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Abstract. Issues related to the geometric and photometric calibration of the
Astro Line Spread Function (LSF) are briefly discussed, in particular the sepa-
ration of shape, position and flux, and the precise definition of the centroid. A
convention for the centroid definition is proposed, based on a simple analytical
weighting function, which appears close to optimal (for Gaia-3 parameters and
typical WFE) from the viewpoint of statistical precision and interpolation ac-
curacy. It is furthermore proposed that this weighting function is used for the
very initial centroiding on AF samples, before the LSF has been calibrated.

1 Definition of the Line Spread Function

The Line Spread Function (LSF) is a very central concept for both the astrometric and
photometric processing of Astro data. It provides the basis for the probabilistic modelling
the sample data, and hence for any reasonably efficient estimators of the image location
(needed for astrometry) and total flux in the image (needed for the photometry). Accurate
calibration of the LSF is also needed in order disentangle partially overlapping images (as in
double stars and crowded regions), and as a means to monitor the status of the instrument
(in terms of wavefront aberrations, CTI distortion, etc).

In this document we are only concerned with the along-scan (AL) LSF as seen in the
non-dispersive part of the instrument (SM and AF). Strictly speaking, this LSF is the
marginal density of the Point Spread Function (PSF), integrated over an infinite range in
the AC direction, but for the present discussion it will be sufficient to consider the LSF
as the part of the PSF falling inside the observed window. To a certain approximation,
the fraction of the PSF contained within a given finite range in AC (as defined by the
window) is constant along the AL coordinate [3], and the variation of this factor with AC
window size and decentering, wavelength, etc., is presently ignored.

The Line Spread Function L(x) is a continuous function such that, for a point-like source
of constant intensity on a uniform background, the expected number of photoelectron
counts in sample k is given by

E[nk] = αL(k − ξ) + β (1)

Here, α is the total flux of the image (in electrons), β is the background level (in electrons
per sample), and ξ is the location of the image centroid in the sample stream. The location
parameter ξ is a real variable expressed in samples, i.e., using the same origin and unit
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as k, but in general non-integer. For example, ξ = 1862557.333 would mean that the
image centroid is located between samples k = 1862557 and k = 1862558, one third of a
sample from the former. Knowing the datation of the samples and the gate used for the
integration of the image, this value ξ can immediately be transformed into an observed
CCD transit time.

The definition of the image parameters α, β and ξ are intimately linked to the definition of
L(x), in the sense that the latter must satisfy certain constraints to render the parameter
values unique for a given observation. These constraints are:

• that the background β is the asymptotic intensity level far away from the image
centre, i.e.

L(x) → 0 for x → ±∞ (2)

• that the flux parameter α equals the expected total number of counts in the image,
i.e. ∫ ∞

−∞
L(x) dx = 1 (3)

• that the origin of x in L(x) corresponds to a suitably defined centre of the LSF; we
adopt the constraint ∫ ∞

−∞
L(x)w(x) dx = 0 (4)

where w(x) is a weighting function to be defined below: this defines ξ as the location
of the LSF centre among the samples.

For physical reasons, L(x) must also be non-negative.

Of these constraints, only (4) is less than obvious and requires further specification. The
problem arises because of the non-symmetric shape of the general LSF. While a symmetric
LSF has an evident centre in its point of symmetry, such that L(−x) = L(x) for all x,
there is no such unambiguous choice for an asymmetric LSF. In fact, different proposals
have been made in the past (e.g., [1, 2, 3, 4]), but their relative merits have not been
assessed and it is now time to settle this question more definitely.

It should be noted that an ‘obvious’ centroid definition such as the centre of gravity, or first
moment (mean) of the distribution, corresponding to the weighting function w(x) = x, is
highly unsuitable for several reasons. First of all, there are mathematical difficulties in that
the integral in (4) does not converge for the Fraunhofer diffraction of a rectangular pupil
[5]. Even if this difficulty can be overcome, the resulting centroid is mainly sensitive to
the wings of the image, which contribute little or nothing to the astrometric information.

A proposal for the practical choice of weighting function is given in Sect. 3. The numerical
results shown below use LSF calculations based on Gaia-3 parameters (see also [6]) and
two representative WFE maps provided by Astrium, denoted F32 (for AF5, CCD row 4)
and F55 (AF1, CCD row 1). The RMS WFE, excluding piston and tilt, is 37.0 nm for F32
and 51.5 nm for F55. The resulting LSFs for an unreddened G2V star (from the Pickles
library [7]) is shown in Fig. 1.
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Figure 1: Polychromatic LSF calculated for an unreddened G2V star using Gaia-3
parameters and two representative Astrium WFE maps, F32 and F55.

2 Choice of weighting function

2.1 Candidate functions

Several candidate weighting functions are described and compared below. They are given
as functions of the normalised argument z = x/s, where s is a scale parameter determining
the width (in x) over which the function operates. Thus the centroid definition is actually

∫ ∞

−∞
L(x)w(x/s) dx = 0 (5)

The use of weighting functions for robust estimation of location is briefly discussed in
Numerical Recipes [8], Ch. 15.7, from which two of the candidate functions are taken.

Gaussian derivative: this weighting function is proportional to the derivative of the cen-
tred normal probability density for unit standard deviation, f(z) = (2π)−1/2 exp(−z2/2),
namely

w(z) = z exp(−z2/2) (6)

(Fig. 2). Using this weighting function corresponds to least-squares fitting the scaled
normal probability function f(z/s)s−1 to the LSF. w(z) is approximately linear for small
|z| and has its extreme values at z = ±1, after which it gently decreases to zero. Although
the support is in principle infinite, the function can in practice be regarded as zero for
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|z| & 4. This weighting function has been used (with s ' 1 pixel) in several investigations
of chromaticity.

In contrast to the gaussian derivative, the following weighting functions all have limited
support, and the scale parameter is defined such that the functions are strictly zero for
|z| > 1. These weighting functions are depicted in Fig. 3. It can be seen that they
represent, to various degrees, an approximation of the gaussian derivative for a finite
support.

Truncated mean:

w(z) =

{
z if |z| < 1
0 otherwise

(7)

Truncated median:

w(z) =





−1 if −1 < z < 0
+1 if 0 < z < +1

0 otherwise

(8)

Andrew’s sine:

w(z) =

{
sin(πz) if |z| < 1

0 otherwise
(9)

This is adapted from [8]. The extreme values are at z = ±1/2.

Tukey’s biweight:

w(z) =

{
z(1− z2)2 if |z| < 1
0 otherwise

(10)

This is adapted from [8]. The extreme values are at z = 1/
√

5 ' 0.447.

Cubic spline:

w(z) =





2z(1− 3z2) if |z| ≤ 1/3
3(1− z)3 − 12(2/3− z)3 if 1/3 < |z| ≤ 2/3
3(1− z)3 if 2/3 < |z| ≤ 1
0 otherwise

(11)

This is the cubic spline uniquely defined (up to a constant of proportionality) by the
following conditions: the knots are at z = 0, ± 1/3, ± 2/3, ± 1; it is an odd function;
the extreme values are at z = ±1/3; and the function and its first and second derivatives
are everywhere continuous.1

1As it happens, this weighting function (scaled to s = 3/2) is proportional to the derivative of the
bi-quartic spline defined in [3]. No special significance should be attached to this coincidence.
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Figure 2: Weighting function w(z) of the ‘gaussian derivative’ type, Eq. (6).
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Figure 3: Five considered weighting functions w(z) with finite support; see Eqs. (7)–
(11).
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2.2 Criteria for selecting the ‘best’ weighting function

Inasmuch as the definition of the LSF centre is simply a matter of convention, any of the
above weighting functions might be acceptable, with a wide range of choices for the scale
parameter s. However, in practice the definition must be applied to a set of data values
representing a finite portion of the LSF, to finite precision, and it is highly desirable that
the definition is not overly sensitive to such limitations.

Moreover, with a sensible choice of weighting function and scale parameter s, the initial
centroiding on the samples {nk} could be usefully done by direct application of the centroid
definition, i.e., by solving the equation

∑

k

nk w

(
k − ξ

s

)
= 0 (12)

The resulting centroid estimate ξ̂ is in general less precise than what a full LSF fitting will
give, but has the significant advantage that the LSF need not be calibrated before doing
the centroiding. However, the limited size of the AF windows (normally six samples) puts
a constraint on the support of w(z). Assuming that the centroid is located between the
3rd and 4th sample of the window, it is seen that (12) can only be correctly solved from
the six available samples if w(x/s) = 0 for |x| > 3 pixels. For the gaussian derivative this
implies s . 0.75 pixel, while for the other weighting functions it implies s ≤ 3 pixel.

When (12) is used to centre of real samples, we should be concerned both with the sta-
tistical precision of the resulting estimate, caused by the Poissonian nature of the counts
and the additional readout noise, as well as systematic errors depending on the sub-pixel
position of the centroid. For given LSFs, such as the two representative cases shown in
Fig. 1, these errors can easily be evaluated for the different weighting functions.

The choice of weighting function has a strong impact on the size and behaviour of the
chromaticity effect [5]. This can be studied, at least in a first approximation, by considering
the variation, as function of wavelength, of the centroid location for the monochromatic
LSF. A small variation is preferable to a large variation, and a linear variation is better –
or at least more easily calibrated – than a strongly non-linear one.

In summary, the criteria that will be used to select the ‘best’ weighting function and scale
parameter are:

1. Length of support: the weighting function should be effectively zero for |x| > 3 pixel
in order to be useful for centering on windowed samples

2. Statistical precision of centroiding on real (noisy) samples

3. Systematic errors (depending on sub-pixel position) when centering on real samples

4. Total size of chromaticity

5. Non-linearity of chromaticity
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2.3 Comparison of candidate weighting functions

2.3.1 Length of support

As we have seen, all the candidate weighting functions satisfy this criterion provided that
the scale parameter is small enough. For the gaussian derivative (6) we require s . 0.75,
while for the other weighting functions (7)–(11), s ≤ 3 is required.

2.3.2 Statistical precision

The expected statistical precision of ξ̂ obtained by solving (12) can be evaluated as

σξ ∝
(∫

w(x/s)2V (x) dx

)1/2 ∣∣∣∣
1
s

∫
w′(x/s)L(x) dx

∣∣∣∣
−1

(13)

where V (x) gives the total noise variance in the image. Two extreme cases are considered:
In the signal-dominated case, V (x) ∝ L(x) due to the photon noise. In the background-
dominated case, V (x) ' constant. The relative performances of the different weighting
functions versus s are shown in Figs. (4)–(5) for the signal-dominated case, and in Figs. (6)–
(7) for the background-dominated case. Note that it will be necessary to select a weighting
function and an s value that performs well both in the signal-dominated and background-
dominated case.

The curves in Figs. (4)–(7) are very similar for F32 and F55, so this criterion is relatively
insensitive to the detailed WFE.

For the gaussian derivative, the maximum scale parameter compatible with criterion 1
(s = 0.75 pix) should be selected for precision.

The truncated mean and median perform significantly worse in the background-dominated
case than the other weighting functions. The cubic spline tends to require a scale parameter
greater than 3 pixels in the signal-dominated case – in other words, it does not decline
fast enough to zero.

The best weighting functions, according to this criterion, are Andrew’s sine and Tukey’s
biweight. They have similar performances both in the signal-dominated and background-
dominated cases, and ideally require s ' 2–2.5 as a compromise between the two cases.
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Figure 4: Relative precision of the location estimate ξ̂ from Eq. (12) in the case of
strong signals (dominated by the Poisson noise of the star image), evaluated for WFE
map F32.
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Figure 5: Relative precision of the location estimate ξ̂ from Eq. (12) in the case of
strong signals (dominated by the Poisson noise of the star image), evaluated for WFE
map F55.
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Figure 6: Relative precision of the location estimate ξ̂ from Eq. (12) in the case of weak
signals (dominated by the readout noise and/or Poisson noise of background), evaluated
for WFE map F32.
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Figure 7: Relative precision of the location estimate ξ̂ from Eq. (12) in the case of weak
signals (dominated by the readout noise and/or Poisson noise of background), evaluated
for WFE map F55.
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Figure 8: Bias in the location estimate, as function of sub-pixel position, when Eq. (12)
is used to calculate the centroid of sampled data. Curves are shown for the two differ-
ent WFE maps (F32 and F55) and for two selected weighting functions: the gaussian
derivative with s = 0.75, and Tukey’s biweight with s = 2.7.

2.3.3 Systematic errors

The bias resulting from using (12) to centre on real samples can be evaluated by solving
ξ in ∑

k

L(k − ξ0) w

(
k − ξ

s

)
= 0 (14)

where ξ0 is the true centroid, and plotting the bias ξ− ξ0 as function of the fractional part
of ξ0. Fig. 8 shows a few examples of the resulting bias curve.

The RMS value of the bias was evaluated for the different candidate weighting functions
and a range of s values. Results are shown in Figs. 9 and 10. Note that for the gaussian
derivative (solid curve) the largest value of s is 0.75, at which point this weighting function
performs much worse than several of the others at their appropriate s values.

It appears that Tukey’s biweight, with s ' 2.7, is particularly good for both WFE maps,
with RMS bias values in the 10–25 µas range. A test with a third WFE map verified
that this was no coincidence. The low-amplitude curves in Fig. 8 show the merit of this
weighting function in striking contrast to the gaussian derivative.
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Figure 9: RMS bias in the centroid position when the different weighting functions are
used to centre on data samples separated by one pixel (WFE map F32). The line types
represent the different weighting functions, using the same keys as in Figs. 4–7.
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Figure 10: RMS bias in the centroid position when the different weighting functions
are used to centre on data samples separated by one pixel (WFE map F55). The line
types represent the different weighting functions, using the same keys as in Figs. 4–7.

11



2.3.4 Total size of chromaticity

Figures 11 (for F32) and 12 (for F55) are shown as examples of how the monochromatic
centroid position may vary with wavelength. The centroid positions are plotted against
the inverse wavelength, since this relation tends to be more linear than if wavelength is
used. The displayed relations are for Tukey’s biweight function, but the plots for other
weighting functions are qualitatively similar for the WFE maps considered here. For other
WFE maps, the curves may however look completely different, as suggested already by
the considerable difference between the present two maps.

As a measure of the total size of the chromaticity, the RMS variation of the monochromatic
centroid position for the wavelength range 300 to 1050 nm is shown in Figs. 13–14 for the
two WFE maps. From these plots it is hardly possible to draw any conclusions about
the relative merits of the weighting functions, except that the truncated mean is perhaps
less suitable. For the other weighting functions, the dependence on s is almost opposite
between the two WFE maps, so that a good choice of s in the case of F55, for example,
may be practically the worst choice for F32.

2.3.5 Non-linearity of chromaticity

As a measure of the non-linearity, we use the RMS residual of a linear regression of ξ
versus λ−1, i.e., the RMS deviation from a straight line in plot like Figs. 11–12, taken over
the whole wavelength range 300–1050 nm. Results are shown in Figs. 15–16 for the two
WFE maps. The conclusions are similar as for the total chromaticity: the truncated mean
is less suitable, but otherwise no clear preference can be seen due to the very different
behaviour for the two WFE maps.

2.4 Conclusion on the choice of weighting function

It is clear that some properties of the weighting functions depend so critically on the actual
WFE map that they cannot be used as a criterion for choosing between the functions. This
applies in particular to the behaviour with respect to chromaticity, both its total size and
non-linearity.

Other properties, such as the precision and sub-pixel systematics when the weighting
function is used to centre on real samples, are on the other hand quite consistent and do
not depend critically on the WFE. Consequently, the choice of weighting function must
primarily be guided by these properties.

With respect to sub-pixel systematics, there is a very clear and strong preference for
Tukey’s biweight with s = 2.7 pix (Figs. 9–10). This choice is very good also with respect to
precision, especially in the signal-dominated case (Figs. 4–5); in the background-dominated
case (Figs. 6–7), the 7–10% increase in standard error seems an acceptable sacrifice.2

2Even at G = 20, the three central samples of the image (at ∼ 150, 350, 150 e−) are usually dominated
by the Poisson noise of the image, rather than the background and readout noise; thus the background-
dominated case actually applies only in exceptional circumstances.
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Figure 11: The monochromatic centroid position for WFE map F32, using Tukey’s
biweight, as function of the inverse wavelength. The curves are for different values of the
scale parameter s, starting with s = 1.0 for the lowest, solid curve; s = 1.25 for the next,
dashed curve, etc; and ending with s = 3.0 for the topmost curve.
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Figure 12: The monochromatic centroid position for WFE map F55, using Tukey’s
biweight, as function of the inverse wavelength. The curves are for different values of the
scale parameter s, starting with s = 1.0 for the upper, solid curve; s = 1.25 for the next,
dashed curve, etc; and ending with s = 3.0 for the lowest curve.
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Figure 13: RMS variation of the monochromatic centroid position in the wavelength
range 300–1050 nm for WFE map F32.
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Figure 14: RMS variation of the monochromatic centroid position in the wavelength
range 300–1050 nm for WFE map F55.
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Figure 15: RMS deviation of the monochromatic centroid position from a linear varia-
tion with λ−1, calculated in the wavelength range 300–1050 nm for WFE map F32.
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Figure 16: RMS deviation of the monochromatic centroid position from a linear varia-
tion with λ−1, calculated in the wavelength range 300–1050 nm for WFE map F55.
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3 Proposed convention

It is proposed that the centre (origin) of the Astro LSF L(x) (where x is expressed in
pixels relative to the origin) is defined by the condition

∫ ∞

−∞
L(x)w(x/s) dx = 0 (15)

Here, w is the following weighting function (Tukey’s biweight)

w(z) =

{
z(1− z2)2 if |z| < 1
0 otherwise

(16)

and s is a scale parameter set to the fixed value s = 2.7 pixel.

4 Proposal for the initial centroiding of AF samples

It is furthermore proposed that the above weighting function (with s = 2.7) is also used
to compute an initial estimate of the location of the LSF centroid among the observed AF
samples {nk}, by means of the equation

∑

k

nk w

(
k − ξ

s

)
= 0 (17)

This has the advantage that it can be applied before any LSF calibration is available,
e.g., very early in the initial data treatment, and as an initial step of the LSF calibration
process. It is however less accurate than a full LSF fitting, and cannot replace the latter
in subsequent processing stages.

Equation (17) is non-linear but can be solved in a few Newton–Raphson iterations from a
starting value of ξ equal to the index k of the largest nk. The iteration formula is

ξ ← ξ + s

∑
k nk w

(
k−ξ

s

)

∑
k nk w′

(
k−ξ

s

) (18)

where

w′(z) =

{
(1− 5z2)(1− z2) if |z| < 1
0 otherwise

(19)

An approximate error estimate is obtained as

σξ = s

[∑
k Vk w

(
k−ξ

s

)2
]1/2

∣∣∣∑k nk w′
(

k−ξ
s

)∣∣∣
(20)

where Vk = nk + 1 + r2 is the estimated variance of nk, with r the RMS readout noise in
electrons.
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Acronyms

The following table has been generated from the on-line Gaia acronym list:

Acronym Description
AC ACross scan (direction)
AF Astrometric Field (in Astro)
AL ALong scan (direction)
CCD Charge-Coupled Device
CTI Charge Transfer Inefficiency
GDAAS Gaia Data Access and Analysis Study
GST Gaia Science Team
LSF Line-Spread Function
PSF Point-Spread Function
RMS Root-Mean-Square
SM Sky Mapper
WFE WaveFront Error
WG Working Group
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