
FUNCTIONAL PROGRAMMING GOES MAINSTREAM

Carlos Muñiz Solaz

ESAC

27 June 2018

AGENDA

 FUNCTIONAL PROGRAMMING CONCEPTS

 FUNCTIONAL FEATURES IN PYTHON

 FUNCTIONAL FEATURES IN JAVA

 CONCLUSIONS

PROBLEMS WITH TODAY’S PROGRAMMING

 IMPERATIVE PROGRAMMING FOCUSES ON TELLING A COMPUTER HOW TO DO
THINGS

 IMPERATIVE PROGRAMMING IS A PROGRAMMING PARADIGM THAT USES
STATEMENTS THAT CHANGE A PROGRAM’S STATE

 OBJECT ORIENTED PROGRAMMING IS A PROGRAMMING PARADIGM THAT
MODELS INTERACTION WITH REAL WORLD (OBJECTS, CLASSES AND METHODS)

IMPERATIVE PROGRAMMING: EXAMPLE

WHAT IS MAKING OUR CODE MESSY ?

 WE WRITE TOO MUCH OF ARTIFACT CODE

 WE USE MUTABLE STATES

 WE USE SHARED MUTABLE STATES

CAN WE DO BETTER ?

 FUNCTIONAL PROGRAMMING ALLOWS US TO TELL THE COMPUTER WHAT WE
WANT TO DO

 FUNCTIONAL PROGRAMMING IS A DECLARATIVE PARADIGM, WHICH MEANS
PROGRAMMING IS DONE WITH EXPRESSIONS OR DECLARATIONS INSTEAD OF
STATEMENTS

 FUNCTIONAL PROGRAMMING TREATS COMPUTATION AS THE EVALUATION OF
MATHEMATICAL FUNCTIONS AND AVOIDS CHANGING-STATE AND MUTABLE
DATA

FUNCTIONAL PROGRAMMING: EXAMPLE

FUNCTIONAL PARADIGM

 Set of ideas, not a set of strict guidelines

 Deals with calculations (algebra)

 Uses functions to do that

 Mimize the use of variables

 Tries to minimize conditional statements

 No loops

PURE FUNCTIONS

 The result depends only on input values, not state

 Evaluation does not cause side-effects

Advantages:

 Every time you call the function with the same input, you get the same output

 The order of functions can be changed

 Referential Transparency

IMMUTABLE DATA

HIGH-ORDER FUNCTIONS

The three classics:

 map
Apply a function to each element of a list

 reduce
Reduce a list to a single value by successively
applying a binary operation

 filter
Remove elements from a list

Higher-order functions are functions that accept other functions as argument or return them as result

FUNCTIONAL FEATURES

 LAMBDA FUNCTIONS

 LIST COMPREHENSIONS

 DECORATORS

 ELIMINATING LOOPS: MAP, REDUCE AND FILTER

LAMBDA FUNCTIONS

Lambda function is a way to create small anonymous functions, i.e. functions without a
name. These functions are throw-away functions, i.e. they are just needed where they
have been created

Lambda functions are mainly used in combination with the functions filter(), map() and
reduce().

LIST COMPREHENSIONS

We usually write:

LIST COMPREHENSIONS (FUNCTIONAL WAY)

 Declarative form

 More compact

 Focus from the “how” to the “what”

LIST COMPREHENSIONS (ANOTHER EXAMPLE)
In general:

DECORATORS

A decorator wraps a function, modifying its behavior.

ELIMINATING LOOPS

In functional programing, there are two ways of eliminating loops:

 Recursion

 High-order functions

ELIMINATING LOOPS: MAP

Map takes a function and a collection of items. It makes a new, empty collection, runs
the function on each item in the original collection and inserts each return value into
the new collection. It returns the new collection.

ELIMINATING LOOPS: FILTER

Filter takes a function and a collection of items. It filters out all the elements of the
collection for which the function returns true.

In this example we call the greater_elem() function on every element of the list and
return the elements which are True for the function.

ELIMINATING LOOPS: REDUCE

Reduce takes a function and a sequence and applies the function continually on the
sequence and returns a single value.

In this example, we are calculating the product of all elements in the list. So the
evaluation order works like:

FUNCTIONAL FEATURES

 LAMBDA EXPRESSIONS

 FUNCTIONAL INTERFACES

 DEFAULT METHODS

 STREAMS

LAMBDA EXPRESSIONS: EXAMPLE
Lambda is an anonymous function. Lambda expressions are just like functions and they accept parameters just like functions.

FUNCTIONAL INTERFACES

 An interface with single abstract method is called functional interface. For e.g:
java.lang.Runnable

 A functional interface can have any number of default methods

 Lambda expressions implement the only abstract function and therefore implement
functional interfaces

FUNCTIONAL INTERFACES: EXAMPLE

FUNCTIONALINTERFACE ANNOTATION

@FunctionalInterface annotation is used to ensure that the functional interface can’t have more than one
abstract method. In case more than one abstract methods are present, the compiler flags an ‘Unexpected
@FunctionalInterface annotation’ message. However, it is not mandatory to use this annotation.

BUILT-IN FUNCTIONAL INTERFACES

Java 8 contains many built-in functional interfaces like:

BUILT-IN FUNCTIONAL INTERFACES: EXAMPLE

DEFAULT METHODS
Before Java 8, interfaces could have only abstract methods.

Java 8 has introduced the concept of default methods which allow the interfaces to have
methods with implementation without affecting the classes that implement the interface.

Allow Oracle to extend collection Interfaces

STREAMS

 Collections are for storing

 Streams are for operations

Most often, it is required to process operations rather than to store data

STREAMS: EXAMPLE

STREAMS OPERATIONS

Intermediate Operations:

 map: The map method is used to map the items in the collection to other objects according to the
Predicate passed as argument.

List number = Arrays.asList(2,3,4,5);
List square = number.stream().map(x->x*x).collect(Collectors.toList());

 filter: The filter method is used to select elements as per the Predicate passed as argument.

List names = Arrays.asList("Reflection","Collection","Stream");
List result = names.stream().filter(s->s.startsWith("S")).collect(Collectors.toList());

 sorted: The sorted method is used to sort the stream.

List names = Arrays.asList("Reflection","Collection","Stream");
List result = names.stream().sorted().collect(Collectors.toList());

STREAMS OPERATIONS

Terminal Operations:

 collect: The collect method is used to return the result of the intermediate operations
performed on the stream.

List number = Arrays.asList(2,3,4,5,3);
Set square = number.stream().map(x->x*x).collect(Collectors.toSet());

 forEach: The forEach method is used to iterate through every element of the stream.

List number = Arrays.asList(2,3,4,5);
number.stream().map(x->x*x).forEach(y->System.out.println(y));

 reduce: The reduce method is used to reduce the elements of a stream to a single
value.
The reduce method takes a BinaryOperator as a parameter.

List number = Arrays.asList(2,3,4,5);
int even = number.stream().filter(x->x%2==0).reduce(0,(ans,i)-> ans+i);

PARALLEL EXECUTION

MANY OTHER FUNCTIONAL FEATURES

 flatMap

 Optional<T>

 Pattern Matching

 String Immutability

 Final keyword

WHY GO FUNCTIONAL ?

 IT IS A NEW WAY OF THINKING

 IT IS FUN !

 IT IS MORE EXPRESSIVE

 LESS CODE, LESS BUGS, LESS ABSTRACTIONS

 CLOSER TO SPECIFICATIONS

 YOU CAN PROVE IT, INSTEAD OF TESTING

 EASIER TO PARALELLIZE

 BECAUSE EVERYBODY IS DOING IT …

BUT REMEMBER …

IT IS JUST ONE MORE TOOL IN OUR TOOLBOX

QUESTIONS ?

