
An Introduction to
Functional Programming

Jon Brumfitt
ESAC

9 May 2018

Functional Programming #1 Jon Brumfitt

Software Engineering Challenges

Functional Programming #2 Jon Brumfitt

Complexity
• Complexity inherent in problem (What)
• Additional complexity of solution (How)

A

int total = 0;
for(int i=0; i<10; i++) {

int rowSum = 0;
for(j=0; j<10; j++) {

rowSum += rows[i][j];
}
total += rowSum * rowSum;

}

Ideas
Logic

Software Engineering Challenges

Functional Programming #3 Jon Brumfitt

Parallelism
• Multiple cores
• Scalability

A

https://github.com/karlrupp/microprocessor-trend-data/blob/master/LICENSE.txt

Spreadsheet Analogy

Functional Programming #4 Jon Brumfitt

A B C D E F
1 1 2 3 4 =SUM(A1:D1) =E1*E1
2 5 8 7 2 =SUM(A2:D2) =E2*E2
3 2 1 6 5 =SUM(A3:D3) =E3*E3
4 =SUM(F1:F3)

The total IS the sum of the squares of the row sums

rows = [[1,2,3,4],[5,8,7,2],[2,1,6,5]]
square x = x * x
total = sum (map square (map sum rows))

Functional

Imperative vs Functional

Functional Programming #5 Jon Brumfitt

int[][] rows = new int[][] {{1,2,3,4},{5,8,7,2},{2,1,6,5}};

int total = 0;
for(int i=0; i<rows.length; i++) {

int rowSum = 0;
for(j=0; j<rows[i].length; j++) {

rowSum += rows[i][j];
}
total += rowSum * rowSum;

}

rows = [[1,2,3,4],[5,8,7,2],[2,1,6,5]]
square x = x * x
total = sum (map square (map sum rows))

Functional

Imperative

Imperative vs Functional

Functional Programming #6 Jon Brumfitt

Functional Programming
• Programs are a declarative set of definitions
• Treats computation as the evaluation of pure functions
• Functions are first-class values
• Avoids mutable state (variables)

Imperative Programming
• Programs are sequences of statements to be executed
• Statements change program state (e.g. variables)
• Programs says HOW to compute the result

• Modern functional languages add advanced type systems

History

Functional Programming #7 Jon Brumfitt

• Alan Turing (1936): Turing machines – Imperative model of computation
• Alonzo Church (1936): Lambda calculus – Functional model of computation
• John von Neumann (1945): von Neumann architecture
• John McCarthy (1958): LISP – Untyped lambda expressions
• David Turner (1972): SASL – A simple purely-functional language
• Robin Milner (1973): ML – Meta-Language for LCF
• John Backus (1978): “Can programming be liberated from the von Neumann style?”
• Robin Milner (1978): Milner-Hindley type system
• Rod Burstall (~1980): Hope – Algebraic types and pattern matching
• David Turner (1985): Miranda – Lazy evaluation & polymorphic types
• Ericsson (1986): Erlang – Emphasis on distributed systems & fault-tolerance
• FPCA conference (1987): Committee formed to define an open standard
• Haskell language (1990): Open standard for a purely functional language
• INRIA (1996): OCaml – Functional + OO, emphasis on performance
• Martin Odersky (EPFL) (2004) Scala: Combines functional with OO
• Hickey (2007): Clojure - Modern descendent of LISP using JVM
• Functional languages are now being used for real-world projects
• Many languages now include some functional language features

History

Functional Programming #8 Jon Brumfitt

• Alan Turing (1936): Turing machines – Imperative model of computation
• Alonzo Church (1936): Lambda calculus – Functional model of computation
• John von Neumann (1945): von Neumann architecture

• John McCarthy (1958): LISP – Untyped lambda expressions
• David Turner (1972): SASL – A simple purely-functional language
• Robin Milner (1973): ML – Meta-Language for LCF
• John Backus (1978): “Can programming be liberated from the von Neumann style?”
• Robin Milner (1978): Milner-Hindley type system
• Rod Burstall (~1980): Hope – Algebraic types and pattern matching
• David Turner (1985): Miranda – Lazy evaluation & polymorphic types
• Ericsson (1986): Erlang – Emphasis on distributed systems & fault-tolerance
• FPCA conference (1987): Committee formed to define an open standard
• Haskell language (1990): Open standard for a purely functional language
• INRIA (1996): OCaml – Functional + OO, emphasis on performance
• Martin Odersky (EPFL) (2004) Scala: Combines functional with OO
• Hickey (2007): Clojure - Modern descendent of LISP using JVM
• Functional languages are now being used for real-world projects
• Many languages now include some functional language features

History

Functional Programming #9 Jon Brumfitt

• Alan Turing (1936): Turing machines – Imperative model of computation
• Alonzo Church (1936): Lambda calculus – Functional model of computation
• John von Neumann (1945): von Neumann architecture
• John McCarthy (1958): LISP – Untyped lambda expressions
• David Turner (1972): SASL – A simple purely-functional language
• Robin Milner (1973): ML – Meta-Language for LCF
• John Backus (1978): “Can programming be liberated from the von Neumann style?”
• Robin Milner (1978): Milner-Hindley type system
• Rod Burstall (~1980): Hope – Algebraic types and pattern matching
• David Turner (1985): Miranda – Lazy evaluation & polymorphic types
• Ericsson (1986): Erlang – Emphasis on distributed systems & fault-tolerance
• FPCA conference (1987): Committee formed to define an open standard
• Haskell language (1990): Open standard for a purely functional language

• INRIA (1996): OCaml – Functional + OO, emphasis on performance
• Martin Odersky (EPFL) (2004) Scala: Combines functional with OO
• Hickey (2007): Clojure - Modern descendent of LISP using JVM
• Functional languages are now being used for real-world projects
• Many languages now include some functional language features

History

Functional Programming #10 Jon Brumfitt

• Alan Turing (1936): Turing machines – Imperative model of computation
• Alonzo Church (1936): Lambda calculus – Functional model of computation
• John von Neumann (1945): von Neumann architecture
• John McCarthy (1958): LISP – Untyped lambda expressions
• David Turner (1972): SASL – A simple purely-functional language
• Robin Milner (1973): ML – Meta-Language for LCF
• John Backus (1978): “Can programming be liberated from the von Neumann style?”
• Robin Milner (1978): Milner-Hindley type system
• Rod Burstall (~1980): Hope – Algebraic types and pattern matching
• David Turner (1985): Miranda – Lazy evaluation & polymorphic types
• Ericsson (1986): Erlang – Emphasis on distributed systems & fault-tolerance
• FPCA conference (1987): Committee formed to define an open standard
• Haskell language (1990): Open standard for a purely functional language
• INRIA (1996): OCaml – Functional + OO, emphasis on performance
• Martin Odersky (EPFL) (2004) Scala: Combines functional with OO
• Hickey (2007): Clojure - Modern descendent of LISP using JVM

• Functional languages are now being used for real-world projects
• Many languages now include some functional language features

Some Functional Languages

Functional Programming #11 Jon Brumfitt

Haskell Purely functional, lazy, static type inference
Scala Functional + OO, static type inference, Java based
OCaml Functional + OO, static type inference, ML based
F# Functional + OO, static type inference, ML based
Clojure Dynamic typing, LISP based, uses JVM
Erlang / Elixir Distributed, fault-tolerant, dynamic typing

Pure Functions

Functional Programming #12 Jon Brumfitt

square x = x * x

A simple function in Haskell

square3 9

• Maps values to values
• Nothing else!

Function Type

Functional Programming #13 Jon Brumfitt

square x = x * x

What is the type of ‘square’?

square3 9

square :: Int -> Int

square :: Num a => a -> a

The type of square (simplified)

In Haskell

• Types are inferred automatically

Function Composition

Functional Programming #14 Jon Brumfitt

(f . g) x = f(g x) (.) :: (b->c) -> (a->b) -> a -> c

Infix composition operator ‘.’

sinsq x = square (sin x) -- Defined as function

Example

sinsq = square . sin -- Defined using composition

• Composition is a Higher Order Function
• It acts as ‘glue’ for building programs

Algebraic Data Types

Functional Programming #15 Jon Brumfitt

data Bool = False | True True :: Bool

Sum type

data List a = Nil | Cons a (List a) Cons :: a -> List a -> List a

Recursive polymorphic type

data Point = Point Int Int Point :: Int -> Int -> Point

Product type

• Types are inferred automatically

data [a] = [] | a : [a] -- Haskell definition

Pattern Matching

Functional Programming #16 Jon Brumfitt

Algebraic data types build a data structure

Pattern matching pulls it apart (deconstructs it)

data [a] = []
| a : [a]

sum [] = 0
sum (x : xs) = x + sum xs

Abstracting Recursion Patterns

Functional Programming #17 Jon Brumfitt

sum [] = 0
sum (x:xs) = x + sum xs

product [] = 1
product (x:xs) = x * sum xs

Common patterns

foldr f a [] = a
foldr f a (x:xs) = f a (foldr f a xs)

We can generalise this by passing extra arguments

sum = foldr (+) 0
product = foldr (*) 1

Type Classes

Functional Programming #18 Jon Brumfitt

A type class lets you associate operations with a type

For example, the type class Eq provides the following functions

(==) :: Eq a => a -> a -> Bool
(/=) :: Eq a => a -> a -> Bool

Type classes constrain the polymorphic type

f x y = (x == y) f :: Eq a => a -> a -> Bool

g x y = (x == y + 1) g :: (Eq a, Num a) => a -> a -> Bool

Type System

Functional Programming #19 Jon Brumfitt

Static type checking is important for program verification

But poor type systems give static types a bad name

• Static vs dynamic type debates

Algebraic data-types + type classes + type inference: A powerful combination

• Advantages of Duck Typing

• Static type checking

• Can omit type declarations

When you define a type, you say what its algebraic properties are,

not what functions you can apply to it.

Error Handling

Functional Programming #20 Jon Brumfitt

data Maybe a = Nothing | Just a

Return a proper value instead of a null pointer

Return an error value instead of throwing an exception

Pure functions can’t return ‘null’ or throw exceptions

data Try a b = Failure a | Success b -- Scala names

Maybe

Functional Programming #21 Jon Brumfitt

data Maybe a = Nothing | Just a

Return a proper value instead of a null pointer

find p [] = Nothing
find p (x:xs) | p x = Just x

| otherwise = find p xs

Find the first element that satisfies a predicate

find even [1,3,5,7,9] Nothing
find even [1,3,4,5,6] Just 4

Functor Type Class

Functional Programming #22 Jon Brumfitt

map :: (a->b) -> [a] -> [b]

List ‘map’ has the following type

fmap :: Functor f => (a->b) -> f a -> f b

We can abstract this with a type class ‘Functor’ for any type that can be mapped over

For example

fmap (*3) [1,2,3] [3,6,9]

fmap (*3) (Just 6) Just 18

Functor Type Class

Functional Programming #23 Jon Brumfitt

fmap id ≡ id
fmap (f . g) ≡ fmap f . fmap g

Functor laws

Skip

Maybe a = Nothing | Just a

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

class Functor f where
fmap :: (a -> b) -> f a -> f b

Monads

Functional Programming #24 Jon Brumfitt

Skip

A monad is a composable computation with some context

(Just x) >>= f >>= g >>= h

f g h

MM M

Just x

For example, composing functions while abstracting error handling

data Maybe a = Nothing | Just a

f :: a -> Maybe a

Input / Output

Functional Programming #25 Jon Brumfitt

• I/O breaks referential transparency
• Pure languages (e.g. Haskell) use monads for I/O
• Impure / hybrid languages (e.g. Scala) provide a more pragmatic solution

Applications: Problem Types

Functional Programming #26 Jon Brumfitt

Purely Functional
• Good for logical / symbolic processing, compilers etc
• Used for server back-ends
• Less appropriate for numerical processing (for now)

Hybrid FP + OO
• General purpose (e.g. Scala, OCaml)

Applications: Real World

Functional Programming #27 Jon Brumfitt

Examples

• Haskell: Facebook spam filtering, banks, ...

• Erlang: Ericsson telephony, WhatsApp, DropBox, ...

• Scala: Twitter, LinkedIn, Guardian, Coursera, ...

• OCaml: Facebook, Docker, ...

Further information

• https://wiki.haskell.org/Haskell_in_industry

• https://www.scala-lang.org/old/node/1658

• https://ocaml.org/learn/companies.html

Advantages

Functional Programming #28 Jon Brumfitt

• Programs try to say ‘what’ rather than ‘how’
• Functions may be understood and tested in isolation
• Powerful type system helps to build correct programs
• Powerful abstraction mechanisms lead to reusable components
• Potential for parallel execution

• Steep learning curve – Need to relearn how to think about programming
• Performance overhead (but more scope for optimisation & parallelism)

Disadvantages

FP OO
State Disallow Partition/encapsulate
Data types Concrete Abstract
Functions (methods) Pure Set/get object state

Approach FP OO
Build out of simple components Functions Objects
Decouple using abstractions Types Types
Can understand/test parts in isolation Yes Partially

Managing Complexity: OO vs FP

Functional Programming #29 Jon Brumfitt

OO and FP advocate contradictory approaches

Common principles

Final Thoughts

Functional Programming #30 Jon Brumfitt

• Functional programming is not difficult – It is just different
• Functional Languages are in production use
• They are influencing existing languages
• They can help to harness multiple processors
• Programming languages are still evolving - what next?

Functional Programming #31 Jon Brumfitt

Functional Programming is Fun!

Give it a try

• http://learnyouahaskell.com (Haskell)
• https://www.scala-lang.org (Scala)
• Martin Odersky, Programming in Scala, 3rd ed., Artima, 2016 (Scala)
• https://realworldocaml.org (OCaml)

To learn more

