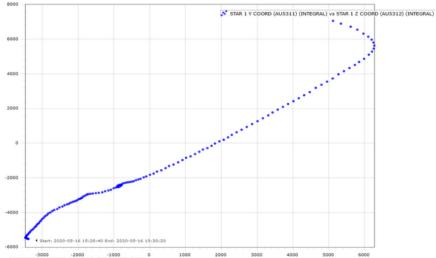


OPS-O Plenary: Who Wants to Live Forever?, Z-flip, the Key to Immortality

Richard Southworth

01/12/2020

Safe Mode #8- 16/5/2020


•Excess on-time demand on thruster 2 during reaction wheel momentum offload operation causes safe mode (ESAM)

•De-pointing also observed (Guide Star)

•ESAM stable (RCS-B)

•Suspicion of RCS-A or thruster 2A anomaly

=> recover on RCS-B next morning

Richard Southworth | 01/12/2020 | Slide 2

Safe Mode Anomaly – 17/5/2020

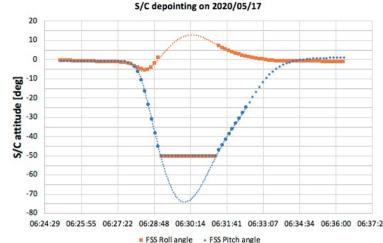
Before starting recovery

Huge depointing under ESAM Control

•Pitch 75DEG, Roll 13DEG (estimated)

•Eclipse transition observed!!

•Controller recovers within 7minutes


•=> anomaly not restricted to one RCS branch

•Concurrent drop in RCS pressure of about 0.2bar

•Fast recovery to wheel controlled mode – new procedure

•Simulations show the controller can cause such a depointing in case of thruster 3B under performance

•Thruster calibration indicated reduced (55%) and intermittent performance on **both RCS branches**.

Richard Southworth | 01/12/2020 | Slide

· = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = = ■ ■ ■ ■ ■ = = = ■

Summary of Possible Failure

It is likely that 20 to 30kg hydrazine are still in the Tanks (8 to 10 years op's.) •Probably migrated behind the tank membrane! – unusable

•All tank membranes are fully extended

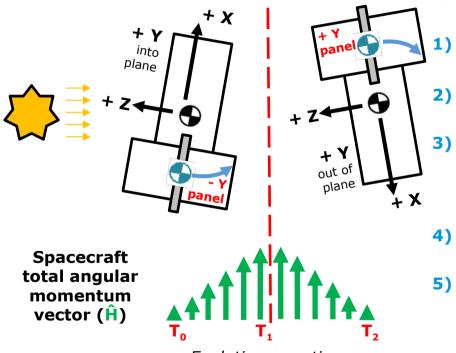
•The RCS piping capacity about 2kg: contains a mix of hydrazine and Nitrogen

•Concurrently Nitrogen pressurant has migrated in the opposite direction

The Problems we face

- Thruster performance is unpredictable and weak
- •Almost no available propellant

The mission cannot be continued as before – no reaction wheel offloading
How can we continue?

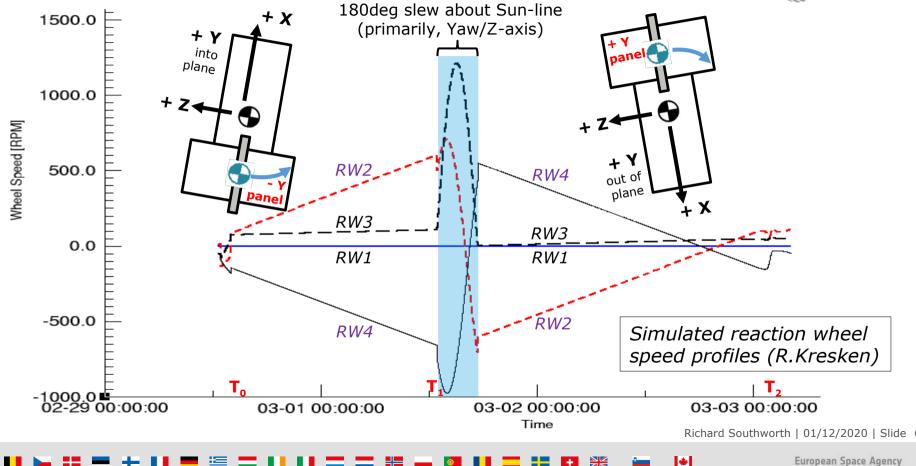

Richard Southworth | 01/12/2020 | Slide

· = ■ ► = = + ■ = ≡ = ■ ■ ■ = = = = ■ ■ ■ ■ = = = ■

Z-flip Theory

Z-flip theory (D Salt)

Evolution over time

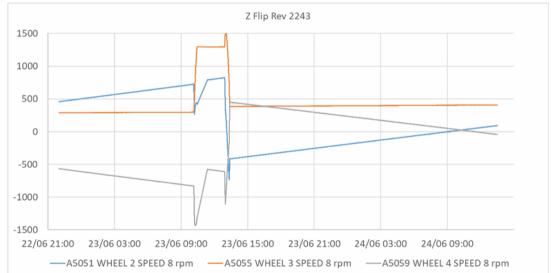

Main disturbance is Solar Radiation Pressure (SRP) System Angular Momentum stored in reaction wheels

- $T_0(17/7/2020)$ established total angular momentum vector (\hat{H}) at a low value
- SRP imposes an external torque on the S/C
 - \succ `anti-clockwise' in the inertial frame, increasing $\hat{\mathbf{H}}$
- <u>180deg slew on reaction wheels</u> about the Sunline at T_1 when \hat{H} reaches upper threshold
 - is <u>conserved</u> throughout the slew, but <u>transferred</u> <u>between wheels 2 and 4</u>
- SRP imposes an external torque on the S/C
 - > 'clockwise' in the inertial frame, decreasing \hat{H}
- 5) <u>180deg slew on reaction wheels</u> about the Sunline at T_2 when \hat{H} again reaches low value
 - Step 2) to 5) can now repeat indefinitely

Richard Southworth | 01/12/2020 | Slide

Z-flip Simulation

Z-flip In Flight Test

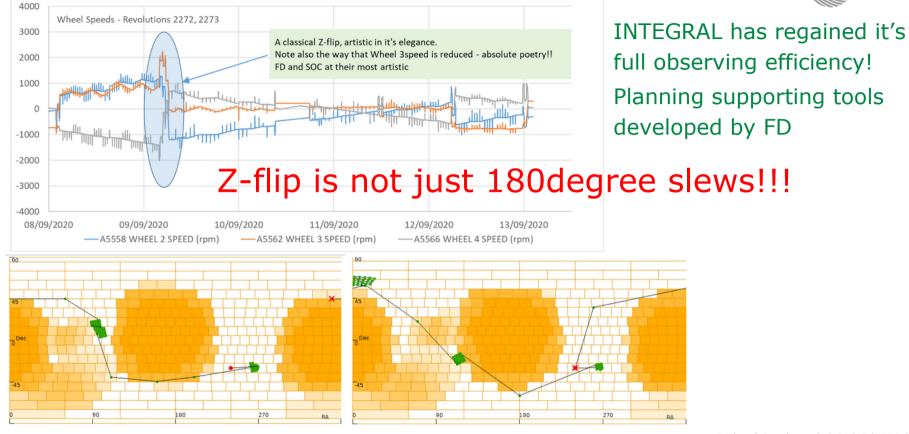

esa

2 slews, total magnitude of 155DEG.

At a SRP drift rate of 20RPM/hour we compensated for about

- •55hours drift on wheel 2 •64hours drift on Wheel 4
- Wheel 3 drifts only slowly no SRP compensation (can be controlled using gravity gradient)

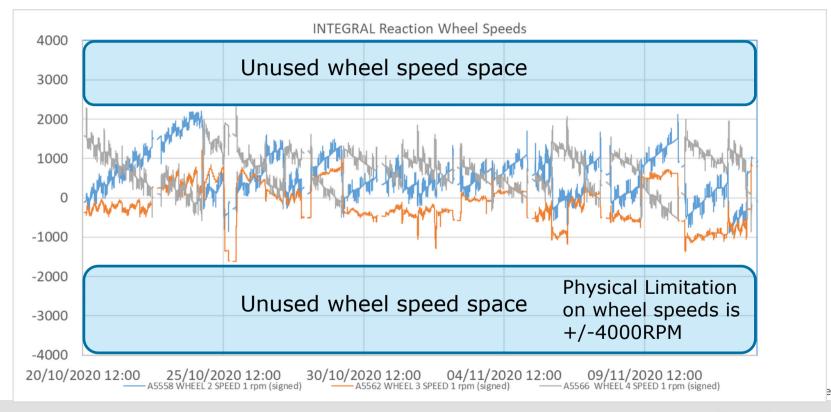
In flight data demonstrates Z-flip acts as expected



=> Angular momentum can be controlled without biasing

Richard Southworth | 01/12/2020 | Slide

Z-flip - What we have Achieved



Richard Southworth | 01/12/2020 | Slide

Z-flip – can we Improve it?

Z-flip concept is proven and is effective - Can it be improved?

Z-flip Constraints – why?

SOC plan observations to balance system angular momentum over planning period •Respect wheel speed constraint – 4000rpm non-negotiable (handle with care) •Respect slew stability constraint:

•Slews > 3° are executed Open Loop about Z axis

•Z-flip is based on large slews about Z

•Large slews (>7DEG) about Z are highly constrained by system angular momentum and can easily become unstable and trigger safe mode

•Safe mode no longer works reliably

•Forces SOC to move away from targets early

Open Loop Slews Modification - Gyroscope

- Software patch **under testing** to use gyroscope output as (Z) reference
- •Slew stability constraint no longer applicable increase wheel speed range
- •De-constrains SOC planning
- •=> allows longer time on target / better ToO response
- •Deployment + commissioning Q2 2021

Open Loop Slews Modification – No Sensor

- A further SW patch is under development:
- •Slew without reference on all 3 axes
- •Pure dead reckoning by commanding reaction wheel profiles
 - •Relies on a well calibrated spacecraft
 - •Less reliance on sensors robust
 - Accuracy tbd, but probably good
 - •Possible applications for momentum control during perigee
 - •Minor code change
- •<u>Slew stability constraint no longer applicable</u> increase wheel speed range
- •Will be developed and commissioned in Q2 2021
 - •Can also be used if Gyroscopes degrade

Richard Southworth | 01/12/2020 | Slide 12

· = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = ₩ ₩ ₩ ₩

Open Loop Slews Modification - 4WD

Based on the experience currently being gathered with the slew patches a proposal for a possible fast 4WD implementation for INTEGRAL will be made

- •Use 4 wheels for attitude control instead of just 3
 - •Pioneered by XMM
- •Safety: Include fall back to 3WD in case of anomaly (safe mode #2, #3)
- •Advantages for momentum management

•More flexibility for ToO facilitation / longer observations

· = ■ ▶ = = + ■ + ■ ≡ = = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ₩ ■

Operations Evolution

•Our aim is to present a feasible long term prospect for INTEGRAL

•Z-flip

Safe mode Risk reduction

Modified slew modes

•4WD

To enable the best possible science

Richard Southworth | 01/12/2020 | Slide 14

Team Effort

Fantastic team of teams effort to get to this stageAt the end of May we didn't have a missionNow we have a viable science mission again

Full observatory utilisation and scope for improvementBig thanks to everybody

Some key words:

InnovativeCollaborativeThoroughCOVIDProfessionalXMM fuel MigrationTeamworkUnsocial hoursDeterminationwebmust archive lost

FCT C FD SOC SDC TEC ASE / TAS-I

.....

Richard Southworth | 01/12/2020 | Slide 1