Software Defined Radio

Jon Brumfitt
ESAC
21 March 2018

Imagine ...

- Imagine we digitized the voltage from an antenna
- Then we could implement a radio receiver in software using DSP

SDR #2 Jon Brumfitt

Imagine ...

- Imagine we digitized the voltage from an antenna
- Then we could implement a radio receiver in software using DSP

- This actually works!
- In fact, it works very well Better mixers, filters etc
- It's very flexible Everything is 'soft'
- Of course, there are a few more details in practice ...

SDR #3 Jon Brumfitt

A Few More Details

Basic direct sampling SDR receiver

SDR #4 Jon Brumfitt

A Few More Details

We can do the same in reverse for a transmitter:

SDR #5 Jon Brumfitt

Down Conversion

The maximum frequency we can receive is half the sampling rate

So shift the RF frequencies down to a range the ADC/CPU can handle:

SDR #6 Jon Brumfitt

Down Conversion

The minimum sampling rate then depends on bandwidth not RF frequency

SDR #7 Jon Brumfitt

SDR as a Computer Peripheral

Example software:

• SDR#, SDR Uno, HDSDR, GNU Radio, ...

SDR #8 Jon Brumfitt

Demo: FM broadcast band with SDRplay

SDR #9 Jon Brumfitt

Examples of Low-Cost SDRs

RTL-SDR

25 MHz to 1.75 GHz Sample rate 2.4MS/s ADC 8-bits R820T2 + RTL2832U chipset USB interface

SDRplay RSP1A

1 kHz to 2 GHz
Sample rate 10MS/s
ADC 14-bits to 6 MS/s, 8-bit to 10 MS/s
Switchable filters
USB interface

SDR #10 Jon Brumfitt

What is Software Defined Radio?

- Flexible radio system using DSP in software
- Generalises to programmable software/firmware/FPGA/DSPs
- Ideally flexible RF front-end: wide frequency range & bandwidth
- Radio: audio, video, data, navigation, radar etc
- Used with a PC or as part of an embedded system

SDR #11 Jon Brumfitt

Advantages of SDR

- Very flexible / reconfigurable
- One radio can support many kinds of signals
- Wide frequency range and bandwidth
- High performance: Better mixers, filters, etc
- Upgradeable / maintainable by software/firmware update
- Longer equipment lifetime
- Same hardware platform for multiple products/applications

SDR #12 Jon Brumfitt

Applications of SDR

- Military A major user from early on
- Space
 - NASA Electra radio on ExoMars, MRO & MAVEN¹
 - ESA ARTES SDR project with Lime Microsystems²
 - NASA SCaN Testbed on ISS³
- Mobile phones and base stations
- Broadcast TV and radio
- WiFi routers
- Amateur radio
- •
- 1 https://en.wikipedia.org/wiki/Electra_(radio)
- 2 http://www.limemicro.com/press-releases/european-space-agency-selects-limesdr-app-enabled-satcoms/
- 3 https://www.nasa.gov/directorates/heo/scan/engineering/technology/txt_scantestbed.html

SDR #13 Jon Brumfitt

Quantisation Noise

 $SQNR \approx 6 N dB (for N bits)$

- 12-bit ADC gives SQNR of 72 dB
- 14-bit ADC gives SQNR of 84 dB

Improving SQNR

- Oversampling and decimation
- Dithering

SDR #14 Jon Brumfitt

Dynamic Range

- Strongest signals must not saturate ADC
- Weak signals may be > 100 dB smaller
- Wideband AGC to keep ADC in good range
- Filters to remove unwanted strong signals

SDR #15 Jon Brumfitt

Complex Down Conversion

Fourier shifting theorem:

$$g(t)e^{i\omega_0t} \Leftrightarrow G(\omega - \omega_0)$$

- Avoids image response of a traditional balanced mixer
- Filtering out image is difficult for a wide-band receiver

SDR #16 Jon Brumfitt

Quadrature Mixer

This mixer must be analogue because it is before the ADC

SDR #17 Jon Brumfitt

A Common SDR Receiver Architecture

- Analogue quadrature down conversion to shift band of interest
- FPGA: DDC, decimation, etc
- IQ interface to CPU over USB or LAN

SDR #18 Jon Brumfitt

Example: Lime Mini SDR

Lime Microsystems have a project with ESA as part of ARTES

LMS7002M RF Transceiver IC

Intel (Altera) Max 10 FPGA

10 MHz to 3.5 GHz

Bandwidth 30.72 MHz

Sampling: 30.72 MS/s 12-bit

USB 3.0 interface

SDR #19 Jon Brumfitt

Example: Ettus Research USRP B200mini-i

AD9364 RF Transceiver IC Xilinx Spartan 6 FPGA 70 MHz to 6 GHz Bandwidth 56 MHz 12-bit ADC + 10-bit DAC USB 3.0 interface

SDR #20 Jon Brumfitt

AM/FM Demodulation of IQ Signals

First use DDC to shift frequency of station to zero and low-pass filter

Demo: AM demodulation with GNU Radio

SDR #22 Jon Brumfitt

GNU Radio – AM Demodulation

SDR #23 Jon Brumfitt

Digital Modulation

- More efficient use of spectrum
- Combined with data compression & error correction
- ASK, FSK, PSK, QPSK, QAM, OFDM, ...

SDR #24 Jon Brumfitt

Quadrature Phase Shift Keying (QPSK)

Constellation diagram

Meteor M2 data

Threshold to decode

- First recover carrier and shift to zero frequency
- Then threshold I and Q

SDR #25 Jon Brumfitt

Demo: Meteor M2 with SDR#

(Data from www.sigidwiki.com)

SDR #26 Jon Brumfitt

Conclusions

- SDR uses DSP in software/firmware/FPGA to build flexible radios
- SDR may be embedded or use a PC
- Already in widespread use; you may already use one!
- Likely to become even more common as better SDR chips become available
- You can buy an RTL-SDR for €25 A fun way to learn about DSP

SDR #27 Jon Brumfitt