FUNCTIONAL PROGRAMMING GOES MAINSTREAM

Carlos Muniz Solaz
ESAC
27 June 2018

AGENDA

= FUNCTIONAL PROGRAMMING CONCEPTS
= FUNCTIONAL FEATURES IN PYTHON

= FUNCTIONAL FEATURES IN JAVA

= CONCLUSIONS

PROBLEMS WITH TODAY'S PROGRAMMING

= IMPERATIVE PROGRAMMING FOCUSES ON TELLING A COMPUTER HOW TO DO
THINGS

= IMPERATIVE PROGRAMMING IS A PROGRAMMING PARADIGM THAT USES
STATEMENTS THAT CHANGE A PROGRAM’S STATE

= OBJECT ORIENTED PROGRAMMING IS A PROGRAMMING PARADIGM THAT
MODELS INTERACTION WITH REAL WORLD (OBJECTS, CLASSES AND METHODS)

IMPERATIVE PROGRAMMING: EXAMPLE

int[][] Fows = new iﬂt[][] {{1121314}1{5181712}1{2111615}};

int total = 0:
for(int 1i=0; i<rows.length; i++) {
int rowSum = 0:
for(j=0; j<rows[i].length; j++) {
rowSum += rows [1][j];
¥

total += rowSum * rowSum;

}

WHAT IS MAKING OUR CODE MESSY ?

" WE WRITE TOO MUCH OF ARTIFACT CODE
= WE USE MUTABLE STATES

= WE USE SHARED MUTABLE STATES

CAN WE DO BETTER ?

* FUNCTIONAL PROGRAMMING ALLOWS US TO TELL THE COMPUTER WHAT WE
WANT TO DO

= FUNCTIONAL PROGRAMMING IS A DECLARATIVE PARADIGM, WHICH MEANS
PROGRAMMING IS DONE WITH EXPRESSIONS OR DECLARATIONS INSTEAD OF
STATEMENTS

= FUNCTIONAL PROGRAMMING TREATS COMPUTATION AS THE EVALUATION OF
MATHEMATICAL FUNCTIONS AND AVOIDS CHANGING-STATE AND MUTABLE
DATA

“Programs must be written for people to
read, and only incidentally for machines to
execute.”

Harold Abelson, SICP

FUNCTIONAL PROGRAMMING: EXAMPLE

rows = [I[1,2,3,41,15,8,7,2]1,12,1,6,5]]
square X = X * X
total = sum (map square (map sum rows))

FUNCTIONAL PARADIGM

= Set of ideas, not a set of strict guidelines
= Deals with calculations (algebra)

= Uses functions to do that

" Mimize the use of variables

" Tries to minimize conditional statements

" No loops

PURE FUNCTIONS

* The result depends only on input values, not state

SIS

_

" Evaluation does not cause side-effects

function pricefifterTax (productPrice) {
return (productPrice *) + productPrice;

}

Advantages:

= Every time you call the function with the same input, you get the same output
* The order of functions can be changed

= Referential Transparency

IMMUTABLE DATA

Table A IMPERATIVE

FUNCTIONAL

Table A Table A

Create new table with
79, original table

remains intact

Lnnwrun-tl v e WN e
mnwmul

HIGH-ORDER FUNCTIONS

Higher-order functions are functions that accept other functions as argument or return them as result

The three classics:

" map
Apply a function to each element of a list

" reduce

Reduce a list to a single value by successively
applying a binary operation

= filter
Remove elements from a list

The challenge of effects

Plan A

(everyone glse)
873 NM R Arbitrary effects ‘ @

Dangerous

FUNCTIONAL FEATURES

= LAMBDA FUNCTIONS

= LIST COMPREHENSIONS

= DECORATORS

= ELIMINATING LOOPS: MAP, REDUCE AND FILTER

LAMBDA FUNCTIONS

Lambda function is a way to create small anonymous functions, i.e. functions without a

name. These functions are throw-away functions, i.e. they are just needed where they
have been created

is vowel = lambda c: c.lower() in "aeiou"
i3 cons = lambda c: c.lower() in "bcdfghjklmnpgrstvwiyz"

= 13 wowel('c')
False

Lambda functions are mainly used in combination with the functions filter(), map() and
reduce().

LIST COMPREHENSIONS

We usually write:

collection = Llist()
for datum in data_set:
if condition(datum):
collection.append(datum)
else:
new = modify(datum)
collection.append({new)

LIST COMPREHENSIONS (FUNCTIONAL WAY)

collection = [d if condition(d) else modify(d)
for d in data_set]

= Declarative form
®= More compact

" Focus from the “how” to the “what”

LIST COMPREHENSIONS (ANOTHER EXAMPLE)

In general:

[return-value for element in iterable]

variable
EINE

List
dict

Any valid expression that returns a

value. This value will be added to

<iterable>

the Llist.

numkbers = [1, 2, 3, 5, 2, 13, 21, 34, 55, 25, 144]
evens = [n for n in numkers if n ¥ 2 == (0]

DECORATORS

A decorator wraps a function, modifying its behavior.

def

def

timing function(zome function):

def wrapper(}:
tl = time.time ()
goms function()
t2 = time.time ()

retorn "Time it took to

return wrapper

my function():
num list = []

for num in (range (0, 10000

num list.append (num)

print{"\nSum of all the numk

my function()

)y

function: " 4+ str{(t2

"+ str((sum(num list}))))

- tl})

+ "\n

ELIMINATING LOOPS

In functional programing, there are two ways of eliminating loops:

" Recursion

def recur factorial(m):

if n = 1l:
return n
else:
return n*recur factorial (n-1)

= High-order functions

—

y
é
o

0=/ 0=0 0O
J J J

map() filter() reduce()

ELIMINATING LOOPS: MAP

Map takes a function and a collection of items. It makes a new, empty collection, runs
the function on each item in the original collection and inserts each return value into
the new collection. It returns the new collection.

ELIMINATING LOOPS: FILTER

Filter takes a function and a collection of items. It filters out all the elements of the
collection for which the function returns true.

e ke b =

=L o5 .

o
|
mn
=
it
1K)
[
ot
|

|
[
ot

In this example we call the greater_elem() function on every element of the list and
return the elements which are True for the function.

ELIMINATING LOOPS: REDUCE

Reduce takes a function and a sequence and applies the function continually on the
sequence and returns a single value.

T ' = 1 ™
r | LalllDOgd X, V. X7V

1

i—\u'li--
e T

i
il

In this example, we are calculating the product of all elements in the list. So the
evaluation order works like:

FUNCTIONAL FEATURES

= LAMBDA EXPRESSIONS

= FUNCTIONAL INTERFACES
= DEFAULT METHODS

= STREAMS

LAMBDA EXPRESSIONS: EXAMPLE

Lambda is an anonymous function. Lambda expressions are just like functions and they accept parameters just like functions.

ff A Java program to demonstrate simple lambda expressions
import java.util.ArraylList;
class Test
i
public static wvoid main(String args[])
I
L
/f Creating an ArraylList with elements
/{1, 2, 3, 4}
ArraylList<Integer> arrL = new ArrayList<Integer:>();
arrL.add{1);
arrL.add{2);
arrL.add(3);
arrL.add(4);

Output:

/f Using lambda expression to print all elements
f/f of arrL 1
arrL.forEach{n -> System.out.println(n)); -

3
/{ Using lambda expression to print even elements -
// of arrL z

a

arrL.forEach({n -> { if (n%2 == @) System.out.println{n}; });

FUNCTIONAL INTERFACES

= An interface with single abstract method is called functional interface. For e.g:
java.lang.Runnable

= A functional interface can have any number of default methods

* Lambda expressions implement the only abstract function and therefore implement
functional interfaces

FUNCTIONAL INTERFACES: EXAMPLE

class Test

i
public static wolid main(String args[])
{
S/ create anonymous inner class object
new Thread (new Runnable(}
{ Output:
public wvoid run()
i MNew thread created
System.out.println("lHew thread created"™);
1
1) .starc ()
}
1
class Test
{
pubklic static wvoid main(String args[])}
{
J/ lambda expression to create the obhject DUtpUL

new Thread{()->
{System.out.println{"Hew thread created"):}).starc{): ‘ Mew thread created
}

FUNCTIONALINTERFACE ANNOTATION

@Functionallnterface annotation is used to ensure that the functional interface can’t have more than one
abstract method. In case more than one abstract methods are present, the compiler flags an ‘Unexpected
@Functionallnterface annotation’ message. However, it is not mandatory to use this annotation.

interface Square
{
int calculate{int x}:

}

class Test

{
public static vold main(String args[])
i

int a = 5;

J/ lambda expression to define the calculate method
Sqgquare 5 = (int x)-=x%*x;

ff parameter passed and retorn tyvpe must be
S/ same as defined in the prototype

int ans = s.calculate({a):

System.out .println (ans};

BUILT-IN FUNCTIONAL INTERFACES

Java 8 contains many built-in functional interfaces like:

Runnable r = () -> ()

Consumer c = (input) -> {)

Supplier s = () -> {output)

Function £ = (input) -> {(output)

BiConsumer bc = (inputl, input2) -> {}

UnaryOperator negate = integer -> -integer

BinaryOperator add = (intl, int2) -> intl + int2

Predicate p = input -> boolean

BiPredicate bp = (inputl, input2) -> boolean

BUILT-IN FUNCTIONAL INTERFACES: EXAMPLE

public static void main{String args[])

{

J/ create a list of strings

List<String> names =
Arravs.asList ("Geek" ,"GeeksQuiz","gl" ,"QA" , "Caeck2") ;

J/ declare the predicate type as string and use

J/ lambda expression to create object

Predicate<5String> p = (s5)-*>s3.startsWith("G")

ff Iterate through the list

for (String st:names) Qutput:
{
JJ/ call the test method Geek
if (p.test(st)) GeeksQuiz
Geesk?

System.out.println(st);

DEFAULT METHODS

Before Java 8, interfaces could have only abstract methods.

Java 8 has introduced the concept of default methods which allow the interfaces to have
methods with implementation without affecting the classes that implement the interface.

interface TestInterface

i
S/ abstract method
public void sguare{int a);

JSf default method
default woid show()

i
System.out.println({"Default Method Executed™);

}

Allow Oracle to extend collection Interfaces

Iterable.forEach(Consumer<? super T> action)

STREAMS

= Collections are for storing

= Streams are for operations

Most often, it is required to process operations rather than to store data

nput Stream ’ Output Stream

1L - i o -

cvens waith

STREAMS: EXAMPLE

users . stream()
.map(...)
LA GO € a]
.distinct ()
.akip (5)
1limit(10)

.peek (item -> System.out.print (item))

.count();

STREAMS OPERATIONS

Intermediate Operations:

®= map: The map method is used to map the items in the collection to other objects according to the
Predicate passed as argument.

List number = Arrays.aslist(2,3,4,5);
List square = number.stream().map(x->x*x).collect(Collectors.toList());

= filter: The filter method is used to select elements as per the Predicate passed as argument.

List names = Arrays.asList("Reflection”,"Collection”,"Stream");
List result = names.stream().filter(s->s.startsWith("S")).collect(Collectors.tolList());
= sorted: The sorted method is used to sort the stream.

List names = Arrays.aslist("Reflection”,"Collection","Stream");
List result = names.stream().sorted().collect(Collectors.tolist());

STREAMS OPERATIONS

Terminal Operations:

= collect: The collect method is used to return the result of the intermediate operations
performed on the stream.

List number = Arrays.aslist(2,3,4,5,3);
Set square = number.stream().map(x->x*x).collect(Collectors.toSet());

= forEach: The forEach method is used to iterate through every element of the stream.

List number = Arrays.aslist(2,3,4,5);
number.stream().map(x->x*x).forEach(y->System.out.printin(y));

= reduce: The reduce method is used to reduce the elements of a stream to a single
value.
The reduce method takes a BinaryOperator as a parameter.

List number = Arrays.aslist(2,3,4,5);
int even = number.stream().filter(x->x%2==0).reduce(0,(ans,i)-> ans+i);

PARALLEL EXECUTION

List inputs = ..

inputs
.parallelStream()

.map (new HeavyOperation(“"A"))
.map (new HeavyOperation("B"))

.map (new HeavyOperation(“C"))
. findFirst () ;

MANY OTHER FUNCTIONAL FEATURES

= flatMap

= Optional<T>

= Pattern Matching
= String Immutability

= Final keyword

7~
MQP £] e ://\op
Y i . I~
\ | \ [\ N
€\ un& \ %\ \‘ Y'/\o)(\
\\ “ ll Jec “
\ I 0 7 <
2\ — Me X | | ¢ 2] S oA
P ; E ; ’l—’> Ale X
P% (—jofc».'\ / “ ‘# M S
N \/// \ _,‘ M ason
R ot I / Camecron
' ‘<Q°_)\\'\ N\
) N owk
e (b\/\u& toAN ! Vv "‘F ﬂz\ﬁti"on L
‘ (- g
e $ F Nnoowa & ! \D - P- K|55

one one one MO\'\\j

WHY GO FUNCTIONAL ?

= |IT IS A NEW WAY OF THINKING

= |T IS FUN !

= |IT IS MORE EXPRESSIVE

= LESS CODE, LESS BUGS, LESS ABSTRACTIONS
= CLOSER TO SPECIFICATIONS

= YOU CAN PROVE IT, INSTEAD OF TESTING

= EASIER TO PARALELLIZE

= BECAUSE EVERYBODY IS DOING IT ...

BUT REMEMBER ...

IT IS JUST ONE MORE TOOL IN OUR TOOLBOX

QUESTIONS ?

MACHINE ASSEMBLY PROCEDURAL OBIJECT ORIENTED FUNCTIONAL

