An Introduction to
Functional Programming

Jon Brumfitt
ESAC
9 May 2018



Software Engineering Challenges

Complexity

* Complexity inherent in problem (What)
e Additional complexity of solution (How)

int total = 0;
for(int i=0; i<10; i++) {
int rowSum = 0;
for(j=0; j<10; j++) {
rowSum += rows[i][j];

}

total += rowSum * rowSum;

}




Software Engineering Challenges

Parallelism

* Multiple cores
e Scalability

107

10°
10*
10°
10°
10°

10°

1970

42 Years of Microprocessor Trend Data

A
2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, AAAA.‘QO W
: poLa¥ .
Ok g T
v ‘
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, TR ASA S T 2 A
| : v : ¢ s ‘ ¢
v v 'viV vy R e
rrrrr o‘ooowmmoo S
! !
1980 1990 2000 2010
Year

Transistors
(thousands)

| Single-Thread

Performance 3
(SpecINT x 107)

Frequency (MHz)

Typical Power
(Watts)

Number of
Logical Cores

2020

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp
https://github.com/karlrupp/microprocessor-trend-data/blob/master/LICENSE.txt



Spreadsheet Analogy

H: -SUM(A1:D1) —E1*E1
"l s 8 7 2 =SUM(A2:D2)  =E2*E2
Hl 2 1 6 5 =SUM(A3:D3) ~E3*E3
4| ~SUM(F1:F3)

The total IS the sum of the squares of the row sums

Functional

rows = [[1,2,3,41,15,8,7,21,12,1,6,5]1
square x = X * X
total = sum (map square (map sum rows))



Imperative vs Functional

Imperative

1nt[] [] Fows = new lnt[] [] {{11213;4}1{5181712};{2111675}};

int total = 0;
for(int i=0; i<rows.length; i++) {
int rowSum = 0;
for(j=0; j<rows[i].length; j++) {
rowSum += rows[i] [j];

¥

total += rowSum * rowSum;
¥
Functional

rows = [[1,2,3,41,15,8,7,21,12,1,6,511
square X = X % X
total = sum (map square (map sum rows))



Imperative vs Functional

Imperative Programming

Programs are sequences of statements to be executed
Statements change program state (e.g. variables)
Programs says HOW to compute the result

Functional Programming

Programs are a declarative set of definitions

Treats computation as the evaluation of pure functions
Functions are first-class values

Avoids mutable state (variables)

Modern functional languages add advanced type systems



History

e Alan Turing (1936): Turing machines — Imperative model of computation
* Alonzo Church (1936): Lambda calculus — Functional model of computation
e John von Neumann (1945): von Neumann architecture

*  John McCarthy (1958): LISP — Untyped lambda expressions

*  David Turner (1972): SASL — A simple purely-functional language

*  Robin Milner (1973): ML — Meta-Language for LCF

*  John Backus (1978): “Can programming be liberated from the von Neumann style?”
*  Robin Milner (1978): Milner-Hindley type system

*  Rod Burstall (~1980): Hope — Algebraic types and pattern matching

*  David Turner (1985): Miranda — Lazy evaluation & polymorphic types

*  Ericsson (1986): Erlang — Emphasis on distributed systems & fault-tolerance
. FPCA conference (1987): Committee formed to define an open standard

*  Haskell language (1990): Open standard for a purely functional language

* INRIA (1996): OCaml — Functional + OO, emphasis on performance

*  Martin Odersky (EPFL) (2004) Scala: Combines functional with OO

*  Hickey (2007): Clojure - Modern descendent of LISP using JVM

Functional languages are now being used for real-world projects

Many languages now include some functional language features

Functional Programming #7 Jon Brumfitt



History

e John McCarthy (1958): LISP — Untyped lambda expressions

e David Turner (1972): SASL — A simple purely-functional language

e Robin Milner (1973): ML — Meta-Language for LCF

e John Backus (1978): “Can programming be liberated from the von Neumann style?”
e Robin Milner (1978): Milner-Hindley type system

e Rod Burstall (~1980): Hope — Algebraic types and pattern matching

e David Turner (1985): Miranda — Lazy evaluation & polymorphic types

e Ericsson (1986): Erlang — Emphasis on distributed systems & fault-tolerance
 FPCA conference (1987): Committee formed to define an open standard

* Haskell language (1990): Open standard for a purely functional language



History

*  Alan Turing (1936): Turing machines — Imperative model of computation
Alonzo Church (1936): Lambda calculus — Functional model of computation
. John von Neumann (1945): von Neumann architecture

*  John McCarthy (1958): LISP — Untyped lambda expressions

*  David Turner (1972): SASL — A simple purely-functional language

*  Robin Milner (1973): ML — Meta-Language for LCF

* John Backus (1978): “Can programming be liberated from the von Neumann style?”
*  Robin Milner (1978): Milner-Hindley type system

*  Rod Burstall (~¥1980): Hope — Algebraic types and pattern matching

*  David Turner (1985): Miranda — Lazy evaluation & polymorphic types

*  Ericsson (1986): Erlang — Emphasis on distributed systems & fault-tolerance
. FPCA conference (1987): Committee formed to define an open standard

*  Haskell language (1990): Open standard for a purely functional language

* INRIA (1996): OCaml — Functional + OO, emphasis on performance
* Martin Odersky (EPFL) (2004) Scala: Combines functional with OO

*  Hickey (2007): Clojure - Modern descendent of LISP using JVM
Functional languages are now being used for real-world projects
Many languages now include some functional language features

Functional Programming #9 Jon Brumfitt



History

*  Alan Turing (1936): Turing machines — Imperative model of computation
Alonzo Church (1936): Lambda calculus — Functional model of computation
. John von Neumann (1945): von Neumann architecture

*  John McCarthy (1958): LISP — Untyped lambda expressions

*  David Turner (1972): SASL — A simple purely-functional language

*  Robin Milner (1973): ML — Meta-Language for LCF

* John Backus (1978): “Can programming be liberated from the von Neumann style?”
*  Robin Milner (1978): Milner-Hindley type system

*  Rod Burstall (~¥1980): Hope — Algebraic types and pattern matching

*  David Turner (1985): Miranda — Lazy evaluation & polymorphic types

*  Ericsson (1986): Erlang — Emphasis on distributed systems & fault-tolerance
. FPCA conference (1987): Committee formed to define an open standard

*  Haskell language (1990): Open standard for a purely functional language

* INRIA (1996): OCaml — Functional + OO, emphasis on performance

*  Martin Odersky (EPFL) (2004) Scala: Combines functional with OO

*  Hickey (2007): Clojure - Modern descendent of LISP using JVM

* Functional languages are now being used for real-world projects
* Many languages now include some functional language features

Functional Programming #10 Jon Brumfitt



Some Functional Languages

Haskell
Scala
OCaml|
F#
Clojure

Erlang / Elixir

Purely functional, lazy, static type inference
Functional + OO, static type inference, Java based
Functional + OO, static type inference, ML based
Functional + OO, static type inference, ML based
Dynamic typing, LISP based, uses JVM
Distributed, fault-tolerant, dynamic typing



Pure Functions

A simple function in Haskell

square X = X % X

3 = square

_>9

* Maps values to values
* Nothing else!



Function Type

What is the type of ‘square’?

square X = X % X

3 —

square

)

The type of square (simplified)

square :: Int —-> Int
In Haskell
square :: Num a => a —> a

* Types are inferred automatically



Function Composition

Infix composition operator ¢ .’

(f . g) x = f(g x) (.) :: (b—>c) —> (a—>b) —> a —> c
Example

sinsg x = square (sin x) —— Defined as function

sinsg = square . sin —— Defined using composition

* Composition is a Higher Order Function

* |t acts as ‘glue’ for building programs



Algebraic Data Types

Sum type

data Bool = False | True True :: Bool

Product type

data Point = Point Int Int Point :: Int —> Int -> Point

Recursive polymorphic type

data List a = Nil | Cons a (List a) Cons :: a —> List a —> List a

data [a] = [] | a : [a&] —— Haskell definition

* Types are inferred automatically



Pattern Matching

Algebraic data types build a data structure

]

data [a] = |
| a : [a]

Pattern matching pulls it apart (deconstructs it)

sum [] =0
sum (X : XS) = X + sum XS



Abstracting Recursion Patterns

Common patterns

sum [] = 0
sum (x:xs)

X + sum XS

product [] =1
product (x:xs) = X * sum XS

We can generalise this by passing extra arguments

foldr f a [] = a

foldr f a (x:xs) = f a (foldr f a xs)
sum = foldr (+) 0
product = foldr (x) 1



Type Classes

A type class lets you associate operations with a type

For example, the type class Eq provides the following functions
(==) :: Eg a => a —> a —> Bool

(/=) :: Eg a => a —> a —> Bool

Type classes constrain the polymorphic type

fxy=(x-==y) f :: EQq a =>a —> a — Bool

gxy=(x=y+1) g :: (Eq a, Num a) => a —> a —> Bool



Type System

Static type checking is important for program verification

But poor type systems give static types a bad name

e Static vs dynamic type debates

Algebraic data-types + type classes + type inference: A powerful combination
* Advantages of Duck Typing
 Static type checking

* Can omit type declarations

When you define a type, you say what its algebraic properties are,
not what functions you can apply to it.



Error Handling

Pure functions can’t return ‘null’ or throw exceptions

Return a proper value instead of a null pointer

data Maybe a = Nothing | Just a

Return an error value instead of throwing an exception

data Try a b = Failure a | Success b —— Scala names



Maybe
Return a proper value instead of a null pointer

data Maybe a = Nothing | Just a

Find the first element that satisfies a predicate

find p [] = Nothlng
find p (x:xs) | p = Just x

| o therw1se = find p xs
find even [1,3,5,7,9] Nothing
find even [1,3,4,5,6] Just 4



Functor Type Class

List ‘map’ has the following type

map :: (a—>b) —> [a] —> [b]

We can abstract this with a type class ‘Functor’ for any type that can be mapped over

fmap :: Functor f => (a—>b) > f a —> f b

For example

fmap (x3) [1,2,3] [3,6,9]

fmap (*3) (Just 6) Just 18



Functor Type Class

class Functor f where
fmap :: (a—>b) > fa—>"Ffb
Maybe a = Nothing | Just a

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

Functor laws

id
fmap f . fmap g

fmap 1id
fmap (f . g)



Monads

A monad is a composable computation with some context

For example, composing functions while abstracting error handling
data Maybe a = Nothing | Just a

f :: a —> Maybe a

(Just x) >>= f >>= g >>= h



Input / Output

* |/O breaks referential transparency
* Pure languages (e.g. Haskell) use monads for I/O

* Impure / hybrid languages (e.g. Scala) provide a more pragmatic solution



Applications: Problem Types

Purely Functional

* Good for logical / symbolic processing, compilers etc
e Used for server back-ends
* Less appropriate for numerical processing (for now)

Hybrid FP + OO
* General purpose (e.g. Scala, OCaml)



Applications: Real World

Examples

Haskell:
Erlang:
Scala:
OCaml:

Facebook spam filtering, banks, ...

Ericsson telephony, WhatsApp, DropBox, ...

Twitter, Linkedln, Guardian, Coursera, ...

Facebook, Docker, ...

Further information

* https://wiki.haskell.org/Haskell_in_industry

* https://www.scala-lang.org/old/node/1658

* https://ocaml.org/learn/companies.html



Advantages

* Programs try to say ‘what’ rather than ‘how’

* Functions may be understood and tested in isolation

* Powerful type system helps to build correct programs

* Powerful abstraction mechanisms lead to reusable components

* Potential for parallel execution

Disadvantages

e Steep learning curve — Need to relearn how to think about programming

* Performance overhead (but more scope for optimisation & parallelism)



Managing Complexity: OO vs FP

OO and FP advocate contradictory approaches

FP

State Disallow

Data types Concrete
Functions (methods) Pure
Common principles

Approach FP

Build out of simple components Functions
Decouple using abstractions Types
Can understand/test parts in isolation Yes

o]0

Partition/encapsulate
Abstract
Set/get object state

0o

Objects
Types
Partially



Final Thoughts

* Functional programming is not difficult — It is just different
* Functional Languages are in production use

* They are influencing existing languages

* They can help to harness multiple processors

* Programming languages are still evolving - what next?



Functional Programwmwung v Funl

Guwe e try

To learn more

* http://learnyouahaskell.com (Haskell)

* https://www.scala-lang.org (Scala)

* Martin Odersky, Programming in Scala, 3™ ed., Artima, 2016 (Scala)
* https://realworldocaml.org (OCaml)



