

SPI work at MPE

INTEGRAL User Group Meeting #26 1./2. December 2021

INTEGRAL User Group Meeting, Dec 2021 Roland Diehl / Jochen Greine

News

➤ DLR support for INTEGRAL operation (1 full position) has been extended for the next 3 years (Jan. 2022 – Dec. 2024)

- > leaving for Paris is taking over starting Jan. 1, 2022
- Extension of background model to 2-8 MeV
- > PySPI for GRB analysis
- > GEANT4 simulations for SPI for higher-resolution response

Routine Activities @ MPE 2020+

Routine procedures (XZ) (→ automatic; documented)

Data import, routine processing
Quality checking
Spectral fitting → response database
Background database
Performance validation (incl. annealings)
Software maintenance
Interaction with ISDC

Roland Diehl / Jochen Greiner

Present status

Present status

- > SPI annealing: OK
- > ACS calibration: unchanged since 11/2018 report (Diehl)
- Response database: regularly updated
- ➤ Background database: extended to 2-8 MeV

Including double-detector events

Using also multiple-detector events in SPI at energies > 2 MeV

...building a model for instrumental background in detail:

Pleintinger 2020

single events

double events

Including double-detector events

building a model for instrumental background in detail:

The Crab as a source for method validation

Crab spectrum in fine energy bins up to 8 MeV

Kuhn & Weinberger 2021

Revolutions

consistent with other SPI analyses

Why PySPI? -- What can SPI (still) do for GRBs?

- Very good energy resolution: 2.5 keV at 1-2 MeV as compared to 100 keV (Fermi/GBM)
- Energy range covers vFv peak of most GRBs
 - Ideal to precisely measure the curvature around peak
 - Key to distinguish between physical models
- Potential problems:
 - Only photopeak used instead of full response
 - → at 1(3) MeV only 68(50)% of photons in photopeak
 - After response correction another fitting per energy bin
 - Inappropriate statistics in low-count regime

Credit: J. Michael Burgess

Analysis Software

GRB analysis with OSA

GRB analysis with PySPI

PySPI(GRB) features

- Pure python and easy to install; no dependency on OSA
- Every detector is treated as independent detector
- Full forward folding and correct Likelihood for fits
- Allows for any PSD event selection (can fit the PSD efficiency)
- Makes joint fits with other instruments possible (Bayesian and ML)
- Presently works only for single science windows, due to missing time-dependent background implementation

Biltzinger+2021

https://github.com/BjoernBiltzinger/pyspi

Roland Diehl / Jochen Greiner

Results: GRB 120711A

- Seen by SPI and GBM
- ► Fit with Band function first
 - Cross-check:
 - GBM and PySPI results match
 - difference between OSA and PySPI

Results: GRB 120711A

Response simulation

Geant4 simulation: Building high(er) spectral resolution response, to make use of the very good energy resolution

Biltzinger+2021

