(Cross) calibration report to the IUG

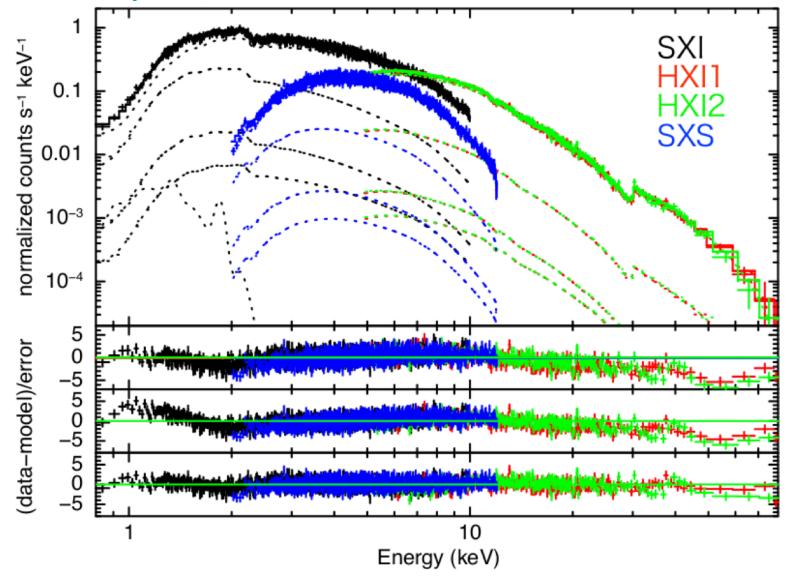
IACHEC activities IBIS/ISGRI Crab calibration observations

L. Natalucci

INAF-IAPS, Rome

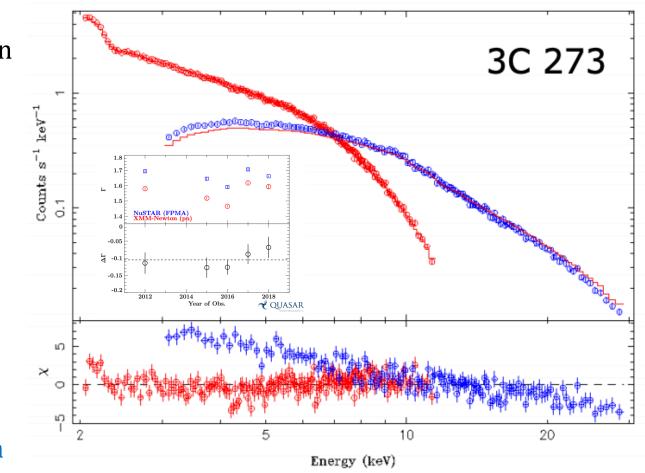
INTEGRAL USERS GROUP MEETING #23, ESA/ESTEC, 26-27 NOV 2019

IACHEC news

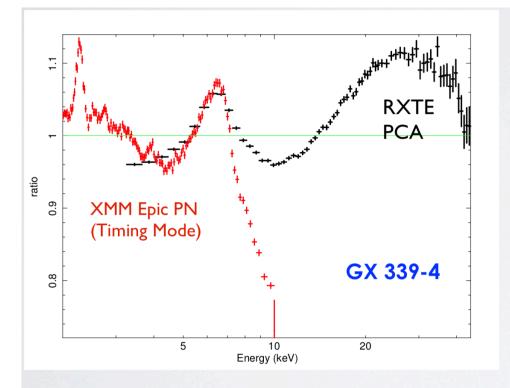

- Consortium has grown since last meetings. 60 scientists met at Shonan Village (Kanagawa, Japan) in May 2019
- Kristin Madsen appointed as new IACHEC Chairman since 2018.
- More emphasis and structured activity on coordinated observations: *Chandra, XMM-Newton, Swift, INTEGRAL, Astrosat, NuSTAR, NICER, Insight-HXMT*
- Improved studies on methodologies for new missions: *XRISM*, *IXPE* and *Athena*
- Prototype of cross-calibration database at IAPS
- New IACHEC website: <u>www.iachec.org</u>
- Next meeting will be in USA in April 2020

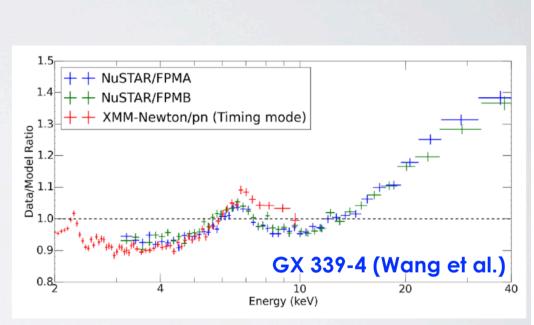
Some recently discussed topics

- Modelling high resolution data: need to improve atomic physics codes– relevant to *Hitomi, XRISM* and *Athena*
- Impact of calibration uncertainties on modeling astrophysical effects
- New effort for cross-calibration using the SNR G21.5-0.9 with *Chandra,XMM,NuSTAR,Hitomi,INTEGRAL,Swift:* defining a calibration standard model for the spectral shape of this source.
- *XRT/Nustar* coordinated observations
- NuSTAR measurements of the Crab in straylight mode and nominal mode
- Joint analysis of *Nustar & INTEGRAL* data (e.g. MAXI J1820+70, 3C273)
- Crab multi-year analysis by SPI team: report of small-scale variability compatible with the other instruments
- Use of Band model to analyse Crab spectra


Credit: M. Tsujimoto, IACHEC 2018

2017/C $E_{\text{break}} = 7.1 \pm 0.3 \text{ keV}, \Gamma_{\text{soft}} = 1.74 \pm 0.02, \Gamma_{\text{hard}} = 2.14 \pm 0.01$


Coordinated observations


- Swift/XRT (WT mode) and NuSTAR observations of bright Galactic binaries
- Good agreement for Her X-1 and MAXI J1820+070 low state
- Issues on XRT spectral extraction for sources with high flux & column densities sources
- Possible ~5% calibration issue in NuSTAR at low energies
- NuSTAR vs epic-PN comparison for AGNs/Blazars
- Indication for ~15% higher flux and softer slope (ΔΓ~0.1) in NuSTAR spectra
- Continuing crosscalibration campaign on 3C273

Credit: F.Fuerst, IACHEC 2019

Epic-PN vs NuSTAR

XMM (TM) vs. RXTE

- 2009 Outburst: High count rate
- Very different Fe K line profile: XMM looks narrower

XMM (TM) vs. NuSTAR

- 2015 Outburst: lower count rate
- Significantly different continuum slope
- But good agreement between NuSTAR and Swift XRT

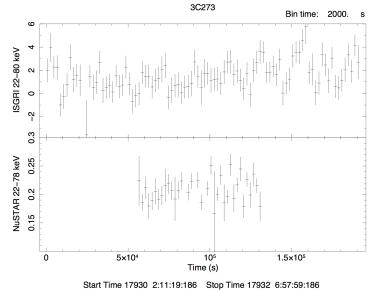
Credit: J. Garcia, IACHEC 2019

3C273 - Update on Cross-calibration of INTEGRAL with NuSTAR

Lorenzo Natalucci (¹), Manuela Molina (²), Angela Malizia (²)

(1) INAF/Institute for Space Astrophysics and Planetology, Rome(2) INAF/Institute for Space Astrophysics, Bologna, Italy

Campaigns on 3C273


- Results with IACHEC campaigns in 2012, 2015, 2016, 2017
- Instruments on Chandra, NuSTAR, Suzaku, XMM and INTEGRAL

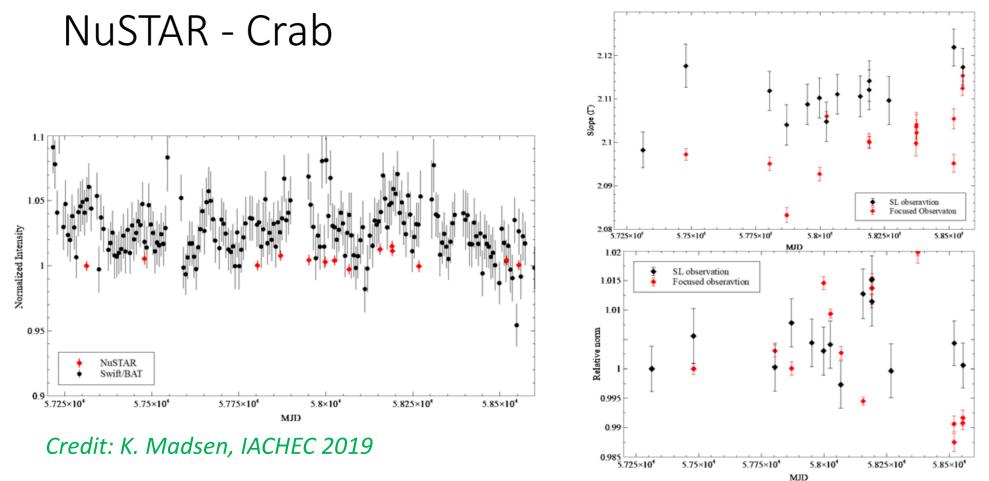
Published results

- Previous results of 3C273 with INTEGRAL and NusTAR joint fits published by Madsen et al 2016 (ApJ 812,14)
- Previous results in the soft band (<10 keV) published in Madsen+16 (arXiv: 1609.0903)
- Madsen et al., NuSTAR calibration paper

3C273 - NUSTAR vs IBIS/ISGRI

• Last observation analysed: 2017

Exposure times 2017: INTEGRAL ~2 days NuSTAR: 35ks


SW & cal versions: nustardas_06Jul17_v1.8.0 & CALDB version : 20180126 IBIS OSA10.2

• The joint fits for the 4 epochs show good agreement within <10%

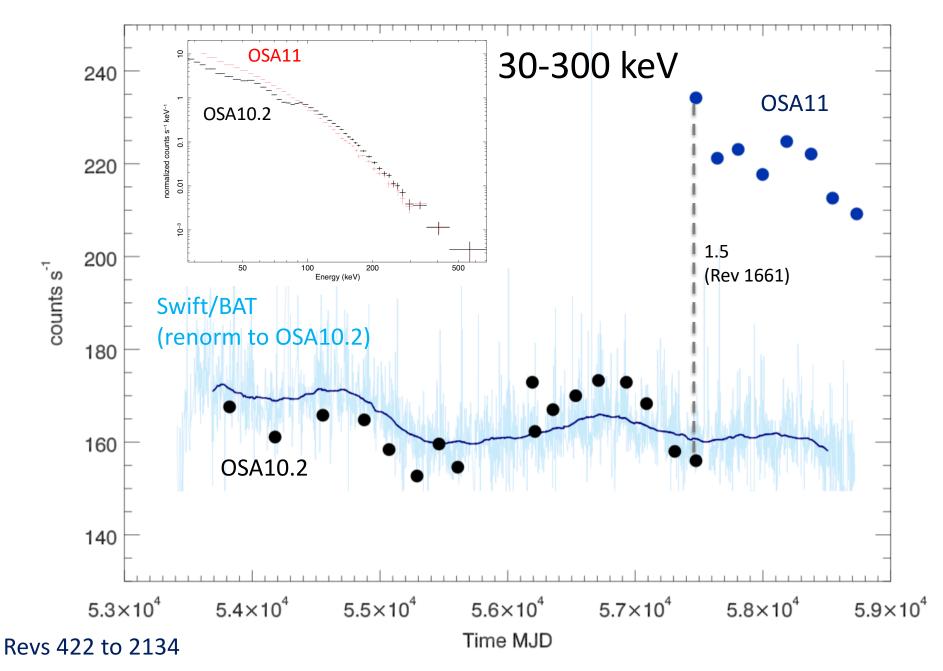
model: const*wag*po									
Year	Γ	C _{FPMA/ISGRI}	C _{FPMB} /ISGRI	$F_{20-40 \text{keV}}^{\text{ISGRI}}$ (10 ⁻¹¹ erg cm ⁻² s ⁻¹)	$F_{20-40 \text{keV}}^{\text{FPMA}}$ (10 ⁻¹¹ erg cm ⁻² s ⁻¹)	$F_{20-40 \text{keV}}^{\text{FPMB}}$ (10 ⁻¹¹ erg cm ⁻² s ⁻¹)	$\Delta \chi^2$		
2012	1.669 ± 0.003	$0.995^{+0.07}_{-0.06}$	$1.024^{+0.07}_{-0.06}$	6.49	6.46	6.65	0.994		
2015	1.739 ± 0.012	$\begin{array}{c} 0.995\substack{+0.07\\-0.06}\\ 1.196\substack{+0.411\\-0.244}\end{array}$	$1.024\substack{+0.07\\-0.06}\\1.211\substack{+0.416\\-0.247}$	3.74	4.47	4.53	1.012		
2016	1.608 ± 0.005	1.069 ± 0.06	1.087 ± 0.06	11.73	12.54	12.75	1.094		
2017	1.677 ± 0.007	$0.861^{+0.09}_{-0.07}$	$0.88\substack{+0.09\\-0.08}$	6.62	5.70	5.84	1.055		

Presented at 13th IACHEC Meeting, 2018

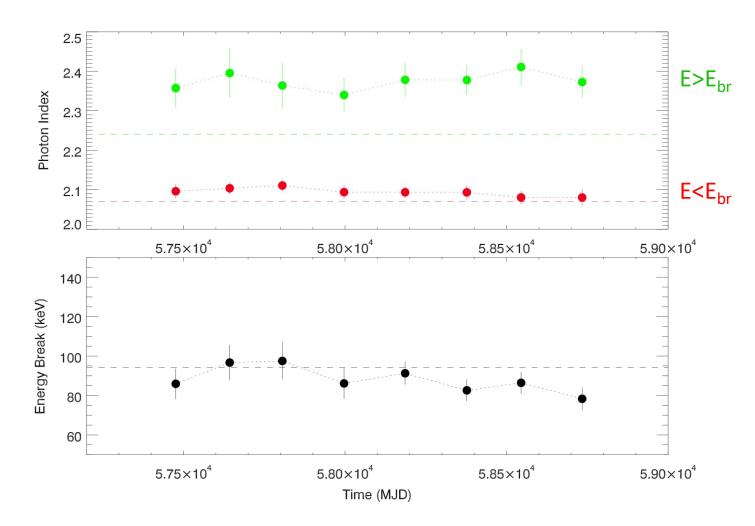
NuSTAR Crab monitoring campaign

Crab Nebula - IACHEC Multi-mission Project

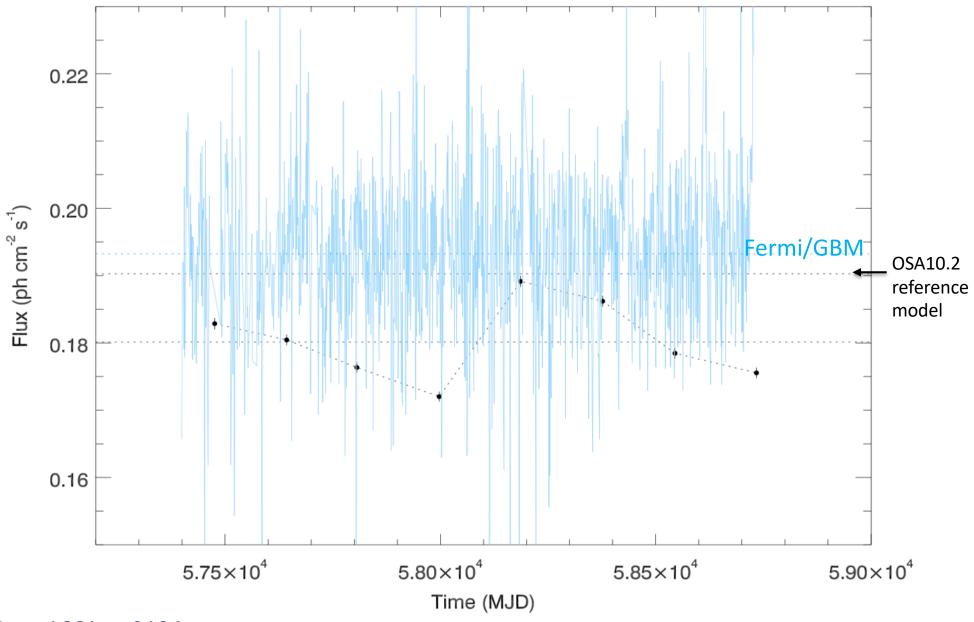
- Results exclusively based on the analysis of nearly simultaneous periods
- Emphasis on the hard band (>10 keV)
- Instruments on board: XIS, PIN, GSO, PCA, IBIS/ISGRI, SPI, NuSTAR, (EPIC-pn), GBM, BAT
- Total of 14 nearly simultaneous epochs (2005-2016).
- Broken power law model, with E_{br} ~100 keV
- Broad band spectral fitting
- Yet unpublished preliminary results of multi-mission analysis are available at:


https://iachec.org/wp-content/presentations/2018/ (Non-Thermal SNR WG report)

Energy bands


Instr.	Ene	Energy Bands (keV)				
XIS	3-10					
PIN		10-25,	25-80			
GS0			25-80^	100-300		
PCA	3-10,	10-25,	25-80			
IBIS			25-80 ,	100-300		
SPI			25-80 ,	100-300		
NuSTAR	3-10,	10-25,	25-80			
EPIC	3–10					
GBM			(25-80),	100-300		
BAT	_		25-80			

^for GSO, E >40 keV


Crab Nebula - IBIS/ISGRI 2006-2019

OSA11 – Crab Spectral Fitting with Broken Power Law

OSA11 Flux 30-300 keV

Revs 1661 to 2134

Summary

- Crab matrix from multi-mission project is basically available to the team: goal is to publish results
- *IBIS/ISGRI* analysis to be provided for G21.5 observations
- Exploit observations for 3C273 campaign during 2018, 2019.
 Goal: publication (contact K.Madsen)
- Fully characterise spectral variability in multi-year Crab spectra of IBIS/ISGRI (spanning OSA 10.2 & OSA11)
- Plans for OSA11 and future calibration releases with application to full mission data