealings)
 - ☆ Software maintenance
- Multi-instrument analysis software "3ML"
 - ☆ Model parameter fitting
 - ☆ Instrumental response and background treatment encapsulated
 - ☆ Start with GBM, SPI, LAT, ...
 - ☆ Python based
- Handover of MPE-INTEGRAL activities 2020 to J Greiner
 - ☆ RD retired 2/2019, has 2 PhD students till 2020/21
 - ☆ DLR support MPE and Xiaoling Zhang till 2021
 - ☆ J Greiner Co-PI 2020+ (had been involved in high-energy astrophysics science and in SPI

