SPI CALIBRATIONS

4 STEPS :

- CAMERA CALIBRATION : After camera integration (Sept 2000)

- SPI CALIBRATION AT CNES After SPI integration (Dec 2000)

- SPI AT THERMAL TEST SPI in representative thermal conditions (March - April 2001)

- SPI CALIBRATION AT BRUYERES LE CHATEL Latest calibration before SPI delivery at ESA (April - May 2001)

CALIBRATION SCHEME

SPI without coded mask : Test efficiency and homogeneity

- Short distance sources (low intensity, 8 m). 11 different radioactive sources . Energy range : [60,1836] keV.

- 4 MeV-van de Graaf accelerator, calibration up to 8062 keV.

SPI with coded mask : Test of imaging - Long distance sources (high intensity,125 m), Energy range : [60,2753] keV.

Crab spectral fits

- Energy range 22 keV 1 MeV
- Use of single events
- No systematics included
- Source and background assumed constant per revolution
- Use of standard response matrices
- Since SVR: improvement of matrices interpolation.

Rev #	Index 1	Ebreak (keV)	Index 2	Norme @ 100 keV (ph cm-2 s-1)	Red χ2 (35 dof)	Ftest Relat. To powerla W
44	2.06 +/- 1.10 -2	66 +/- 3	2.22 +/- 2.10 -2	6.27 E-04	1.98	
45	2.05 +/- 1.10 -2	70 +/- 2	2.25 +/- 1.10 -2	6.4 E-04	2.15	
102	2.07 +/- 1.10 -2	66 +/- 3	2.22 +/- 2.10 -2	6.19 E-04	1.26	
170	2.06 +/- 1.10 -2	66 +/- 2	2.22 +/- 1.10 -2	6.33 E-04	1.93	
239	2.07 +/- 1.10 -2	63+/- 2	2.23 +/- 1 10 -2	6.25 E-04	1.82	4.3 E-08
300	2.07 +/- 1.10 -2	60 +/- 2	2.23 +/- 1 10 -2	6.12 E-04	1.87	3.2 E-06
365	2.11 +/- 1.10 -2	152+/- 13	2.70 +/13	6.23 E-04	1.83	3.1 E-05
365*	2.08 +/- 1.10 -2	71 +/- 7	2.27+/- 3 10 -2	6.05 E-04	2.32	2. E-03
422	2.09 +/- 1.10 -2	68 +/- 2	2.25 +/- 1.10 -2	6.16 E-04	1.92	2.9 E-06
483	2.13 +/- 2.10 -2	88 +/- 18	2.29 +/- 5.10 -2	6.00 E-04	2.10	0.01
541(tr)	2.06 +/- 1.10 -2	65 +/- 3	2.23 +/- 1 10 -2	6.06 E-04	1.78	
Sum	2.09 +/- 2.10 -2	69 +/- 2	2.25 +/- 2.10 -2	5.98 E-04	5.42	7.7 E-08

Rev. 239+300+365+422+483 - 530ks										
Rev #	Index 1	Ebreak (keV)	Index 2	Norme @ 100 keV (ph cm-2 s-1)	Red $\chi 2$	Ftest Relat. To powerlaw				
Sum	2.14 +/-2. 10 -2			6.01 E-04	13.06					
Sum	2.11 +/- 1.10 -2	90.0	2.30 +/- 1.10 -2	6.1 E-04	5.38	1.2 E-08				
Sum	2.09 +/- 2.10 -2	69 +/- 2	2.25 +/- 2.10 -2	5.98 E-04	5.42	7.7 E-08				

The power-law is rejected

The broken power law better represents the data (physics behind?)

The broken power law break is not precisely constrained: slopes/break dependency

