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Abstract
This TN is a discussion of the meaning and calculation of the uncertainty of
the total proper motion, i.e. the modulus (length) µ of the measured proper
motion vector. No exact expression can be given for the uncertainty of µ
that does not involve the true proper motion vector. In case an approximate
expression for σµ is needed, we propose a simple and reasonable formula.
However, we caution that the resulting µ/σµ is in general not the best available
statistic for the significance of the proper motion.
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1 Introduction

The Gaia Archive1 contains proper motion information for all sources with at least a
five-parameter solution. The ICRS components of proper motion are given by

µα∗ ≡ pmra ,

µδ ≡ pmdec ,

while the uncertainty of the proper motion vector µ = (µα∗, µδ) is encoded in

σµα∗ ≡ pmra_error ,

σµδ ≡ pmdec_error ,

ρ(µα∗, µδ) ≡ pmra_pmdec_corr .

Quite frequently selections are based on the modulus of the proper motion vector,

µ = |µ| =
√
µ2
α∗ + µδ , (1)

hereafter called the total proper motion. Examples include searches for nearby high-
velocity stars (large µ) and extragalactic objects (small µ). In such cases it is usually
of interest to have also an estimate of the uncertainty of the total proper motion, σµ.
For example, a large µ may not be interesting unless it is at least a few times larger
than σµ, and conversely a small µ may not be relevant unless also σµ is small.

The following fields may therefore be introduced in the Gaia Archive in DR3+:

µ ≡ pm ,

σµ ≡ pm_error .

The formula for µ is simply Eq. (1). But what formula should be used for σµ?

Unfortunately the calculation of σµ is far from straightforward. For one thing, the
transformation in Eq. (1) is highly non-linear, which makes standard error-propagation
formulae inexact. Moreover, even if µ is an unbiased estimate of the true proper
motion vector, µ is in general a biased estimate of the true total proper motion, thanks
to the squaring of the errors; the error distribution, conditional on the true values,
is therefore non-central. It is also skewed, thanks to the non-negativity of µ, and not
easily characterised by a single value. A further difficulty is that σµ usually depends on
the actual proper motion values (µα∗, µδ), or, even worse, on their true values, which
are in general unknown. Finally, the related family of probability distributions, known
as the Beckmann distribution (Appendix B) is mathematically awkward.

1https://gea.esac.esa.int/archive/
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The calculation of σµ is closely related to the question what is actually meant by the
uncertainty of an astrometric parameter and in particular the uncertainty of µ. This
is briefly discussed in Sect. 3. The perhaps surprising conclusion is that the uncer-
tainty of µ may only be meaningful in certain very specific contexts, in contrast to (for
example) the uncertainties of µα∗ and $, which have a very general and meaningful
interpretation. We must therefore take a pragmatic approach to the calculation of σµ
and accept certain assumptions and approximations. As a starting point, we adopt the
following criteria for any reasonable expression for σµ:

1. Since µ is the same in all reference frames (e.g. in ICRS and in Galactic
coordinates), the same should be the case for σµ; in other words, the result
should be invariant to a rotation of the local axes.

2. In the limit of large µ the formula for σµ should give the same result as the
conventional error propagation.

3. In the limit µ→ 0 the result should be independent of the direction of the
(insignificant) proper motion vector.

4. The expression for σµ should be reasonably simple and computable in
terms of elementary functions.

The recommended formula (Sect. 7) satisfies these criteria, but is not the only possible
one.

The rest of this TN is organised as follows. After a few preliminaries in Sect. 2 the in-
terpretation of uncertainties is discussed in Sect. 3. A few possible formulae for σµ are
derived Sect. 4; they are compared, by means of Monte Carlo experiments, in Sect. 5
and discussed in Sect. 6. The final recommendation is in Sect. 7. Two appendices
summarise properties of the binormal distribution or error ellipse (Appendix A) and
the Beckmann distribution (Appendix B).

Technical Note Lund Observatory 5
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x ≡ μδ

ϕ

y ≡ μα*

μ

(x, y) ≡ (μδ, μα*)

FIGURE 1: The components of proper motion in Cartesian (x, y) and polar (µ, φ)
coordinates.

2 Notations

A slightly simplified notation will be used hereafter in order to avoid an excess of
subscripts. Essentially, µα∗ is replaced by y, and µδ by x (Fig. 1). That the x axis
points to North rather than East is motivated by the desire to have the position angle
φ measured from the x axis, as is the usual convention in analytic geometry. With
this convention the expressions for the error ellipse (Appendix A) and Beckmann dis-
tribution (Appendix B) obtain more or less the forms familiar from textbooks and
standard references. Similarly σx = σµδ and σy = σµα∗. The correlation coefficient
ρ(µα∗, µδ) = ρ(x, y) is simply denoted ρ. The proper motion can also be expressed in
polar coordinates (µ, φ), as defined in Fig. 1.

The proper motion components x and y usually denote the observed values, i.e. in-
cluding measurement errors. When needed, the corresponding true values are denoted
x0 and y0. Similarly µ0 denotes the modulus of the true proper motion, and φ0 the true
value of the position angle. It is assumed that the errors are centred and Gaussian, so
that x ∼ N (x0, σ

2
x), etc. (see Appendix A). The catalogue values of σx, σy, and ρ are

assumed to be ‘true’ in the sense that they correctly describe the errors in a statistical
sense; hence no separate designation is needed for their true values.

It is sometimes convenient to use vector and matrix notation, for which bold italics are
used. Vectors, set in lower-case bold italics, are regarded as column matrices, as in
µ =

[
x
y

]
= [x y]′, where the prime is the transpose. Upper-case bold italics are used

for two-dimensional matrices, for example the covariance matrix C.

Technical Note Lund Observatory 6
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3 Interpetation of uncertainties

This section is a general discussion of the interpretation of astrometric uncertainties
and in particular the meaning of σµ. It is not really needed for the main results of the
TN and can be skipped by the less philosophically-inclined reader.

The problem at hand is seemingly well-defined: given the binormal distribution of x
and y as in Eq. (32), what is the distribution of µ =

√
x2 + y2, and more specifi-

cally what is the standard deviation of µ? Introducing polar coordinates through the
transformation x = µ cosφ, y = µ sinφ and marginalising over φ gives the PDF of µ
as

g(µ) =
µ

2π|C|1/2

∫ 2π

0

exp

(
−1

2

[
µ cosφ− x0
µ sinφ− y0

]′
C−1

[
µ cosφ− x0
µ sinφ− y0

])
dφ . (2)

The variance of µ is then given by

σ2
µ = E[µ2]− E[µ]2 =

∫ ∞
0

g(µ)µ2 dµ−
(∫ ∞

0

g(µ)µ dµ
)2

. (3)

g(µ) is known as the Beckmann distribution, and is further elaborated in Appendix B,
which also contains alternative (more efficient) methods for the calculation of σµ.

Formally, this would seem to solve our problem, but unfortunately that is not at all the
case. The problem is that g(µ) depends on the (unknown) true values x0, y0. Given
only the catalogue values for µ and C it is not possible to compute Eq. (2), and σµ
cannot be evaluated either.2

Clearly some alternative method must be used to assign a numerical value to the uncer-
tainty of the total proper motion. The simplistic approach is to use the above formulae,
just replacing x0 and y0 by the observed values. But it is not obvious that this gives a
meaningful result for σµ. To investigate this, we need to consider more carefully two
points, namely (i) the general meaning of the astrometric uncertainties, and (ii) how
specifically σµ might be used in actual applications.

To illuminate the first point, it is useful to consider first the simpler case of a one-
dimensional astrometric parameter such as the parallax$. The meaning of the parallax
value given in the catalogue, with its stated uncertainty σ$, was considered by Hogg
(2018) and the reader is referred to that paper for a detailed discussion. The main con-
clusion is that the catalogue values$, σ$ can and should be regarded as a compact rep-

2 That σµ cannot be evaluated from the catalogue values does not obviously follow from the unknown
PDF g(µ). The one-dimensional case of the parallax, discussed further down in this section, provides
a counter-example: here the standard deviation of the observable is known, although the distribution
depends on the true parallax and is consequently unknown.

Technical Note Lund Observatory 7
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resentation of the (approximate) likelihood function of the true parallax $0. The like-
lihood L is a function of the true parameter, equal to the probability density of the ob-
servable at the actually observed value: L($0) = (

√
2πσ$)−1 exp[−($ −$0)

2/2σ2
$]

if the errors are centred and Gaussian with standard deviation σ$. The importance
of this insight is that any inference based on the catalogue data, for example using
Bayesian techniques, invariably involves the likelihood function. For example, the
posterior PDF of $0 is p($0|$) ∝ p($0)L($0), where p($0) is the prior density.

Returning to the proper motion, and adopting the Gaussian error model in Eq. (32), the
likelihood function is

L(µ0) =
1

2π|C|1/2
exp

(
−1

2
(µ− µ0)

′C−1(µ− µ0)
)
, (4)

where µ is the proper motion as given in the catalogue. Clearly any inference based
on the proper motion should use this likelihood function. For example, the posterior
PDF is given by

p(µ0|µ) ∝ p(µ0)L(µ0) (5)

for prior density p(µ0). (The constant of proportionality is independent of µ0 and
therefore irrelevant for inferences concerning the true parameters.) Writing the last
equation in polar coordinates by means of the transformation x0 = µ0 sinφ0, y0 =
µ0 cosφ0 gives

p(µ0, φ0|µ, φ) ∝ p(µ0, φ0)

× exp

(
−1

2

[
µ cosφ− µ0 cosφ0

µ sinφ− µ0 sinφ0

]′
C−1

[
µ cosφ− µ0 cosφ0

µ sinφ− µ0 sinφ0

])
. (6)

It is clear that any inference on the true proper motion vector can use either the Carte-
sian version in Eq. (5) or the polar one in Eq. (6), and that both versions will lead to
the same result as they describe the same posterior probability distribution. In general
the Cartesian version is preferred for its better mathematical tractability.

We may however ask the question: are there cases where the polar version is relevant?
The only obvious such case is when the inference is solely based on either µ0 or φ0, so
that the other coordinate can be marginalised without loss of relevant information. We
will only consider the first case, namely where the inference is entirely based on the
marginal posterior distribution of µ0. This entails no loss of information, provided that
the prior density does not depend on φ0. The marginal posterior density then becomes

p(µ0|µ, φ) ∝ p(µ0)L(µ0) , (7)

where L(µ0) is the Eq. (4) marginalised over φ0. It is readily seen that the expression
for L(µ0) is exactly the same as the PDF for µ, i.e. the Beckmann distribution g(µ),
except that the observables (µ, φ) and parameters (µ0, φ0) have changed places. This

Technical Note Lund Observatory 8
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comes as no surprise, as it is a trivial consequence of the symmetry of Eq. (4) with
respect to µ and µ0. The important conclusion is rather the assumption we had to
make on the way, namely that the prior is independent of φ0.

Which brings us to the second point: how σµ might be used in actual applications. It
is evident that µ is a useful quantity only in situations where we do not care about the
direction of the proper motion vector, only about its size, and of course whether this
size is significant or not. This is encapsulated in the formal requirement that the prior
density is independent of φ0. In this case the likelihood function L(µ0), calculated
from the catalogue values µ and C, summarises the relevant information available in
the catalogue. Under this condition it may be reasonable to compute σµ by substituting
the observed values in Eq. (2). In the Bayesian interpretation, this equals the standard
deviation for the posterior distribution for a uniform prior. While this prior may not be
optimal in every situation, it is at least a reasonable assumption.

The most obvious cases where only the size of µ matters concern the searches for
objects with proper motions that are either ‘large’ (say, above a certain threshold), or
negligibly small. Let us consider these cases in more detail. In the following κ denotes
a small dimensionless number, typically in the range 1 to 5.

In the first case when a search is made for large values of µ, it is assumed that we
are only interested in objects whose true proper motions are large. Thus the condition
µ ≥ µmin, where µmin is a given threshold, only makes sense if µmin is significantly
larger than σµ. This may require, in addition, an upper limit on σµ. Depending on the
application, the actual selection could use a condition such as µ ≥ µmin − κσµ, if the
most complete selection is being sought, or µ ≥ µmin + κσµ, if it is more important to
have a clean sample. In either case we can assume that we are in the regime µmin � σµ,
where the error distribution in µ is approximately Gaussian and the various expressions
for σµ asymptotically agree. This behaviour is guaranteed if the expression for σµ
satisfies criterion #2 in Sect. 1. This case is therefore relatively unproblematic.

The second case is when we are looking for objects with negligible proper motions.
This can be formulated as a classical hypothesis test, where the null hypothesis is zero
true proper motion (H0: x0 = y0 = 0). Assuming that the errors follow the binormal
distribution with the given covariance C, the obvious test statistic is the chi-square
variable X2 whose observed value is

χ2 = µ′C−1µ . (8)

Under the null hypothesis X2 has the chi-square distribution with two degrees of free-
dom, and the p-value of the test is

P (X2 > χ2|H0) = exp(−χ2/2) . (9)

Technical Note Lund Observatory 9
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The null hypothesis is rejected, and the proper motion considered to be significant, if
the p-value is below a certain limit, or equivalently if χ =

√
χ2 exceeds some critical

value. For obvious reasons we use the same notation as above for the critical value,
namely κ; thus

χ > κ ⇒ reject H0 . (10)

Similarly to the considerations in the first case, different thresholds may be adopted
depending on whether the emphasis is on getting a large sample or a clean one, and
Eq. (10) probably needs to be combined with a condition that the uncertainty in proper
motion is below a certain value, in order to avoid too high a rate of false negatives.
(This needs to be balanced against the limit on the p-value, which is the probability of
a false positive. See Sect. 5.3 for more related discussion.)

The chi criterion (10) is theoretically well-founded and relatively easy to use, and
probably as efficient as any other (simple) test in many applications. Nevertheless, a
different test based on the total proper motion is clearly possible,

µ > κσµ ⇒ reject H0 , (11)

and may even be preferred as more intuitive. In the limit of insignificant proper motion,
σµ should therefore be calculated in such a way that (11) can work as a useful substitute
for (10). The sampling distribution of µ under H0 is known as the Hoyt distribution,
and is one of the limiting forms of the Beckmann distribution described in Appendix B.

4 Some possible formulae for the uncertainty of µ

4.1 Linear error propagation

From µ2 = x2 + y2 we obtain by differentiation

µ dµ = x dx+ y dy . (12)

Conventional error propagation based on the linearised model therefore gives

µ2σ2
µ = x2σ2

x + 2xyρσxσy + y2σ2
y , (13)

that is

σµ =

√
x2σ2

x + 2xyρσxσy + y2σ2
y

µ
. (14)

Using polar coordinates (µ, φ), we find that Eq. (14) can be written

σ2
µ = σ2

x cos2 φ+ 2ρσxσy cosφ sinφ+ σ2
y sin2 φ . (15)

Technical Note Lund Observatory 10
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x

y

μ

±σμ

±σμ

FIGURE 2: Uncertainty in µ obtained by linear error propagation. The result depends
on the direction of the proper motion vector but its independent of its length.

Comparison with Eq. (36) shows that this equals the variance of the proper motion in
the direction of the proper motion, i.e. σµ is the projection of the error ellipse on the
proper motion vector (Fig. 2). While this is very reasonable when µ is substantially
larger than the error ellipse, it is questionable when µ is small in comparison with
the uncertainties. Indeed, this σµ violates criterion #3 put forward in Sect. 1, since it
depends on φ even in cases where the total proper motion is completely insignificant.
Moreover, the result is mathematically undefined for µ = 0. While Eq. (14) thus satis-
fies the other three criteria in Sect. 1, it may nevertheless be rejected as unsatisfactory
in the limit of small µ.

4.2 Modified linear error propagation (i)

The linear error propagation gave a satisfactory result in the limit of large µ (relative to
the size of the error ellipse), but was found unsatisfactory for small µ. The behaviour
for small µ can be changed by means of the following modification of Eq. (14), de-
pending on the two quantities c and σ0:

σµ =

√
x2σ2

x + 2xyρσxσy + y2σ2
y + cσ4

0

x2 + y2 + cσ2
0

. (16)

For µ = 0 (i.e. x = y = 0) we have σµ = σ0, so σ0 should be the desired result for
zero proper motion. This σ0 may be a function of σx, σy, and ρ, which must however
respect criterion #1 and be invariant to a rotation of the local axes. The constant c > 0
(which in principle could depend on µ) determines how quickly the modified formula
approaches the original formula (14) as µ gets larger in comparison with σ0.

This brings us to the question what the desired result is in the case x = y = 0.

Technical Note Lund Observatory 11
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As discussed in Sect. 3 the observed µ follows the Hoyt distribution when the true
proper motion is zero – or negligible in comparison with the uncertainties. Thus a
reasonable proposition is to match σ0 in Eq. (16) to the standard deviation of the Hoyt
distribution (see Appendix B.1). As suggested by Fig. 15 and Eq. (61), a conservative
approximation will be

σ0 = σmax

√
2− π/2 , (17)

where σmax is the semi-major axis of the error ellipse, Eq. (37). This expression
matches σµ to the correct value for zero true proper motion and isotropic uncertainty
(q = 1); for smaller values of q it overestimates σµ, in the worst case (q ' 0.5) by
some 16%, see Fig. 15.

A suitable value for the constant c can be estimated by comparing Eq. (16) with the
standard deviation of the Rice distribution (see Appendix B.2), which is valid for
isotropic distributions (q = 1) with non-zero true proper motion. Figure 3 shows σµ
versus the true proper motion, both expressed in units of σmax, according to the Rice
distribution and as computed from Eq. (16) for c = 1, 4, and 9. Although all positive
values of c give the desired behaviour in the limits of zero and large proper motions,
no single value reproduces the Rice curve over the whole range of true proper motions.
However, c = 4 provides a reasonable fit in the most critical interval where the true
proper motions is a few times the uncertainty. The resulting expression is

σµ =

√
x2σ2

x + 2xyρσxσy + y2σ2
y + (4− π)2σ4

max

x2 + y2 + 2(4− π)σ2
max

, (18)

where σmax is given by Eq. (37).

4.3 Modified linear error propagation (ii)

In Sect. 4.2 the behaviour of Eq. (16) in the limit of small µ was matched to the
Beckmann distribution based on the somewhat theoretical arguments put forward in
Sect. 3.

The following, perhaps more intuitive approach might be a valid alternative. In the
limit of large proper motions it is clear that σµ should simply be the projection of
the error ellipse on the proper motion vector, as suggested by the linear propagation
formula and illustrated in Fig. 2. That is, σµ may be interpreted as the proper motion
uncertainty in a particular direction, namely that of the proper motion vector. The
problem is what to do when the proper motion is so small, in relation to its uncertainty,
that its direction is essentially undetermined. The proper motion uncertainty in the
arbitrary direction ψ is given by σu in Eq. (36). Depending on ψ we have σmin ≤ σu ≤
σmax. If the direction is undefined, it makes a lot of sense to adopt an average value for
σµ. The RMS value given by Eq. (47) has the advantage that it is very easily computed,

Technical Note Lund Observatory 12
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FIGURE 3: The ratio σµ/σmax versus µ0/σmax for the Rice distribution (solid blue
curve) and from Eq. (16) using c = 1 (dashed blue-green), c = 4 (dashed red), and
c = 9 (dashed orange). Isotropic errors are assumed, i.e. σx = σy = σmax and ρ = 0.

and that it is never smaller than σmax/
√

2 even for very elongated error ellipses. Thus
an obvious alternative to Eq. (15) is

σ0 =

√
σ2
x + σ2

y

2
. (19)

Arbitrarily adopting c = 1, we have the formula

σµ =

√
x2σ2

x + 2xyρσxσy + y2σ2
y + (σ2

x + σ2
y)

2/4

x2 + y2 + (σ2
x + σ2

y)/2
. (20)

4.4 Beckmann distribution (approximated)

As detailed in Appendix B, the even moments of µ are readily computed; for example
M2 = E[µ2] and M4 = E[µ4] are given by Eqs. (56) and (57). (We also have, trivially,
M0 = 1.) To compute σµ we need M1 and M2, where the first moment has no simple
analytical expression.

The following question may be asked: Is it possible to estimateM1 (and other odd mo-
ments) from the known even moments M0, M2, M4, . . . by some kind of interpolation
procedure? Provided that the moment generating function exists (which is probably
the case for the Beckmann distribution), exact interpolation is indeed possible, but in
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general this requires all the even moments to be known, which makes it highly imprac-
tical. Let us take a more pragmatic approach. For arbitrary distributions the following
inequalities are easily verified:3

M4
1 ≤M2

2 ≤M4 , (21)

with equality only for an infinitesimally narrow distribution (e.g. constant µ). Thus,

M4
1 = M2

2 − α
(
M4 −M2

2

)
(22)

for some α ≥ 0. In general α depends on the parameters of the distribution of µ,
although it is clearly invariant to a scaling of the random variable. Remarkably, it
turns out that for the normal distribution we always have α = 1/2. Given that the
Beckmann distribution is always bell-shaped, and often quite close to Gaussian (cf.
Fig. 14), it is not unreasonable to expect that Eq. (22), with α = 1/2, provides a useful
approximation for M1. With notations as in Appendix B we find

M4
1 ' (ξ20 + η20)2 + 2ξ20σ

2
η + 2η0σ

2
ξ + 2σ2

ξσ
2
η , (23)

from which σµ follows by application of Eqs. (58) and (56). Transforming to the
observed (x, y) coordinate system and evaluating the expression at the point µ rather
than µ0 finally gives

σµ =√
x2 + y2 + σ2

x + σ2
y −

√
(x2 + y2)2 + 2(x2σ2

y − 2ρσxσy + y2σ2
x) + 2(1− ρ2)σ2

xσ
2
y .

(24)

When µ � σµ this expression is numerically inexact, as the outer radicand is the
difference between two large and almost equal numbers. Using a−b = (a2−b2)/(a+b)
it can be re-written in a form more suitable for numerical evaluation, which however
is not given here.

4.5 Beckmann distribution (exact)

As discussed in Sect. 3, one interpretation of σµ could be the standard deviation of the
Beckmann distribution evaluated for the parameter values equal to the observed proper
motion. The modified expression in Sect. 4.2 was matched to this value, and Sect. 4.4
was an attempt to obtain an approximate formula by a different route. The accurate
value of σµ for the Beckmann distribution cannot be computed except by complicated
procedures, and therefore falls short of criterion #4 of the Introduction. Nevertheless,
for reference purposes we include in the Monte Carlo simulations described hereafter
the value calculated from Eq. (58), using a numerical evaluation of the integral in (60).

3 Using Var(X) ≡ E(X2) − E(X)2 ≥ 0 we have E(X)2 ≤ E(X2); squared, this gives the first
inequality with µ = X , while the second is obtained with X = µ2.
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5 Monte Carlo experiments

The various formulae discussed in Sect. 4 have been compared by means of Monte
Carlo simulations. Their purpose is not to simulate the actual distribution of errors
and uncertainties in the Gaia Archive, but to explore and compare the properties of
the different approximations. Consequently a wide range of conditions needs to be
covered, including for example extremely elongated error ellipses, even though such
cases are rare in the actual catalogue. One million cases were simulated, using the
following assumptions.

1. Since the results can be scaled by an arbitrary factor, σmax was set to 1 in
all cases. This is equivalent to using σmax as the unit for µ, σµ, and all
other quantities having the dimension of proper motion. In diagrams the
corresponding axes are therefore labelled µ/σmax, σµ/σmax, etc.

2. The true proper motion µ0 = [x0 y0]
′ was generated with uniform density

in the logarithm of the modulus,−2 ≤ log10 µ0 < 2. This samples both the
region of insignificant (µ0 � 1) and high proper motion (µ0 � 1), as well
as the critical transition region (µ0 ' 1). A uniform density in the position
angle 0 ≤ φ < 2π was assumed. The true proper motion components were
then calculated as x0 = µ0 cosφ, y0 = µ0 sinφ.

3. The error ellipse was generated using a uniform density of the axes ratio,
0 < q ≤ 1, and a uniform density of the position angle of the semi-
major axis, −π/2 ≤ θ < π/2. This (together with σmax = 1) defines the
covariance matrix C be means of Eqs. (43)–(46).

4. The observed proper motion µ = [x, y]′ was then generated from a binor-
mal distribution with mean value µ0 and covariance C.

For each case the total observed proper motion µ = |µ|was computed and the different
formulae for σµ were evaluated.

5.1 Comparing with the exact Beckmann distribution

Although it is not obvious that the σµ computed from the Beckmann distribution is the
‘correct’ value (see discussion in Sect. 3), at least (18) and (24) were explicitly derived
as approximations to the Beckmann value, and it is in any case interesting to see how
the different expressions deviate from this value. Figure 4 shows the mean ratio of the
σµ values as a function of µ0 and q. Since the ratio depends on the three parameters
µ0, q, and the orientation of the error ellipse relative to the observed proper motion
vector (θ − φ), we show in Fig. 5 the dependence on the latter angle. Yet a different
comparison is in Fig. 6.
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FIGURE 4: Mean ratio of σµ to the standard deviation of the Beckmann distribution,
plotted against the proper motion (µ0) and inverse aspect ratio of the error ellipse
(q). Upper left: linear error propagation (14). Upper right: first modification (18).
Bottom left: second modification (20). Bottom right: approximated Beckmann (24).
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FIGURE 5: Mean ratio of σµ to the standard deviation of the Beckmann distribution,
plotted against true proper motion (µ0) and orientation of the error ellipse relative to
the observed proper motion (θ− φ). Upper left: linear error propagation (14). Upper
right: first modification (18). Bottom left: second modification (20). Bottom right:
approximated Beckmann (24).
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FIGURE 6: σµ from the various formulae versus the exact standard deviation of the
Beckmann distribution, using the same simulations as in Fig. 4. Upper left: linear
error propagation (14). Upper right: first modification (18). Bottom left: second
modification (20). Bottom right: approximated Beckmannn (24).

Clearly the first modification, Eq. (18), of the linear formula approximates the σµ of
the Beckmann distribution better than the other three formulae. This is not unexpected,
as the two free parameters were adjusted to optimise the approximation. We note that
(20) and (24) generally overestimates σµ, compared with the exact Beckmann value,
although never more than a factor ' 1.6, while (14) can both over- and underestimate
it by a much higher factor.

5.2 Comparing with the actual distribution of errors

Perhaps a more useful test of the different formulae for σµ is to look at the distribution
of the actual errors ∆µ = µ − µ0, where µ0 is the true proper motion (known here
from the simulations). In order for σµ to be a useful statistic, one should not have too
many cases where |∆µ| exceeds several times σµ. Any such test is of course hampered
by the strongly non-Gaussian distribution of ∆µ when the true proper motion is less
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than a few times σµ. Nevertheless we use the statistic

D = (µ− µ0)/σµ (25)

with σµ computed from the various formulae. In the limit of large µ0 (relative to the
uncertainty), D will have a unit normal distribution for all formulae. For very small µ0

the observed proper motion is almost certainly larger than the true one, resulting in a
positive D with a very skewed distribution. The most interesting part is the transition
region, where µ0 (and µ) are of a size similar to the uncertainty, and this is also where
the different formulae may behave differently.

Figure 7 shows the statistic D, computed with the various formulae for σµ, plotted
against the true proper motion. Figure 8 shows the same values plotted against the ob-
served proper motion. In both figures the blue curves are the percentiles corresponding
to±1,±2, and±3 standard deviations. As expected, for µ0/σmax & 10 or µ/σmax & 10
all formulae give a distribution that is approximately Gaussian even at±3 standard de-
viations. For smaller proper motions the behaviour is rather similar for the different
formulae, except that the linear error propagation sometimes gives strongly negative
D in the transition region. From the colour coding it can be inferred that this only
happens for very elongated error ellipses.

Figure 9 shows the geometry in one such case (indicated by the circle in the previous
figures). It is seen that the observed proper motion vector is directed almost exactly
along the minor axis of the error ellipse. Thus the projected uncertainty in the direction
of the observed vector is small, even though the actual error (which goes in a very
different direction) is much larger. In this particular case we have µ0 = 0.961, µ =
0.512, q = 0.070, and σµ = 0.073 (from linear error propagation); hence D = −6.2.
(The other formulae give σµ in the range 0.51–0.70, resulting in D ' −0.9 to −0.6.)
With real data we would of course not know the D value, but if the linear formula is
used we would find µ = 0.512±0.073, apparently significant at 7 standard deviations.
In fact, the true proper motion is also significant in this and all similar cases, so it is
not likely that the underestimated σµ would be a serious problem. Nevertheless Fig. 9
nicely illustrates why rigorous inference should always be based on the full covariance
information, when available: looking at the binormal distribution (outlined by the error
ellipse) it is obvious that the proper motion at the red circle is not at all unlikely.
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FIGURE 7: Normalised error (µ−µ0)/σµ with σmu from the various formulae, plot-
ted against the true proper motion. The black curve is the median, the blue curves
show percentiles at 0.13%, 2.3%, 16%, 84%, 97.7%, and 99.87%, i.e. corresponding
to ±1, ±2, and ±3 standard deviations for a normal distribution. Upper left: lin-
ear error propagation (14). The circle marks the case illustrated in Fig. 9. Upper
right: first modification (18). Middle left: second modification (20). Middle right:
approximated Beckmannn (24). Bottom: σµ from the exact Beckmannn distribution.
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FIGURE 8: Same as Fig. 7, but plotted against the observed proper motion µ.

5.3 Comparing error rates

In this comparison we focus on using the ratio R = µ/σµ to distinguish between
sources that have significant proper motion or not. As discussed in Sect. 3 this is a
classical hypothesis test where the null hypothesis is absence of proper motion. It is
known that the likelihood ratio test, or equivalently the chi test in Eq. (10), is at least
as powerful as any other test for discriminating between the null hypothesis and any

Technical Note Lund Observatory 20



CU3-AGIS GAIA-C3-TN-LU-LL-129-01

-1.5 -1 -0.5 0 0.5 1 1.5
x/ max

-1.5

-1

-0.5

0

0.5

1

1.5

y/
m

ax

Case 535017

FIGURE 9: Proper motion and error ellipse for the case marked by a circle in Figs. 7
and 8. The red circle is the true proper motion (µ0), the blue cross the observed
proper motion (µ). The error ellipse is drawn centred on the observed value.

other specific value of µ. Thus it is useful to see how well the simple test R > κ
(where, for example, κ = 3) compares with the ‘optimal’ test χ > κ. In the special
case of q = 1 (isotropic error distribution), the two tests are in fact equivalent for the
linear error propagation formula (14) and the second modification (20), since in those
cases we have R = χ when q = 1. The question is how well the different methods
work when q < 1.

In a classical hypothesis test there are two types of errors: false positives (type 1 er-
rors) and false negatives (type 2 errors). With the criterion R > κ the probability α of
a false positive is only determined by the (known) error distribution under the null hy-
pothesis (in this case it is the Hoyt distribution discussed in Appendix B.1). By setting
a sufficiently high threshold κ for the detection (= rejecting the null hypothesis), the α
can be made arbitrarily small. This must then be balanced against the probability β of
a false negative, i.e. a missed detection, which increases with κ. This β depends on the
actual distribution of true proper motions, and therefore on the particular application,
and is usually difficult to evaluate.

The concept of type 1 and 2 errors does not really apply in the present Monte Carlo
experiments, because (i) we are not simulating the null hypothesis, i.e. the case µ0 = 0,
but a continuous distribution of positive µ0; (ii) the alternative distribution is arbitrary,
i.e. uniform in log µ0 over a fixed interval, and not representative for real applications.
However, we can still compare the performance of the R > κ criterion with the ‘opti-
mal’ χ > κ criterion. (It is not obvious that κ should be the same in the two criteria,
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but for simplicity we use κ = 3 throughout.) Such a comparison is shown in Table 1.
Three cases are distinguished:

• N0 = number of cases with χ > 3 and R > 3 (detected by both criteria);

• N1 = number of cases with χ < 3 and R > 3 (‘false positives’);

• N2 = number of cases with χ > 3 and R < 3 (‘false negatives’).

The table also gives Q = N0 − N1 − N2 as a kind of overall quality indicator. A
graphical comparison of R versus χ is in Fig. 11. The figure makes it clear why
N1 = 0 for the linear formula: this is simply a consequence of Rlinear ≤ χ, as can be
verified by means of the defining equations.

The use of χ in Table 1 can be questioned on the ground that it depends on observed
quantities rather than the true parameters. An alternative would be to use χ0, the square
root of the non-centrality parameter

χ2
0 = µ′0C

−1µ0 . (26)

Table 2 shows the corresponding numbers:

• N ′0 = number of cases with χ0 > 3 and R > 3 (detected by both criteria);

• N ′1 = number of cases with χ0 < 3 and R > 3 (‘false positives’);

• N ′2 = number of cases with χ0 > 3 and R < 3 (‘false negatives’).

and Q′ = N ′0 −N ′1 −N ′2 (cf. Fig. 10).

Somewhat surprisingly, it turns out that the linear error model has be best overall score,
closely followed by the exact Beckmann formula. This conclusion is independent of
whether χ or χ0 is used. However, the differences to the other formulae are quite small,
at most a few per cent. Again, it should be emphasised that the outcome of these tests
depends on the assumed distribution of the true proper motions, and that a different
set-up of the Monte Carlo simulations could lead to a different conclusion.

6 Discussion

There is clearly no simple answer to the question how to compute σµ, the uncertainty
of the total proper motion. The main reason is that the exact answer, i.e. the standard
deviation of the Beckmann distribution, depends on the true proper motion compo-
nents which in most practical cases are not known. Although it is possible to compute
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TABLE 1: Number of cases out of the one million simulated cases where the different
criteria based on χ and R are satisfied (cf. Fig. 11). A higher Q means a better
discrimination between significant and insignificant proper motions.

Formula for σµ N0 N1 N2 Q
(OK) (false positives) (false negatives) (overall)

Linear 426 602 0 49 962 376 640
Modified 1 424 533 3 143 52 031 369 359
Modified 2 422 164 118 54 400 367 646
Beckmann approximation 421 655 1 011 54 909 365 735
Beckmann, exact 427 027 1 734 49 537 375 756

TABLE 2: Number of cases out of the one million simulated cases where the different
criteria based on χ0 and R are satisfied (cf. Fig. 10).

Formula for σµ N ′0 N ′1 N ′2 Q′

(OK) (false positives) (false negatives) (overall)

Linear 409 242 17 360 46 660 345 222
Modified 1 406 821 20 855 49 081 336 885
Modified 2 405 684 16 598 50 218 338 868
Beckmann approximation 404 779 17 887 51 123 335 769
Beckmann, exact 409 132 19 629 46 770 342 733

the expected value of σµ for a given distribution of true proper motions, this is in gen-
eral complicated and the result will depend on the assumed distribution, so no general
answer can be given.

By contrast the uncertainties of the proper motion vector, i.e. the standard deviations
of the components and the correlation coefficient, are well-defined concepts related to
the likelihood function if a binormal error model is assumed. The basic difference is
that the size and shape of the two-dimensional distribution in cartesian coordinates is
invariant to a shift of origin, unlike the distribution in polar coordinates. All statistical
inference and estimation should therefore, whenever possible, use this model e.g. as
formulated in Eq. (4).

Assuming that an expression for σµ is nevertheless desirable, we have compared five
possible formulae. There are surely many more possibilities, and one of them (the
second modification of the linear formula) contains a parameter c that was arbitrarily
set to 1, so it actually defines a family of possible expressions which has not been
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explored. Within this limited and somewhat arbitrary range of expressions, the practi-
cal differences in performance, as illustrated for example in Figs. 7–8 and Tables 1–2,
turns out to be rather marginal. The choice should therefore, perhaps, rather be guided
by pragmatism.

The linear error propagation formula (14) has one big advantage and two serious draw-
backs. The advantage is its simplicity both in form and motivation: it is derived by a
well-known and easily understood procedure. The drawbacks are as follows.

The first drawback is more of a theoretical or aesthetic nature. It concerns the be-
haviour when the observed proper motion is small, or rather insignificant in compar-
ison with the uncertainties in either coordinate, and can be explained with reference
to Fig. 2. The σµ obtained by Eq. (14) is the projection of the error ellipse on the
proper motion vector, as illustrated in the figure. For an anisotropic error distribution
this means that σµ depends on the direction of the proper motion vector, even though
the direction in this case is purely accidental. Moreover, if the error ellipse is very
elongated, the resulting σµ could be unrealistically small, namely if the proper motion
happened to point along the minor axis. This drawback means that the formula does
not satisfy criterion #3 put forth in the Introduction.

The second drawback is more of a practical nature: (14) cannot be computed if both
proper motion components are exactly zero. This will in practice never happen when
the formula is applied to the data in the Gaia Archive, where the components are
floating-point numbers. However, we have to take into account that any formula that
is provided with the documentation may by applied by users to their own, perhaps
transformed or truncated data. Then there is a non-zero (or even high) probability
that the formula will fail for some sources. For example, in Gaia DR2 there are 13
‘zero’-proper motion sources, if the valid proper motions are rounded to the nearest
µas yr−1. Rounded to the nearest mas yr−1 there are 12.5 million. Thus any software
implementation of (14) needs some kind of provision for handling this case.

The other formulae do not have these drawbacks, but are instead less simple. In terms
of simplicity of computation, the ranking is:

1: linear error propagation, Eq. (14)
2: linear modified (ii), Eq. (20)
3: linear modified (i), Eq. (18)
4: Beckmann approximation, Eq. (24)
5: Beckmann, exact (numerical integral)

If the linear formula is rejected because of the drawbacks described above, the obvi-
ous next choice is the second modification, Eq. (20), which is only moderately more
complicated than (14). Moreover, this modification can be described and motivated
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without too much difficulty. However, the (arbitrary) choice of c = 1 is still an open
question: how can it be motivated, and is it even the best choice?

7 Conclusion

Reverting to conventional notation, the total (observed) proper motion is given by

µ = |µ| =
√
µ2
α∗ + µ2

δ . (27)

While this quantity may be useful in certain contexts, it should be remembered that its
statistical properties are highly non-trivial. In particular, in the presence of noise its
is always a biased estimate of the true total proper motion, E(µ) > µ0, and the bias
depends in a complex way on both the true proper motion vector and its covariance.
Furthermore, there is no expression for the standard deviation (uncertainty) of µ that
does not involve the true vector. Consequently σµ cannot be exactly computed from
observed quantities.

If an approximate expression for σµ is nevertheless desired, the recommendation from
this study is to use (20), which in conventional notation reads

σµ =

√
µ2
α∗σ

2
µα∗ + 2µα∗µδρ(µα∗, µδ)σµα∗σµδ + µ2

δσ
2
µδ + σ4

0

µ2 + σ2
0

, (28)

where

σ2
0 =

σ2
µα∗ + σ2

µδ

2
. (29)

This formula satisfies all four criteria listed in Sect. 1, and in addition has a simple
geometrical interpretation in the limits of large and small µ.

However, while (28) appears to give reasonable results in all cases, including when
the true proper motion is zero, it can be noted that µ/σµ is in general a sub-optimal
statistic for the significance of the proper motion; a criterion based on (8)–(10) is
always preferable for selecting sources with negligible or significant proper motions.
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FIGURE 10: Comparing the observed significance of the proper motion, as measured
by the ratio R = µ/σµ, to the non-centrality measure χ0 of Eq. (26). Green, red,
and magenta dots correspond to the cases N ′0, N ′1, and N ′2 in Table 2. Only a small
range of values around the critical value κ = 3 is shown. Upper left: linear error
propagation (14). Upper right: first modification (18). Middle left: second modifica-
tion (20). Middle right: approximated Beckmannn (24). Bottom: σµ from the exact
Beckmannn distribution.
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FIGURE 11: Comparing the observed significance of the proper motion, as measured
by the ratio R = µ/σµ, to the value obtained with the chi test, χ =

√
χ2. Green,

red, and magenta dots correspond to the cases N0, N1, and N2 in Table 1. Only a
small range of values around the critical value κ = 3 is shown. Upper left: linear
error propagation (14). Upper right: first modification (18). Middle left: second
modification (20). Middle right: approximated Beckmannn (24). Bottom: σµ from
the exact Beckmannn distribution.
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Appendix A: The error ellipse

For convenience we summarise here some important properties of the binormal dis-
tribution. They are formulated quite generally in standard Cartesian xy coordinates.
For astronomical applications it is important to remember that the x and y axes point
towards North and East, respectively; for example, in the case of proper motions in
the ICRS, we have x = µδ and y = µα∗ (see Sect. 2). Equation (39) therefore
gives the position angle of the semi-major axis of the error ellipse in proper motion
as θ = 1

2
atan2(2ρσµδσµα∗, σ

2
µα∗ − σ2

µδ).

Let x and y be random variables following a binormal distribution with mean values
x0, y0, standard deviations σx, σy, and correlation coefficient ρ. That is,

x ∼ N (x0, σ
2
x) , y ∼ N (y0, σ

2
y) , E[(x− x0)(y − y0)] = ρσxσy . (30)

Using vector notation µ = [x y]′ etc., the covariance matrix is

C = E[(µ− µ0)(µ− µ0)
′] =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
, (31)

and the probability density function (PDF) can be written compactly as

f(µ) =
1

2π|C|1/2
exp

(
−1

2
(µ− µ0)

′C−1(µ− µ0)
)
. (32)

The equation
(µ− µ0)

′C−1(µ− µ0) = 1 (33)

defines a curve of constant probability density in the xy plane, known as the error
ellipse (Fig. 12, right). Some properties of the error ellipse are derived below.

The vector µ can be written in polar coordinates (µ, φ) using the transformation

x = µ cosφ

y = µ sinφ

}
⇔

{
µ =

√
x2 + y2

φ = atan2(y, x)
. (34)

The component of µ in the arbitrary direction ψ is (Fig. 13, left)

u = µ cos(θ − ψ) = µ cosφ cosψ + µ sinφ sinψ = x cosψ + y sinψ , (35)

and its variance is

σ2
u = σ2

x cos2 ψ + 2ρσxσy cosψ sinψ + σ2
y sin2 ψ . (36)
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FIGURE 12: Left: Illustration of Eq. (36) for σx = 1, σy = 2, ρ = 0.8. Right: The
red curve is the error ellipse for the same parameters as in the left panel. The blue
curve is a polar plot of σu versus ψ (cf. Lindegren 2012).

As a function of ψ, this describes a sinusoidal variation with period π (Fig. 12, left).
The extreme values of σu are obtained by solving the equation ∂σ2

u/∂ψ = 0, with the
results

σmax =

√
1
2

(
σ2
x + σ2

y

)
+ 1

2

√(
σ2
y − σ2

x

)2
+ (2ρσxσy)

2 (37)

for ψ = θ and ψ = θ + π, and

σmin =

√
1
2

(
σ2
x + σ2

y

)
− 1

2

√(
σ2
y − σ2

x

)2
+ (2ρσxσy)

2 (38)

for ψ = θ + π/2 and ψ = θ + 3π/2, where θ is given by

θ = 1
2

atan2
(
2ρσxσy, σ

2
x − σ2

y

)
. (39)

σmax and σmin are the semi-major and semi-minor axes of the error ellipse, and θ is the
orientation of the semi-major axis.

An alternative way to derive the principal axes of the error ellipse is by SVD of the
covariance matrix. σ2

max and σ2
min are the singular values of C, and can therefore be

obtained by solving the quadratic eigenvalue equation

det(C − λI) ≡ (σ2
x − λ)(σ2

y − λ)− (ρσxσy)
2 = 0 . (40)

It can be further noted that

σ2
max + σ2

min = σ2
x + σ2

y = trace(C) (41)

Technical Note Lund Observatory 29



CU3-AGIS GAIA-C3-TN-LU-LL-129-01

x

ϕ

ψ

y

u
μ

(x, y)

x
θ

y

ξ

η

FIGURE 13: Left: Polar coordinates (µ, φ) and the component u along an axis in
direction ψ. Right: Coordinates (ξ, η) along the principal axes of the error ellipse.

and
σmaxσmin = σxσy

√
1− ρ2 = |C|1/2 . (42)

The axis ratio σmax/σmin is known as the aspect ratio of the distribution. The inverse
aspect ratio

q =
σmin

σmax
(43)

is often a more useful measure of the anisotropy, as it is limited to the unit interval,
0 < q ≤ 1.

(σx, σy, ρ) (or C) and (σmax, σmin, θ) are alternative and equivalent representations of
the error ellipse, with Eqs. (37)–(39) providing the transformation in one direction.
The inverse transformation is

σ2
x = σ2

max cos2 θ + σ2
min sin2 θ (44)

σ2
y = σ2

max sin2 θ + σ2
min cos2 θ (45)

ρσxσy = (σ2
max − σ2

min) cos θ sin θ (46)

The one-dimensional uncertainty σu, when plotted in a polar diagram, is not an error
ellipse, however; in general it is an elongated figure (the blue curve in the right panel
of Fig. 12) with a more or less pronounced waistline along the minor axis of the error
ellipse (red curve). σu therefore has a minimum in the direction of the minor axis,
but in nearly any other direction the one-dimensional uncertainty is dominated by the
projection of the larger error along the major axis. From Eq. (36) it is readily seen, by
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averaging σ2
u with respect to θ, that the RMS one-dimensional uncertainty, taken over

all directions, is

(σu)RMS =

√
σ2

max + σ2
min

2
=

√
σ2
x + σ2

y

2
. (47)

It is often advantageous to work in rotated coordinates (ξ, η), with the ξ axis oriented
along the major axis of the error ellipse and η along the minor axis (Fig. 13, right).
The required transformation is

ξ = x cos θ + y sin θ

η = −x sin θ + y cos θ

}
⇔

{
x = ξ cos θ − η sin θ

y = ξ sin θ + η cos θ
, (48)

where θ is given by Eq. (39). In this system ξ and η are uncorrelated,

ξ ∼ N (ξ0, σ
2
ξ ) , η ∼ N (η0, σ

2
η) , (49)

with mean values
ξ0 = x0 cos θ + y0 sin θ

η0 = −x0 sin θ + y0 cos θ

}
, (50)

and standard deviations σξ ≡ σmax, ση ≡ σmin given by Eqs. (37) and (38). The
covariance matrix is diag(σ2

ξ , σ
2
η) and the PDF is simply

f(ξ, η) =
1

2πσξση
exp

(
−(ξ − ξ0)2

2σ2
ξ

− (η − η0)2

2σ2
η

)
. (51)
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Appendix B: The Beckmann distribution

In Eq. (34) we introduced the polar coordinates (µ, φ) of the binormal random variable.
In polar coordinates the two-dimensional PDF is

g(µ, φ) = f(x, y)

∣∣∣∣∂(x, y)

∂(µ, φ)

∣∣∣∣ = f(x, y)µ . (52)

Marginalising over φ gives the PDF of the modulus of the binormal random variable:

g(µ) =

∫ 2π

0

f(µ cosφ, µ sinφ)r dφ . (53)

This probability distribution, known as the Beckmann distribution, is widely used for
modelling the envelope of a complex random variable such as resulting from multiple
propagation paths of radio signal or the scattering from rough surfaces (Beckmann
1962). It includes the Rice, Hoyt, and Rayleigh distributions as special cases.

Since µ is invariant to a rotation of the coordinates, the evaluation of Eq. (53) may be
simplified by using the special coordinates ξ, η in Eq. (48). Then f is given by Eq. (50)
and we find

g(µ) =
µ

2πσξση

∫ 2π

0

exp

(
−(µ cosφ− ξ0)2

2σ2
ξ

− (µ sinφ− η0)2

2σ2
η

)
dφ , (54)

which depends on the four parameters ξ0, η0, σξ, and ση. This is the usual form in
which this distribution is given, e.g. Eq. (31) in Beckmann (1962). Note that we have
‘eliminated’ one parameter (ρ) by means of the transformation in Eq. (48); in its most
general form the Beckmann distribution does however depend on five parameters, e.g.
x0, y0, σx, σy, and ρ. By suitable scaling, for example setting σξ = 1, it is possible to
eliminate one more parameter, but that will not be done here as it does not bring any
particular advantage for the computation.

While it is possible to expand g(µ) as an infinite series of Bessel functions, the practical
evaluation is usually more simply done by numerical integration. However, a few
analytical results should be noted. From (54) it is immediately seen that

g(0) = 0 , g(∞) = 0 . (55)

Moreover, g(µ) is unimodal (Wolfram Research, Inc. 2016); thus g(µ) is always more
or less bell-shaped (Fig. 14). Because µ2 = ξ2 + η2, where ξ and η are independent
normal variables, it is straightforward to derive the even moments of g(µ). In particu-
lar,

M2 ≡ E[µ2] = ξ20 + η20 + σ2
ξ + σ2

η , (56)

M4 ≡ E[µ4] = (ξ20 + η20 + σ2
ξ + σ2

η)
2 + (2ξ0σξ)

2 + (2η0ση)
2 + 2σ4

ξ + 2σ4
η . (57)
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FIGURE 14: Left: Nine examples of the Beckmann distribution. Right: Error ellipses
for the corresponding binormal distributions.

Of particular interest to us is the standard deviation of g(µ),

σµ =
√
M2 −M2

1 . (58)

The second momentM2 is known from Eq. (56), but the first moment, formally defined
by the integral

M1 ≡ E[µ] =

∫ ∞
0

g(µ)µ dµ , (59)

cannot be exactly represented except by complicated infinite series. The simplest way
to evaluate it numerically is probably by numerical integration. Inserting (54) in (60)
results in a double integral, which in rectangular coordinates becomes

M1 =

∫∫ ∞
−∞

f(ξ, η)
√
ξ2 + η2 dξ dη

=
1

2πσξση

∫∫ ∞
−∞

exp

(
−(ξ − ξ0)2

2σ2
ξ

− (η − η0)2

2σ2
η

)√
ξ2 + η2 dξ dη

=
1

2π

∫∫ ∞
−∞

exp
(
−1

2
(u2 + v2)

)√
(ξ0 + uσξ)2 + (η0 + vση)2 du dv . (60)

The last form is readily adapted to efficient numerical integration using a pre-computed
set of coefficients exp(−u2/2).

A simpler but less efficient way to compute the moments is by means of Monte Carlo
simulations: generate n pairs of independent normal deviates ξ ∼ N (ξ0, σ

2
ξ ), y ∼

N (η0, σ
2
η); then Mk ' 〈(ξ2 + η2)k/2〉. Using for example n = 106 pairs will give the

moments to about three significant digits.
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FIGURE 15: Variation of σµ/σξ as a function of q for the Hoyt distribution.

B.1. The Hoyt distribution

A special case of the Beckmann distribution, of particular interest to us, is the Hoyt (or
Nakagami-q) distribution, obtained with ξ0 = η0 = 0. Apart from a scaling parameter,
it is characterised by the inverse aspect ratio q in Eq. (43), which has the same meaning
in the Nakagami-q distribution. The Hoyt distribution has two well-known limiting
forms: the Rayleigh distribution (for q = 1) and the half-normal distribution (for
q = 0). The first moment in Eq. (60) is easily computed in the limiting cases, with
the results M1 = σξ

√
π/2 (q = 1) and M1 = σξ

√
2/π (q = 0). Since, moreover,

M2 = (1 + q2)σ2
ξ , we find

σµ =

σξ
√

1− 2/π ' 0.602810274989087σξ for q = 0,

σξ
√

2− π/2 ' 0.655136377562034σξ for q = 1.
(61)

Figure 15 shows the run of σµ/σξ with q. The moments of µ were calculated by
numerical integration of the double integral in Eq. (60) using the trapezoidal rule with
a step size in u and v of 0.1 over the interval [−5, 5].
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FIGURE 16: Variation of σµ/σξ as a function of µ0/σξ for the Rice distribution.

B.1. The Rice distribution

Another special case of the Beckmann distribution is the Rice distribution, for which
q = 1 while ξ0 and η0 may be different from zero. Since ση = σξ the distribution
does not depend on ξ0 and η0 separately, but only on µ0 =

√
ξ20 + η20 . Apart from a

scaling parameter (taken to be σξ) the Rice distribution is thus fully specified by µ0/σξ.
Figure 16 shows the run of σµ/σξ versus µ0/σξ for the Rice distribution computed by
numerical integration. For µ0 = 0 the Rice distribution is equivalent to the Hoyt
distribution for q = 1 and we obtain σµ = σξ

√
2− π/2 as in Eq. (61). For large ratios

µ0/σξ the standard deviation asymptotically approaches σξ.
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The following table has been generated from the on-line Gaia acronym list:

Acronym Description
DR2 Gaia Data Release 2
FA Field Angle
ICRS International Celestial Reference System
PDF Probability Density Function
RMS Root-Mean-Square
SVD Singular Value Decomposition
TN Technical Note
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