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This first set of two one and a half hour lectures was prepared for
the morning of Thursday October 30, 2014 at the first ESAC Data
Analysis and Statistics Workshop, which was held over the course
of five days, from Monday to Friday, October 27 to 31. They address
many if not most fundamental aspects of the analysis of time domain
signals in astronomy by posing a single question—how do we group
data to reveal their structure—and working through to the answer with
attention to the details relating to the statistical concepts involved.

Introductory Remarks

Much of what is done in astronomy and astrophysics falls in
one of three domains: imaging, spectral, and timing. What we are
going to talk about is timing. And what I mean here by timing is
everything that has to do with measurements of anything at all as a
function of time.

As far as how the data is presented, there are basically only two
possibilities: we either get individual time-tagged events,1 or we get 1 These are unbinned because readout

frequency is higher than event rate.measurements of what we can refer to generally as the "intensity"
(whatever the actual quantity may be), but which is estimated by as
an average over a specific time interval.2 2 These are binned at the instrumental

level because the signal is accumulated
for a particular time before readout.

An example of the first is an X-ray or γ-ray event list, and an ex-
ample of the second is a time series of energy density measurements
based on 30 second snapshots with a near-infrared camera. The event
file contains at the very least a list of the times at which the events
were detected/recorded.3 The energy density measurements ex- 3 And usually also their coordinates on

the detector plane, their energy, and
other things like quality flags, etc.

tracted by PSF fitting at the position of the source of interest in the 30

second snapshots, on the other hand, have the start and end times of
the frame, and the measured energy flux.

In these two lectures, we will ask some questions and look at some
data. We will ask very basic questions, and we will look at our data
very closely. I don’t use "basic" to mean simplistic; I use it to me
mean fundamental and therefore essential. In the same way want to
clarify right from the start that the use of the word "fundamental"
in the title, does not mean "easy". In fact, the material we’ll cover is
not so easy because it is quite technical. Rather, "fundamental" here
means most essential and important.

We have three hours together, which is not so much, but it is
enough to look at quite a few things. And I will ask a lot of ques-
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tions, rhetorical questions to stimulate you thinking about the issue
at hand. Nobody needs to answer. You don’t need to answer. Do not
feel like you’re being put on the spot: you are not! Just think about
the question and the issue we are considering. If an answer pops
up, then great: just say it. In general, I’ll provide all the answers to
my own questions in the discussion that follows them. Once again,
please, don’t stress about it. It’s just a way to engage you and keep
you on your toes. Let’s start now.

Distribution of Waiting Times

What is the first thing we can do with a list of event arrival
times? We are only interested in their temporal characteristics, and
not with their energy or spatial distribution. The very first thing I do
is to take a look at the ensemble of times intervals between events:
the interarrival or waiting times.

Why? Because, firstly, this is the most basic feature of their dis-
tribution in time: how much time passes between events? What is
the statistical distribution of the interval between detected events?
And secondly, it is something that can be done immediately without
requiring any kind of manipulation of the data.

What do we gather from it? Well, if we were in a physics lab look-
ing at the photons recorded by a detector encapsulating a radioac-
tively decaying source, then we would expect the waiting times to
be distributed precisely as an exponential distribution with a mean
given by the inverse of the detection rate.4 4 If the decay process yields 1 photon

per second, then the average waiting
time is 1 second between photons. If it
produces 4 photons per second, then
the average waiting time is 1/4 of a
second.

The exponential distribution is characteristic of a memory-less
process, a process in which each event takes place at a given average
rate, independently of the previous and the next. The exponential
always peaks at zero, and extends to positive values. The speed with
which the density drops towards zero (the x-axis) is determined by
the mean of the distribution.5 5 We also speak of the decay constant,

which is the inverse of the mean:
a mean of 2 translates into a decay
constant of 1/2. In the application we
are considering of photon detection, the
mean of the distribution is the average
waiting time, and the decay constant,
therefore, equals the detection rate.

What else do we look for? If the process is constant, or rather, if
the process gives rise to an apparently constant event rate, then this
means that all waiting times will belong to the same parent popula-
tion and be distributed according to a single, well-defined distribu-
tion. We can check that by overlaying on our distribution of waiting
times the exponential density function. It is also a good way to iden-
tify anomalies, of course: peaks, bumps or breaks in the distribution,
for example. We’ll see some of that later.

What if the distribution is exponential in appearance, but doesn’t
agree with the analytical density function? It has a longer tail, for
example. This immediately tells us that the event rate is not constant,



fundamentals in time domain astronomy: grouping to reveal structure 3

and that it is, therefore, variable. It can be just slightly or strongly
variable, but if the distribution of waiting times is not a pure ex-
ponential, then it means that it can be thought of as a mixture of
different exponentials from the different "rate-states". We’ll see that
later as well, but let’s not go too fast.

How about a simpler question first: how do we group the data?

Structure and Resolution

You know that making a light curve is the very first thing an as-
tronomer does to look at their data, sometimes even in near-real time
during the course of an observation. Have you ever asked yourself
"what bin size should I use to make this light curve?" I’m sure you
have. So, what did you choose as the bin time: a millisecond, a sec-
ond, 60 or 100 seconds, 3600 seconds? And why?

This is the question that will drive us in our investigations through-
out these two lectures: Is there an ideal—an optimal—timescale for
grouping data? If so, what is it and how do we find it?

Naturally, it depends what we want to do with the light curve. So,
let’s first restrict ourselves to the following goal: We want to group the
data into a time series that will reveal the most about the variability struc-
ture of these data. Personally, I think that whether you have phrased it
in this way or not, this is generally what we all want to see when we
look at a light curve as a means to getting a sense of what’s going on
in the source we’re observing.

This grouping to reveal structure applies in the same way to event
data as it does to instrumentally binned data, and the implementa-
tion is just slightly different in some of its details. We will look at
even data first, which is simpler because we can bin the events as we
wish without any concerns about uncertainties and the like. This is
not quite the case when we are working with binned data that we
want to resample, as we will see later on.

How do we decide, on a quantitative basis, what time scale will
best reveal the structure in our data? Let’s think of the two extreme
cases: having only one bin, or having an infinite number of bins.
Will we see structure in our light curve? No. What will be the mean
deviation along the length of the time series? Nil or very close to
it. This gives us an indication, firstly, that the answer is somewhere
between one and an infinite number of bins (obviously), but also of
how we can go about choosing or picking out that ideal scale for
looking at the data.

Another point that we cannot overlook is that whether we are
working with event or binned data, one, and sometimes, the most im-
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portant issue, is resolution. Therefore, whatever we may be interested
in investigating in the data, it is crucial to retain the best possible
resolution.6

6 For many, maybe most analyses, like
spectral modelling in the energy or
power spectral domains, for instance.
we can, and should, aim to work with
the highest resolution available.

Each instrument has its particular
characteristics, like its timing resolution
and its number of energy channels,
frequency or wavelength bands, and we
should use all the information that is
available to us without throwing any of
it away.

Throwing information away is, in
effect, what we do when we group
energy channels together: artificially
degrading the energy resolution of our
instrument. This is never necessary
when using the correct statistics and
appropriate statistical analysis methods.

Hence, we have two essential concerns in what relates to grouping
the data: We want to reveal the variability structures in the most
effective way, and we want, at the same time, to retain the highest
possible resolution. For this, we must turn to statistics.

Underlying Statistics: The Distribution of the Data

Let’s come back to the extreme of an infinite, or in practical terms,
a very large number of bins. Would we be able to see any structure
by looking at this extremely sparsely distributed time series where
each bin would have at most a single event, and where most bins
would be empty? Clearly not. Now, do the thought experiment of
looping through the data, from the first event to the last, over and
over again, grouping it with a slowly increasing bin size. This will
in effect, squeeze the data together, gradually taking out the empty
bins and clustering more events together. We’ll begin to see the data
grow vertically, so to speak, growing out of the one dimensional line
of mostly zeros into taller, increasingly better defined structures.

Processes in physics appear to be statistical in nature.7 In terms of 7 I used "appear" because making the
stronger statement that physical pro-
cesses are statistical in nature could lead
into much lengthier discussions that
would clearly be more philosophical
than scientifically pragmatic in flavour,
independently of whether it is even
possible to bring such discussions to
a conclusive end. Even though I per-
sonally find such investigations very
interesting, it is not the purpose of
these lectures, which is indeed prag-
matic.

measuring such processes, this means that there is always going to
be scatter around the mean. The amount of scatter, in absolute terms,
the spread of the measurements around the mean, depends both on
the process and the characteristics of the measurements, but it does
not change, and it does not depend on the number of measurements
we make. What does change, however, and what does depend on the
number of measurements, is 1) the precision with which we can
determine the most likely value of the measured quantity, 2) the
spread of the set of measurements around that value, and 3) the
shape of the distribution of measurements.

Hence, the first relevant question we should ask is this: What is
the statistical nature of the data? Or, in other words: how are the
data distributed? Of all the basic questions we should ask when
working with data, this is the most fundamental, because it is the
answer to this question that tells us what are the relevant statistics. In
the case we are currently considering, we are detecting and counting
individual events, and therefore, are working with Poisson statistics.
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Statistical Uncertainty: Statistical Fluctuations

I will not discuss generalities of Poisson statistics, because you
are probably already familiar with this by now. The crucial element I
want to use is that the Poisson probability density is a single parame-
ter function whose value defines both the mean and the variance.8 In 8 As is also the case for the exponential

distribution, which is, in other ways,
entirely different.

addition, I want to highlight and clarify the distinction between what
I will refer to as homogeneous and non-homogeneous Poisson processes.

A homogeneous Poisson process is, very simply, one for which
the value of the parameter is constant. A non-homogeneous Poisson
process is one for which the value of the parameter changes. What
is important to recognise in this context is that any process which is
intrinsically variable and which is measured as individual events—
no matter what the nature of the process and the single or multiple
causes of the variability—can be considered as a non-homogenous
Poisson process, and thus treated and understood as such.9 9 The motivation or philosophical basis

for this, is that the act of measuring
the process by detecting, collecting
and counting individual, discrete
events, imprints onto the process the
signature of Poisson statistics. This is
independent of the process, its nature,
and what causes it to be variable.

For a homogeneous Poisson process, the statistical fluctuations ex-
pected in the measurements, which translates directly to the inherent
statistical uncertainty, is defined by the variance that is also the mean.
Hence, for a mean number of events per bin of n, the variance about
the mean will be n, and the statistical uncertainty, expressed as the
standard deviation, will therefore be given by

√
n.

To make sure this is perfectly clear, it means that if we had an
infinite time series of events detected at a constant rate of ν from a
non-variable process, and we grouped these events in bins of width
dt, we would have on average n = νdt events per bin. If we now took
the number of events in each bin and made a frequency histogram,
putting in each bar the number of times we find in a bin of the time
series zero events, one event, two events, three events, and so on, the
histogram would trace the Poisson distribution function with a mean
of n, variance of n, and standard deviation of

√
n.

With this in mind, how would you estimate the magnitude of the
statistical fluctuations we might expect in our measurements of a
non-homogeneous process? Let’s do another thought experiment and
imagine we can tune variability. Let’s set the mean count rate to ν

and keep it constant. This implies that the total number of events for
an arbitrary observation duration T will always be exactly N = νT.
It also implies that the average number of events per bin of width dt
will always be 〈n〉 = νdt.

Let’s tune up and down variability and consider what we would
see. First, turn it down to the minimum, no variability, and ask your-
self these questions: Is the shape and spread of the distribution of
events in each bin dependent on something other than the statistical
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nature of the process? Do the instrument characteristics depend on
the variability of the process being observed?

Now, turn up the variability gradually, so that you see larger and
better defined structures in the time series. Does the intrinsic vari-
ability have anything to do with the measurement uncertainty? Is
there any reason to believe that there should be more or less statis-
tical fluctuations in the measurements as the variability of the pro-
cess increases or decreases while the mean rate and bin size remain
constant? And is there any reason to believe that the statistical fluc-
tuations should ever be greater or lesser than those associated with
the first, non-variable process observed in our experiment, a homoge-
neous Poisson process, of exactly the same mean rate and bin size?

The answer to all these questions is no: The properties of the in-
trinsic variability of a source have nothing to do with the statistical
measurement uncertainty associated with the detection process. They
are distinct and independent. And the fact that we convolve one with
the other when measuring the physical process as a discrete number
of measurements with our instrument, does not imply that statis-
tical fluctuations should increase or decrease with greater or lesser
variability.

On the contrary, it shows us that the most reasonable estimate we
can make of the magnitude of statistical fluctuations for any Poisson
process is given by the variance (for a given bin size) of the homoge-
neous process with mean rate equal to that observed.

The Frequency Domain of Fourier Space

Let us come back once more to our motivating concern of group-
ing the data to best reveal structure while retaining the highest reso-
lution. Translating these two requirements into a statistical statement,
we could term the question as follows: What is the time scale at
which the magnitude of the statistical fluctuations are equal to the
fluctuations due to the intrinsic variability?

Answering this question will yield what we’re looking for. But
how do we estimate, quantitatively, the magnitude of the fluctua-
tions, not for the statistical fluctuations of the Poisson part of the
process that can be estimated simply using the mean event rate, but
for the intrinsic variability, the non-homogeneous part, so to speak,
of the observed process? For this, we must again turn to statistics,
but we must also move to a different space, a different domain: the
frequency domain of Fourier space.

Transforming the time domain signal we are working with to its
representation in Fourier space as a frequency domain signal by
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constructing a periodogram, allows us to estimate the amount of
"power", the amount of activity, so to speak, at each frequency that is
accessible in the signal.10 The frequencies that can be tested are de- 10 If we consider the time series to be a

degraded signal which is a single, finite
length realisation of the actual signal at
the source of the physical process, then
the periodogram is, in exact analogy, a
single, degraded estimate of the actual
power spectrum at the source over the
bounds of testable frequencies. The
underlying assumption in this is that
the nature of the process—stationary
or non stationary—does not change.
This implies that the physical system
being observed is assumed to remain in
the same general state, because a state
change would imply a change in the
characteristics of the emission, and also
a change in the power spectrum.

fined by the duration of the data set, on the low frequency end, and
by the spacing in time between consecutive measurements, on the
high frequency end. For event arrival times, the highest frequency
that can be tested is related to the minimum time between two con-
secutive events, whereas for binned data it is related to the sampling
rate (bin size).

The highest testable frequency is referred to as the Nyquist fre-
quency, and is given by half the sampling frequency. The lowest
frequency is given by the inverse of the time spanned by the data (the
total duration). The inverse of the duration also defines the distance
between independent frequencies, the step between frequencies, that
we call an Independent Fourier Spacing or IFS for short.

The simplest and most intuitive way to think of the information
conveyed by a periodogram is to imagine that you place a sinusoidal
wave over your time series, and the closer it is to the shape of the
time series, the more "power" you get for that particular frequency of
the wave. Start at the lowest frequency (the longest wavelength) and
go through all the testable frequencies, doing the same thing each
time. Each result is shown on the periodogram at the height of the
point at the corresponding frequency.

Another way to understand the operation of making the peri-
odogram is to consider the list of arrival times, scattered along the
length of the observation timeline, and, taking the first test frequency,
think of it as a period instead. Now, calculate to which point in the
phase of this period between 0 and 1 each arrival time corresponds.
This is done by dividing the time by the period, and dropping the
integer part of the result, keeping only the decimals.

Hence, from a list of arrival times, we have constructed a list of
phases for the period we just used. We can now, for each phase, mul-
tiply it by 2π to get radians, take its sine and cosine, square each one,
and sum them. Doing the same for each phase, and then summing
all these terms, and then dividing the result by the total number
of phases in the list (and multiplying by 2), we get the value of the
Fourier power for that period in this data set. We repeat this proce-
dure for each test period and construct the periodogram.11 11 This particular periodogram is called

the Rayleigh periodogram. It is the
simplest and, at the same time, the
most powerful for detecting sinusoidal
signals.

I have been able to delay using equations until now, but this kind
of discussion is easier to see in mathematical terms. What we did
for each testable frequency f , is to map each arrival time ti, to its
phase φi, within the periodic cycle that corresponds to that frequency
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(p = 1/ f ), and calculate the Rayleigh statistic:

R2 = 2N(C2 + S2) (1)

where C and S are defined as:

C =
1
N

N

∑
i=1

cos φi and S =
1
N

N

∑
i=1

sin φi. (2)

And in terms of the statistics of the periodogram, first, the expecta-
tion value of the functions cos φ and sin φ is zero: 〈cos φ〉 = 〈sin φ〉 =
0. Therefore, so are those of C and S. Second, the variances of cos φ

and sin φ both equal one half: V[cos φ] = V[sin φ] = 1/2. Therefore,
those of C and S are a factor of N times smaller: V[C] = V[S] =

1/2N. Finally, since V[mX]= m2V[X], where m is a numerical con-
stant, the scaled variables c =

√
2N · C and s =

√
2N · S have a variance

of one: V[
√

2N · C] = V[
√

2N · S] = 2N ·V[C] = 1.
Note however, that the phases are uniformly distributed between

0 and 2π, and the sine and cosine are distributed between −1 and
1 with their characteristic, symmetric U-shaped distribution with
minimum at 0 and rising slowly toward the edges where it peaks
very sharply. It is the summing and averaging of several identically
distributed values that yields the two normal variables C and S, and
standard normal c and s.
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Figure 1: Illustration of the relationship
between standard normal, χ2 and expo-
nential variables using the normalised
frequency distributions and the analyt-
ical density functions: In panel (a) we
see the variable c =

√
2NC (standard

normal); in panel (b) we see its square,
c2 = 2NC (χ2

1); and in panel (c) we see
Rayleigh statistic, R2 = c2 + s2 (χ2

2: an
exponential with τ = 2). Panel (d) illus-
trates the difference between summing
five χ2

2 variables (χ2
10), and scaling by

five a χ2
2 (exponential with τ = 10).

This implies that

R2 = c2 + s2 = 2NC2 + 2NS2 = 2N(C2 + S2) (3)

is the sum of the squares of two standard normal variables. Squaring
a standard normal yields a χ2 variable with one degree of freedom
(dof). Summing χ2 variables yields another χ2 variable with a num-
ber of dof that is the sum of the dof of the variables being summed
(this is illustrated in Figure 1). Therefore, the power being the sum
of two χ2

1 variables is χ2
2 distributed with a mean and standard de-

viation of two (or variance of four). This is convenient due to the
simplicity of the purely exponential χ2

2 density function:

χ2
2(x) =

1
2

e−x/2. (4)

The caveat here is that this is only true if the power estimates at
different frequencies are independent, which is only true for non-
variable processes. The Fourier transform of a constant is also a con-
stant. Consequently, the time series of such non-variable processes
yield a globally flat periodogram with equal power at all frequencies,
but with the statistical fluctuations characteristic of the χ2

2 with its
mean and standard deviation of two.
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Stochastic Variability: Red Noise

What about randomly variable processes? These are the ones in
which we are, in fact, interested. We want to find the ideal time scale
to group our data so that when we look at them in the form of a time
series we can see what they have to show us about the features of the
emission with the optimal level of detail.

Variable processes are different in the sense that the very fact of
variability in the data implies that there is some relation between
the activity at different time scales. For anything other than coherent
sinusoidal variability, which will appear as a single peak at the fre-
quency of the modulation, what this means is that the activity of the
system gives rise to multiple physical processes that vary on differ-
ent timescales but are influenced by one another, and that, therefore,
the power estimates at different frequencies are related to a certain
extent, maybe tightly or maybe not, maybe across the entire power
spectrum, maybe not, but the bottom line is that if there is some level
of random variability there is correlation between the power at differ-
ent frequencies.

What does this mean about the way the various power estimates
are distributed then? Are we working with a different χ2 or expo-
nential variable, or some other kind? Let’s look back at the thought
experiment we did to determine the extent of expected statistical fluc-
tuations while tuning up or down variability, and, in analogy to this,
ask ourselves the following: does the shape or form of the underlying
power spectrum as it is as the source of the emission have anything
to do with the statistics of the periodogram? No, it doesn’t. And
for this reason—for any power spectral shape—the power estimates
at each testable frequency are distributed as the basic χ2

2 variable
resulting from the sum of squared normal variates, scaled by the un-
derlying power spectrum. The powers are therefore all exponential
variables (as demonstrated in Figure 2) for which the mean is given
by the best fit model of the periodogram.
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Figure 2: Illustration of periodogram
powers of astrophysical red noise as
scaled χ2

2 (exponential) variables using
an XMM-Newton observation of Mkn
421: Panel (a) shows the RGS time
series in rates (0.3–2 keV with 85 s bins);
panel (b) shows the periodogram with
the best fit power-law model; and panel
(c) is the distribution of de-trended
periodogram powers overlaid with
the analytical form of the χ2

2 density
function, the exponential density with
mean of 2 (decay constant of 1/2):
f (x) = 1

2 e−x/2.

Using the language of the frequency domain just introduced, we
can rephrase the question that we expressed in the terms "What is
the time scale at which the magnitude of the statistical fluctuations are
equal to the fluctuations due to the intrinsic variability?", as "What is
the time scale at which the Fourier power associated with the statistical
fluctuations is equal to the power of the intrinsic variability?".

To answer this question, recall our thought experiment in which
we looped through the data grouping it using an extremely small
bin size at first, and then gradually increasing the bin size, seeing the
structure of the data begin to grow out of the flat, one-dimensional
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array of sparsely distributed measurements. Translating this to our
analysis in Fourier space, which, in effect, does exactly this by giving
us the power (the amount of activity) associated with each different
time scale (or frequency) that can be tested.

For stochastic variability, which is almost always what we see and
thus have to work with in astrophysics, the distribution of powers in
the power spectrum follow a power-law that peaks at low frequencies
and decays towards the higher frequencies. Such a power spectrum
is most often referred to as "red noise", in analogy to the optical
spectrum of visible light where the red wavelengths are the longest
and thus have the lowest frequencies. The place where the power-law
has a value of two is the place where there is equal power from the
intrinsic variability as from the statistical fluctuations. Therefore, this
is finally the answer we were seeking.

The Optimal Grouping Time Scale

Mathematically, we express it in the following way: The power p,
is given as a function of the frequency f , by

p = N f−α, (5)

where N is the normalisation and α is the power-law index. The fre-
quency at which there is as much power from the inherent variability
as from the statistical fluctuations, is where the power in the power-
law equals the value of the constant level of the Poisson floor c.12 12 In our case, using the Rayleigh

normalisation yields a value of two for
the Poisson floor. It can, however, in
general be any other value depending
on the periodogram normalisation.

Hence, it is found by solving N f−α = c, and yields

fgrp =

(
N
c

)1/α

. (6)

The corresponding time scale is just the inverse, and thus equal to

dtgrp =
( c

N

)1/α
, (7)

where we use the subscript "grp" for "grouping".
We’ve made quite a lot of progress in following this investigation,

and we’re almost there. I know I’ve been throwing a lot of informa-
tion at you for quite a while, but I was wondering if anyone started
wondering, in the last few minutes, how we know what value of the
power-law index α to use in order to determine that frequency and
time scale we are interested in. Where do we get α from? We have to
fit the periodogram.
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Fitting the Periodogram: The B-Statistic

Who remembers what we said about the distribution of power es-
timates in the periodogram? How are the power values at a given
frequency distributed? What kind of variable are we working with?
We’re working with exponential variables. So, how are we going to
fit the periodogram? Who remembers how we go about constructing
an optimal fit statistic based purely on probability theory and with-
out having to make any kinds of approximations or assumptions?
Let’s go back to something familiar and ask the questions that should
lead us to what we want to know.

Say you’re planning to observe a Poisson process for which you
expect a constant event rate of ν. At this stage, you can ask—however
many times you want—what is the probability of detecting n events in
the reference one second interval? The answer is given by plugging
these numbers in the equation for the Poisson probability density
function:13 13 In the section that follows, as previ-

ously, I use Greek letters to denote the
model expectation, and Latin letters to
denote the measurements.

More specifically: ν expected for n ob-
served events in a counting experiment,
and ρ expected for p estimated power
in the periodogram.

f (n; ν) =
νne−ν

n!
. (8)

In the same way, you can ask what is the probability, if I make two
independent measurements, of getting n1 and n2 events from the
first and the second respectively? The answer is that we now have
to multiply the probability P of the first with the probability of the
second. Hence,

P(n1, n2; ν) =
νn1 e−ν

n1!
× νn2 e−ν

n2!
. (9)

Now, say you are actually running your experiment and measur-
ing the number of events detected by your instrument every second.
You make the first measurement and detect n1 events. The question
you can ask now, already at this early stage, but also at any other
stage, what is the likelihood of having detected n1 events when I was
expecting ν? And the answer is exactly the same as the one for the
first question we asked while planning our experiment about the
probability of seeing n events in a single measurement.14

14 The distinction is subtle but im-
portant: Before the experiment, we
calculate probabilities; once we have
made a measurement, we calculate like-
lihoods, and both are calculated directly
from the probability density function
of the variable describing the statistical
nature of the measurements.

Furthermore, the probability makes
a statement about the measurement
given a specific value of the parameter,
whereas the likelihood makes a state-
ment about the parameter given the
actual data, which is now fixed by the
fact that it was measured.

Finally, the third crucial distinction
is that a probability is normalisable
such that the area of a probability
density always equals unity, whereas
the likelihood function is not. For this
reason, only relative values and ratios of
likelihood are meaningful.

Let’s now transpose our problem to the periodogram we have
made of our data set. At this stage, because we have already col-
lected the data and carried out the "experiment", we can only talk
about likelihoods and not about probabilities anymore. So, we can
ask: what is the likelihood of this value of power, p, that we see at
frequency f , when we expect to find ρ? In this case, the answer is
derived from the exponential probability density, and is given by

L(ρ|p) ∝ f (p; ρ) =
1
ρ

e−p/ρ. (10)
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Note that here, exactly as it was the case above, asking and answer-
ing this question can only be done in light of an expected outcome,
and this means, having a model. The model for the homogeneous
Poisson process considered above is as simple as can be: a single pa-
rameter model which is a constant. The model for the periodogram is
somewhat more complex, although not much more: it is a power-law,
which contains two parameters, the spectral index and the normalisa-
tion.15 15 Technically, our complete model for

the periodogram is a power-law plus
a constant to account for the Poisson
floor, which in the most general case
would lead to three free parameters.
However, the constant level is defined
by the normalisation used to compute
the periodogram.

The periodogram contains many independent frequencies over
which the power is estimated. What is, then, the likelihood of having
measured the powers we have compared to the powers we were
expecting as defined by the power-law model? As above, it is given
by the product of the individual likelihoods from each frequency:

L(ρρρ) = ∏
i

1
ρi

e−pi/ρi , (11)

where, unlike in the example of the homogeneous Poisson process
we used above where the expected number of events is always the
same, each frequency channel has a different measured power pi, but
also a different expected power ρi given by the model (hence the bold
ρρρ to denote that it is a vector of values, one per frequency).

To make the calculations easier, and work with sums instead of
a products, we can take the log of the expression for the join likeli-
hood.16 Moreover, because we are interested in actually constructing 16 The exponential log-likelihood for a

vector of model expectations, ρρρ, and a
vector of measurements, ppp, is

ln L(ρρρ|ppp) = −∑
i
(ln ρi + pi/ρi).

a fit statistic whose value we will minimise by iteratively adjusting
the parameter values, we define the B Statistic as −2 ln L:

B = 2 ∑
i
(ln ρi + pi/ρi). (12)

And with this we have all the elements we need to take the final step.

Application to Event Data

We will now apply what we have learnt this far by actually doing
it. We will take a time series of a stochastically variable process,

1. look at the distribution of interarrival times,
2. construct the periodogram,
3. determine the best fit slope by model fitting using the B-stat,
4. identify the optimal grouping time scale,
5. bin the data and examine the result,
6. compare to a range of different shorter and longer bin times.

As we do this, we’ll simultaneously look, at each step, at what we
would expect from a homogeneous Poisson process: a white noise
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without variability structure. We will first work on event data, and
then on a time series binned at the instrument level.

For the event data, the unbinned time series, we will use simu-
lated observations that have the characteristics we desire, and that we
know precisely (of course). The data sets have an observation dura-
tion of 104 s, and mean rate of 10 s−1. The power-law index α of the
stochastically variable (red noise) process before drawing the events to
make up the count rate is 2.5. For the binned time series, we use 10

hours of VLT and Keck near-infrared data.

Distribution of Interarrival Times

Our first step is to construct the frequency distribution (histogram),
of the interarrival or waiting times. We therefore do this for our red
noise event list and for the white noise as a means to compare them
and train ourselves to become sensitive and attuned to differences
that can sometimes be subtle. The histograms are shown in Figure 3.
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Figure 3: Normalised frequency distri-
butions of interarrival times constructed
on 100 bins in the range between 0

and 1.2, overlaid with the probability
density function for a white noise pro-
cess of equal count rate. The left panel
shows the histogram for a white noise
process, and the right panel shows
the corresponding histogram for the
variable process we are considering in
our analysis. Using a log-log scale helps
highlight the differences between the
histogram and the density function.

Even just casting a glance at these histograms, we immediately see,
on the one hand, the perfect agreement of the normalised frequency
and probability density in the case of the white noise process we
are using as reference shown in the left panel, and on the other, the
evident departure from the expected density function seen in the
variable process displayed in the right panel.

A departure from the expected density will generally be easy to
detect, both by eye and using a goodness of fit statistic like Pearson’s.
Although not so useful for us now, quantifying the departure with
goodness of fit would only be useful in applications where the data
is being processed and categorised by a computer without a person
to look at it, such as in machine learning applications. This is ob-
viously that can be exploited for various purposes and in different
circumstances, but we’ll just leave it at that for now.
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Computing the Periodogram

Next, we use the arrival times to calculate the periodogram using
the Rayleigh statistic, exactly as we described earlier. To do this, we
need to specify the range of frequencies to be tested by choosing the
minimum and maximum frequencies as well as the sampling, which
we will take as one frequency per IFS to keep things simple.17 17 This is an aspect of the Rayleigh peri-

odogram that we didn’t discuss to keep
the presentation on the essential ele-
ments. In fact, this is indeed an impor-
tant detail pertaining to periodogram
analysis: the ability to "oversample"
the periodogram, but it involves some
technical details that I don’t want to
cover at this stage to avoid muddling
the basic points.

Note that because we are using the arrival times directly, without
having grouped them in any way, we need to define the frequency
range over which to compute the periodogram. What should we pick
for the minimum frequency? This one is easy: one over the duration,
which is 10−4 Hz. What about for the maximum frequency? Think
about it for a second. How can we go about guessing what a good
maximum test frequency would be?

We said that the highest frequency we can test in a data set is
the Nyquist frequency, which is twice as fast as the sampling rate.
But we don’t really need to go that far. In fact, it is extremely rare,
from what I have seen, that it is useful to go as far as the Nyquist fre-
quency in analysing astrophysical signals. The main reason why this
is so is that the fluctuations in the power spectrum that arise from
the statistical fluctuations in the time series completely dominate al-
ready at frequencies much lower than the Nyquist frequency. And
so, going to higher frequencies in the periodogram simply means
that it will take a lot longer to compute, and that the Poisson floor
will extend along most of the length of the periodogram. Even ex-
treme phenomena like kHz QPOs in black hole binaries are located
at frequencies that are at least 3 orders of magnitude lower than the
Nyquist frequency for instruments with ∼ µs sampling rates.

Therefore, what should we use for the maximum frequency?
Should the answer depend on the mean count rate? Well, that makes
sense because the higher the count rate, the shorter the time between
events. So we can easily go as high as the count rate in Hz. But then
again, we are not, at this stage, interested in the high frequency part
of the spectrum, because we want to estimate the power-law index,
and this is constrained to the low frequency part of the periodogram.
So, how about a maximum frequency corresponding to a time scale
of 10 s, and therefore, to 0.1 Hz? Let’s try that.

Figure 4 shows the Rayleigh periodograms of our two event lists
between 10−4 and 0.1 Hz, with sampling at the independent frequen-
cies only.18 As expected for the white noise and discussed earlier, we 18 How many test frequencies will

that make? How many IFSs are there
between 10−4 and 0.1 Hz?

indeed see that the periodogram is globally flat, with equal power
at all frequencies, and sitting at the expected constant level of two.
Whereas the red noise process in which there are variability struc-
tures on different time scales which are connected to one another,
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Figure 4: Rayleigh periodograms of the
event data for the homogenous Poisson
process (left) and the stochastically
variable or red noise process, computed
on the independent frequencies in the
range displayed on the graphs.

leads to a power-law spectrum where the power estimates in neigh-
bouring frequency channels are correlated that we see in the shape of
the periodogram, at least up to a certain point.

And that point is the point of everything we’ve done: the time
scale at which there is an equal amount of power from the inherent
variability as from the fluctuations contributing to the periodogram;
the time scale at which we can display the time series to reveal the
structures within the data while keeping the highest possible resolu-
tion and see as much detail as we can; the time scale that is the ideal,
the optimal, time scale for grouping the data. We now just need to fit
the periodogram, get the best estimate of the power-law index, and
determine precisely what that point, that frequency, that timescale
actually is.

Fitting the periodogram

Fitting first requires defining the model, which we already know:
it is a power-law plus a constant component for the Poisson floor.
The model function is therefore the same as Equation (5) with the
addition of the constant c, such that

p(x) = Nx−α + c, (13)

using N for the normalisation and α for the power-law index, as
before, but x instead of f for the frequency to keep it perfectly clear
that it is the independent variable in the problem.

The procedure of fitting is one of varying the values of the param-
eters in little steps in order to find the model that best fits the data,
which means minimising the different between them. For the peri-
odogram, the optimal measure of the difference between the model
and the data is the B statistic because it is constructed using the joint
likelihood function defined for a collection of exponential variables



fundamentals in time domain astronomy: grouping to reveal structure 16

with different means. Probability theory ensures us that we cannot
do better than this,19 because the shape of the probability density is

19 This point cannot be overemphasised.

automatically and seamlessly incorporated into the procedure and
therefore also in the results obtained from it.

The fitting procedure using the B statistic as the similarity metric
yields for the normalisation, index and constant the values N̂B =

8.123× 10−5, α̂B = 2.169 and ĉ = 1.970 (B = 3933.84), which were
used to compute the best fit model shown in red in Figure 5 overlaid
on the periodogram constructed in the previous step.20

20 To help the minimisation converge
quickly, it is easy to use as initial
parameter estimates those that we
can compute analytically using a least
squares estimator for a power-law
function, restricting the fit in the pure
power-law part at low frequencies.
Doing this yields N̂LS = 4.285× 10−4

and α̂LS = 1.817. Uncertainties for each
parameter can obviously be computed,
but we leave these details out of the
discussion for sake of simplicity.
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Figure 5: The red noise periodogram
shown in Figure 4 on which is overlaid
the best fit model of a power-law plus
a constant obtained by model fitting
using the B stat. The best fit values of
the parameters are N̂B = 3.7851× 10−4

and α̂B = 1.8940, with c fixed at 2.

Optimal Grouping

Substituting into Equation (7) the best fit values of N, α and c: respec-
tively N̂, α̂ and ĉ, gives us the time scale whose value has been our
primary motivation throughout this investigation.21 Thus, 21 Substituting N̂ and α̂ into Equa-

tion (6) to get fgrp yields 0.0095 Hz,
shown in Figure 5 as the vertical dashed
line. It is the frequency where the
modelled power equals exactly 4.

dtgrp =

(
ĉ
N̂

)1/α̂

=

(
1.970

8.123× 10−5

)1/2.169
= 105.218 s. (14)

We are finally ready to take a look at our time series for the first
time.22 We will see it a moment. In addition, in order to visually 22 After all this, are you not just dying to

finally see what it looks like: what these
data actually look like?

assess, at least partially, the differences that can be seen from using
different time scales on the same time series, and from this, get a
more intuitive sense that an optimal time scale, must, in fact, exist,
and must, in fact, be uniquely defined for every unique time series
that has even the smallest level of random variability, and that for the
data we have used it is indeed this time scale of 105 s that we have
determined in this investigation, we will display the same data with a
few different time scales, both shorter and longer than 105 s.

Examining the seven time series displayed in Figure 6, three below
and three above the one binned to 105 s, we see exactly what we
could have expected: Below the optimal grouping time scale, the



fundamentals in time domain astronomy: grouping to reveal structure 17

0 5000 104

0
10

20
30

40

C
ou

nt
s 

pe
r 1

.0

Time (s)

0 5000 104

0
10

0
20

0

C
ou

nt
s 

pe
r 1

0.
0

Time (s)

0 5000 104

0
50

0
10

00
15

00

C
ou

nt
s 

pe
r 7

5.
0

0 5000 104

0
10

00
20

00

C
ou

nt
s 

pe
r 1

05
.0

0 5000 104

0
10

00
20

00

C
ou

nt
s 

pe
r 1

35
.0

0 5000 104

0
20

00
40

00
60

00

C
ou

nt
s 

pe
r 3

00
.0

Time (s)

0 5000 104

50
00

10
4

C
ou

nt
s 

pe
r 6

00
.0

Time (s)

Figure 6: Time series of the red noise
process under analysis constructed
by grouping the data using different
time scales. All are display on exactly
the same time axis between -500 and
10500 s, and therefore the axis values
are suppressed except for the bottom
most panel for clarity.

The purpose is to illustrate the
difference between these and the
one derived from our analysis, and
found in Equation (14). The time series
grouped using the optimal time scale
dtgrp = 105 s is shown in red. The other
time scales used are, from the top: 1, 10

and 75 s below dtgrp; and then 135, 300

and 600 s above.
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statistical fluctuations dominate the appearance of the time series
either completely, as is the case for the first with a bin size of 1 s, or
affecting mostly the fine details of the structure, as demonstrated also
by the second time series binned to 10 s; above that timescale, the
time series with coarser resolution continue to retain the information
of the larger (300 s) to largest structures (600 s), and, in fact, more
prominently, but lose all of the fine features of the shorter time scale
variability.

It is quite instructive to compare the three central time series (75,
105 and 135 s) to witness the transition between just below—where
we see a little more statistical fluctuation from one bin to another,
to just above what was identified as the ideal timescale—where we
are already losing some of the details of the fine features that are
apparent in the 105 s time series.

We have completed what we set out to do. We have, however, only
worked with event data up to this point. To show both a strong sim-
ilarities in approach, but also highlight the differences, we will now
look at a near-infrared time series binned at the instrumental level,
for which we therefore do not have information about individual
photons as we do with event data.

Application to Binned Data

We will perform the same steps as we did in our application to
event data with three minor but important differences, all arising
from the fact that the data are already grouped and thus have either
never had or lost the information about individual photon arrival
times. The first is that it is not possible to construct the histogram
of interarrival times; instead, we will look at the distribution of time
between measurements, which is determined by the length of the
integration and dead time between snapshots. The second is that the
periodogram must be computed differently. And the third is that the
procedure for resampling a grouped time series to a different time
scale brings about complications that do not arise with event data.23 23 These modification in the procedure

pertain to steps 1 (interarrival times), 2

(periodogram), 5 and 6 (resampling to
different time scales).

We will spend enough time on these so that hopefully, everything
will be clear. Let’s get to it.

Distribution of Time Between Measurements

Instead of looking at interarrival times, we look at time between
measurements. The first way of looking at these, is to make a time
series where we can see on the horizontal axis when the gap occurred
and how long it lasted, and display again on the vertical axis its
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duration. This allows us to see immediately where and how long the
gaps are, and also identify irregularities or systematic differences in
different sections of the data set, as we will see in our example.
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Figure 7: Time series and histograms
of time between measurements for the
combined data set and the individual
parts (VLT and Keck). The number of
entries in the histograms indicates that,
in terms of the number of measure-
ments, the VLT observation accounts
for 89% of the data and the Keck for the
remaining 11%.

Figure 7 shows in its top panel the time series of time between
measurements. Besides the most obvious long gaps that stand out
very clearly, we can also see that the baseline sits just below 100 s
for most of the timeline, and jumps to about 200 s for the last part.
The point of discontinuity is where the VLT observation ends and
the Keck observation begins. The histograms below the time series
show in detail how the time between actual measurements (excluding
gaps) is distributed, and that, in fact, it is not a well-defined value
as it is often reported to be in both instrumental and data analysis
papers.24 24 It is important to appreciate that

depending on the level of detail we
incorporate into the analysis of our
data, these details of the duration of
each snapshot, and the differences
between them can be important to
consider. But even if they are not, there
is no excuse to be unaware of such
fundamental characteristics of the data
we are working with. It is therefore
imperative that we look at these details
at the very start of the analysis process.

Computing the Periodogram

To make the periodogram, instead of using the Rayleigh statistic in
the form presented earlier, we must use a form that is appropriate for
binned data. Here is the form of the statistic to use:

R2 =
(∑n

i=1 ri cos φi)
2

∑n
i=1(σi cos φi)2 +

(∑n
i=1 ri sin φi)

2

∑n
i=1(σi sin φi)2 , (15)
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where ri is the rate and σi is the error for the measurement in bin i,
whereas φi is the phase as before corresponding to the time in the
centre of the bin, and the summing is performed on the ensemble
of n measurements. Each sine and cosine of the phases is scaled by
the value of the rate to transfer the information of the distribution of
intensity as a function of time, and the numerators are normalised by
the associated measure of variance.

But wait! Where does the measure of error for each bin come from,
and how do we get that? For this data set, the rates are given by
PSF fitting at the position of the source of interest in the individual
images of each snapshot. This cannot give us an error on that mea-
surement. So, how do we get an estimate of the error?

The way it was done in this case, and how it is often done in this
type of observation, is maybe the most intuitive way of doing this:
just pick at least one calibrator star in the field of view, a non-variable
star with relatively bright and stable emission, extract its energy
flux by the same PSF fitting procedure in the images, and construct
a time series. This yields a companion time series made under the
same instrumental conditions that we will assume to adequately
represent the measurement uncertainty because it is expected to be
constant, and therefore, the trends, magnitude of fluctuations, and
the distribution of measurements will together give us a good idea
of the appropriate uncertainty to assign to our measurements of the
source flux.

Will we derive from this analysis of the calibrator star individual
uncertainties for each measurement? Or a single value of an average
uncertainty that can be assigned to each measurement?25 We will

25 Could we derive a measurement
uncertainty for each frame?

get an average uncertainty, and assign to each measurement the same
uncertainty.26

26 We could also, at this stage, mod-
ify this average value of uncertainty
for each measurement by taking into
account the differences in effective ex-
posure time in each frame, by assigning
slightly different weights: the longer the
exposure, the more accurate the esti-
mate, and vice versa. The effects in this
case are minute, and thus negligible.

I use this opportunity to emphasise
what good sense it makes to assign the
same or practically the same uncer-
tainty to each of the measurements in
an observation performed by a given
instrument over a relatively short pe-
riod of time, in comparison to what is
unfortunately the standard practice in
high energy astronomy of assigning to
each bin of grouped events an uncer-
tainty that is derived from the square
root of the number of events in that
bin, as if the uncertainty in making the
measurement was dependent on the
number of events detected during a
particular interval of time, and as if this
uncertainty depended on whether the
source was brighter or dimmer, or not
from one moment to the next.
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Figure 8: Time series of the flux mea-
surements from the calibrator star that
will be used to estimate the average
measurement uncertainty to be as-
signed to the flux measurements of the
source in which we are interested. The
black line shows the measurements,
and the red line shows the result of a
liner detrending of the time series.

Figure 8 shows the time series of the calibrator. Looking at the
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black line, we can see at first sight that there is an upward trend
along the length of the VLT observation. This trend is also very clear,
maybe even more so, in the asymmetry seen in the distribution of
these flux measurements shown in Figure 9, also in black. How-
ever, removing this linear trend in the data yields a very nice and
symmetric normal distribution of fluxes, whose standard deviation
(labelled RMS) we use as our estimate of the average measurement
uncertainty.
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Figure 9: Histogram of the flux mea-
surements from the calibrator star. As
in Figure 8, the black line is used for
the measurements, and the red for the
detrended fluxes.

Do we have everything we need to compute the periodogram?
We have the measurements, we have identified a simple linear trend
that we have removed, and we have a good estimate of the average
measurement uncertainty for the observation. Therefore, we do have
everything we need to compute the periodogram, and this is what
we show in Figure 10. But there are two periodograms that are sim-
ilar, especially at frequencies around 10−3 Hz, but the on at the top
extends a little more towards the lower frequencies, whereas the bot-
tom one extends quite a bit more towards higher frequencies. Any
guesses as to how this was done? Think about it for a few seconds,
and here’s a hint: what is it that defines the frequency range that can
be tested and the IFS step size?
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Figure 10: Modified Rayleigh peri-
odograms of the combined VLT and
Keck data set (top) computed at the
independent frequencies between
2.80× 10−5 and 2.21× 10−3 Hz; and of
the VLT data alone computed between
3.55× 10−5 and 5.43× 10−3 Hz.
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The top periodogram was computed from the combined data set.
Because it covers a longer duration, we can test slightly lower fre-
quencies, and the step size of the IFS is smaller. However, because
the sampling of the Keck data is longer (binning is coarser), and be-
cause we cannot test frequencies higher than the sampling frequency
(Nyquist limit), we have to use the longest sampling time of 226 s
(Figure 7 panel (c)) that translates to a maximum of 2.21× 10−3 Hz.

The bottom periodogram was computed from the VLT data alone.
In this case, the duration is a little shorter, but the maximum sam-
pling time is 92 s (Figure 7 panel (b)), which in this case translates to
a maximum frequency of 5.43× 10−3 Hz, and therefore, as you can
see, quite a few more testable frequencies in the upper range.

Looking at the higher frequency end of these periodograms, the
most important feature for us now in trying to identify the ideal
grouping time scale, is that in there is no clear flattening from reach-
ing the Poisson floor: definitely not in the periodogram of the com-
bined data set, and maybe not as clearly from the VLT data, but still
obviously well above a power level of two where sits the power from
statistical fluctuations.

Another important question we must ask at this stage is how
much of the structure in the periodogram is due to the sampling
function, to how data were sampled.27 In the previous example we 27 And don’t believe for one second that

the Lomb-Scargle periodogram is not
affected by the sampling function: it
is! And in fact, it is virtually indistin-
guishable in shape from the modified
Rayleigh periodogram we used here.

didn’t even have to think about this because we had continuous sam-
pling without interruptions and, most crucially, without the applica-
tion of an inherent grouping of the data during acquisition, which is
the case here. Hence, this is the next thing we have to look at: what
would the expected periodogram of a white noise process look like
if we applied to it the sampling function of our near-infrared data?
And what would the periodograms of the data look like if we actu-
ally took away this power due to the sampling function?
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Figure 11: Periodogram of the VLT data
as shown in Figure 10, but from which
was subtracted the power attributable
to the sampling function.
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Looking at the periodograms in Figure 12 of the sampling func-
tions for the combined data set and for the VLT data alone, we first
notice that they are not perfectly flat at the level of two as would be
expected from a uniform sampling of white noise, and we notice that
they are different, especially at the lowest and highest frequencies,
but nonetheless similar in the range around 10−3 Hz. At low frequen-
cies the combined data set, the coarser binning and sampling gaps
causes a rise in the power that is not present in the VLT sampling.
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Figure 12: Periodograms of the re-
spective sampling functions for the
combined VLT and Keck data set (top),
and of the VLT data alone. The test
frequencies and axes are identical to
those of Figure 10. These were derived
from the average of 50 simulated white
noise data sets binned as the data.

On the other hand, the finer VLT sampling and gap structure
causes a rise in power at the highest frequencies. These effects are
expected, of course, but the important point is that it is possible to
calculate precisely what is the contribution to the power estimates
in the periodogram that is due to the way the data are sampled,
and that this contribution should not be neglected or ignored when
working in Fourier space.

The adjusted data periodogram shown in Figure 11 for the VLT
data that contains quite a bit more of the high frequency information
in which we are interested in order to identify the inflection point
from which begins the Poisson floor, does not give such an indication
because the power-law does not break and flatten. What does this tell
us, besides the fact that there is no point in fitting the periodogram
to find the grouping time scale? It tells us that the sampling is too
low for the signal to noise of the data, which tells us that we have lost
information about the variability structure contained in these data by
grouping them how it was done: the integration time was too long.

Therefore, the best we can do for viewing this time series is to use
the instrumental binning with as much resolution as is available. The
time series in full detail is shown in Figure 13: The VLT data were
detrended based on the time series of the calibrator star (Figure 8),
and the size of the error bar on the intensity was derived from the
distribution of calibrator flux measurements (Figure 9).
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Figure 13: Time series of the combined
VLT and Keck data sets displayed using
the maximum (instrumental) resolution.
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Resampling Binned Data

It turned out that in this case we do not need to resample,28 be- 28 The word "resample" is used because
we are modifying the sampling in a
very different sense than when we
group bins together or "rebin" without
having to split bins apart, which is what
is done when we resample.

cause the data were already grouped at the instrumental level on a
time scale that is longer than what we defined earlier as the optimal
grouping time scale to reveal structure. But what if we needed to, or
simply wanted to to see what it looks like on different time scales:
how would we do it? How do you do this in your own work? Let’s
state the problem explicitly, and at the same time emphasise that this
is not an easy problem, as you will see in a moment.

We have an ensemble of measurements as a function of time. Each
of these measurements has an associated uncertainty. We cannot
assume that these uncertainties are either the same for each mea-
surement, or that they are in any way proportional to the measured
value. We don’t know how they were derived. Therefore, we have to
treat each measurement and each uncertainty as they are.

We want to resample the time series of already binned measure-
ments in a way that preserves intensity, preserves the statistical charac-
ter of the data, and preserves the structures and trends in the data as
much as possible, and without the need for complicated modelling of
the data in order to do it. The key concern is conservation.

The method involves calculating the intensity for each part of the
bin based on the local trends, and then introducing noise (Poisson,
normal or otherwise) to preserve variance, while ensuring that the in-
tensity is always preserved. The introduction of random fluctuations
to the intensity in a bin, naturally induces "diffusion" of the intensity
to the neighbouring bins. This is inevitable. Nonetheless, using a
mechanism to preserve the trends on either side of the bin works to
minimise the diffusion.

The diagram in Figure 14 helps illustrate the method. It shows
a detailed view of three adjacent bins with different intensities and
uncertainties. The centre of the central bin is labelled xi, and the
centre of the bins preceding and following it are respectively labelled
xi−1 and xi+1.

Similarly, the rates or intensities corresponding to these three bins
are labelled ri−1, ri and ri+1, from left to right. And since we are
considering the splitting of the central bin into two uneven parts, we
label the uncertainty associated with its rate simply as σ, without a
subscript.

Further quantities that we define are the width of the central bin,
δx, (also without subscript), and the widths of the two parts of the
bin resulting from the split: δ− on the negative, left side, and δ+ on
the positive, right side. The slopes of the lines connecting ri−1 to ri,
and ri to ri+1, are labelled m− and m+, respectively.
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Figure 14: Diagram illustrating the
splitting of the central bin into two new
bins, and the variables that we use in
the mathematical description of the
process.

Our aim is to derive all the relevant quantities for the two new
bins, including their respective centres: x− and x+, rates: r− and r+,
and uncertainties: σ− and σ+.

Splitting and Resampling

The central bin is split into two parts that in general will be unequal.
We refer to these as bin δ−, on the negative side, and bin δ+, on the
positive side, based on their respective widths.

To preserve the trends in the data while keeping to the simplest
possible model, we determine the rates that we will assign to each
part of the bin using a linear model based on the adjacent bin heights
in relation to that of the central bin.

The Negative Side — For bin δ−, the linear model for the rate is

r−(x) = m−x + b− (16)

where the slope m− is given by

m− =
ri − ri−1

xi − xi−1
(17)

and since the line passes through ri, the ordinate is

b− = ri −m−xi (18)

Substituting Eq. 18 into Eq. 16 yeilds

r−(x) = ri + m−(x− − xi) (19)

where x−, the centre of the bin δ−, is given by

x− = xi −
1
2
(δx− δ−) (20)
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The Positive Side — For bin δ+, the linear model is

r+(x) = m+x + b+ (21)

and since

m+ =
ri+1 − ri
xi+1 − xi

and b+ = ri −m+xi (22)

we find in exact analogy to bin δ− that

r+(x) = ri + m+(x+ − xi) (23)

where x+, the centre of the bin δ+, is

x+ = xi +
1
2
(δx− δ+) (24)

The New Rates — Expressing the rates for bins δ− and δ+ in terms
of known quantities we find that:
rate r− is given by

r−(x) = ri +

(
ri − ri−1

xi − xi−1

)
[xi −

1
2
(δx− δ−)− xi]

= ri −
1
2
(δx− δ−)

(
ri − ri−1

xi − xi−1

)
(25)

and rate r+ is given by

r+(x) = ri +

(
ri+1 − ri
xi+1 − xi

)
[xi +

1
2
(δx− δ+)− xi]

= ri +
1
2
(δx− δ+)

(
ri+1 − ri
xi+1 − xi

)
(26)

The Uncertainty on the New Rates — If the original binned time
series has error bars, then in order derive the uncertainties associated
with the rates for the two new bins, σ− and σ+, we require that the
equation for the weighted mean holds true. This implies that

ri =
r−/σ2

− + r+/σ2
+

1/σ2
− + 1/σ2

+

and σ2
i =

1
1/σ2

− + 1/σ2
+

(27)

But we also need to ‘distribute’ the uncertainty from the central bin
correctly between the two new bins. And so we define two more
variables, the weighting factors k− and k+, such that

σ2
− ≡

σ2

k−
and σ2

+ ≡
σ2

k+
(28)

Since

σ2
i =

1
k−/σ2

− + k+/σ2
+

=
σ2

k− + k+
(29)
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we find that k− + k+ = 1. Therefore, the natural solution is to use the
bin fractions as the weighting factors:

k− =
δ−
δx

and k+ =
δ+
δx

(30)

which naturally satisfies the condition that

δ−
δx

+
δ+
δx

= 1 (31)

Finally, substituting Eq. 30 into Eq. 28 yields

σ2
− = σ2 δx

δ−
and σ2

+ = σ2 δx
δ+

(32)

So that each part of the split central bin carries a portion of the origi-
nal uncertainty that is inversely proportional to its width.

Summary of Results — Splitting the central bin into two yields:
for bin δ−

r−(x) = ri −
1
2
(δx− δ−)

(
ri − ri−1

xi − xi−1

)
(33)

σ2
− = σ2 δx

δ−
(34)

and for bin δ+

r+(x) = ri +
1
2
(δx− δ+)

(
ri+1 − ri
xi+1 − xi

)
(35)

σ2
+ = σ2 δx

δ+
(36)

To preserve the trend in the data is guaranteed by distributing the
intensity according to Equations 33 and 35. These give the baseline
intensities for the two new bins based on the linear models tracing
the change in intensity from the adjacent bins on either side to the
central bin being split. How well these trends are preserved depends
on the magnitude of the difference in intensity: if the random noise
component is of a magnitude comparable to the difference in inten-
sity between the adjacent and the central bin, then the trend is lost.
But this is as it should be since we are interested in preserving only
those trends that are statistically significant.

To preserve the variance as much as is possible, we use the widest
of the two new bins (that has the most reliable estimate of intensity),
assign it an intensity proportional to its fraction of the original bin,
and replace that by a pseudo-random number drawn from the ap-
propriate distribution (maybe most often Poisson or normal). This
ensures that the magnitude of statistical fluctuations in the original
data remains the same on average.
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Finally, to preserve the intensity, which is of the most fundamen-
tal importance, we assign to the adjacent new bin (the smaller of
the two) the difference between the total intensity in the central bin
before splitting, and the pseudo-random number drawn in the pre-
vious step. This guarantees that splitting a bin will never ‘create’ or
‘destroy’ intensity.29 29 The pseudo-random number drawn

to define the number of events in
the larger of the two new bins is not
allowed to be greater than the intensity
of the original central bin, as this would
lead to a negative intensity for the
adjacent new bin. If this occurs, we
draw again until this requirement is
satisfied.

Naturally, the logical thing to do at this point is to illustrate this
resampling method, and evaluate how well it can preserve those
quantities—trend, variance and intensity—that are most important
to preserve. What I will do at this stage, though, is leave the most
courageous and interested among you to do it yourself: code the
resampling up, think of a way to evaluate, and see what you find
when you do this. I will be very happy to discuss this with you in
greater details.30 30 One way in which we could illustrate

the method, would be to use an event
list, and using a number of random
grouping time scales (bin widths) from
small to larger in comparison to the
time span of the data, step through
these in ascending order, group the
events with this bin time to create our
reference time series, and compare the
result of this to the resampling of the
previously binned time series.

Concluding Remarks

As we started with "Introductory Remarks", it seems fitting to
end with "Concluding Remarks". What we have seen and discussed
together are all things related data analysis and statistics of time
series, binned and unbinned, continuously sampled and with struc-
tured gaps, whose aspects we examined both in time and frequency
space. We have looked at how different random variables are dis-
tributed differently, how the combination of certain kinds of variables
can lead to different kinds, and how in the end and in the begin-
ning, the most important element in our analysis is the use of the
appropriate probability density function for the way in which the
measurements are distributed as a means to construct the appropri-
ate likelihood function that allows us to compare these data with
whatever expectation or model we may have had about them.

I find it interesting, very interesting, that is order to answer such
a simple question: "how should I group these data in order to reveal
the structure within them?", we were brought to look at so many
different things and so many different aspects of Time Domain As-
tronomy. I hope you found it interesting, engaging, instructive and,
maybe most importantly, inspiring and motivating to explore the
data further and always strive to improve on the methods and tech-
niques you use.

And instead of going through the body of what was presented as
is the traditional way to conclude, I will end by mentioning the three
topics that I didn’t discuss, but for which I would have loved to have
time. The first is period searches, with all the details of constructing
periodogram statistics, and comparing their behaviour in different
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circumstances, types of data and kinds of signals. The second is mod-
elling stochastic or red noise, with the details relating to finding the
means to estimate the properties of the emission at the source from
the data at hand, as well as evaluating the probabilities or likelihoods
of detecting a given strength of periodic modulation in a red noise
background. And the third is the characterisation and subsequent
categorisation or classification of data based on their time and fre-
quency domain properties. I hope to have the chance to present and
discuss these in a setting akin to this one, maybe next year if things
go well with our administration and the faculty that funded this
workshop. Thank you for listening.
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