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1 Introduction

GAIA aims at an astrometric accuracy of about 10 pas at 15th magnitude. At the level of
individual CCD read-outs, the corresponding image centroiding accuracy is about 200 uas,
or 0.05 pum for a focal length of 50 m. It is hoped that the ‘accuracy floor’” for bright stars is
a few times better than this, or say 0.01 um for the individual centroiding. This means that
the residual systematic errors, after very careful and extensive geometric and photometric
calibration of all parts of the instrument, should be less than about 10~ of a pixel.

It is known that the photon flux and the density of stars on the sky are in principle more
than sufficient to calibrate the geometry of the CCDs to such an accuracy, even considering
that each pixel column must be separately calibrated. However, this assumes that there
is a stable geometrical quantity (the mean centroid shift) that can be calibrated. To the
extent that the mean centroid shift depends on several other factors, such as the current
signal and background levels, time, or even the past history of illumination, the shift
becomes in practice impossible to calibrate. It is to the level of such ‘random’ shifts that
the millipixel requirement applies.

In this connection it should be recalled that the electronic image of a 15th magnitude star,
when it reaches the serial register, typically contains ~ 10* electrons in the central pixel
column. The faintest detected stars give mages of ~ 100 electrons, but then the accuracy
requirements are also relaxed by a factor 10.

Charge transfer inefficiency (CTI) has been identified as a potentially serious problem for
very precise image centroiding in GAIA. Normally CTI is thought of as a linear effect, i.e.
a certain (fixed) fraction € of the charges are left behind when the charge package has been
moved by one pixel. € is called the CTI and 1 — ¢ the CTE (charge transfer efficiency).
Typically € ~ 107 to 107° for undamaged CCDs. (We will, for the time being, only
consider the parallel charge transfer along a TDI column, since the GAIA measurements
are most sensitive to centroid shifts in that direction.) The linear CTI is discussed in
Section 2.

Potentially much more troublesome are the highly non-linear CTT effects that are caused by
charge trapping. The silicon layer in which the charge packets are transported (the buried
channel) contains localised points in which electrons may be captured and re-emitted at
a later time. The deferred charge is noted as an increased CTI. Traps may be caused by
chemical impurities or, more importantly for space applications, by displacements in the
crystal lattice produced by the impacts of energetic particles, typically protons. Because
of the limited number of traps encountered by the charge packets, the trapping is not
proportional to the signal, but the effect is rather to reduce the signal by a certain amount,
i.e. a kind of thresholding. The resulting effect on the signal packets depends also very
much on the background level.



There is an extensive literature on radiation-induced CTI in buried-channel CCDs, cov-
ering both experimental results and theoretical modelling of the effect. References and
additional background information are well summarised in a recent paper by Hardy et al.
(1998). That paper also describes a simple physical model capable of reproducing quite
well measured CTI values and their variations with radiation level, temperature and signal
level. The model described in Section 3 is to a large extent based on that paper.

While the increased CTIis perhaps the most easily measured effect of the charge trapping,
it is the corresponding centroid shift which is most relevant for astrometry and GATA.
This effect is (to my knowledge) hardly at all discussed in the literature. Very roughly
one can perhaps assume that the centroid shift is proportional to the CTI, but a detailed
investigation of the effect through adequate modelling is clearly motivated.

2 Linear CTI

In this section we consider briefly the centroid shift associated with a linear (proportional)
CTI, i.e. where a fixed fraction € of the charges are left behind in each pixel transfer. Let
N be the number of pixels in the column and assume that the image illuminates exactly
one pixel at a time with unit exposure during a TDI period. During the first TDI period,
when the image is centred on the first pixel, the charge accumulated in the first pixel
is therefore fi; = 1 (and zero everywhere else). After transfer by one pixel and light
integration during the second TDI period, the expected contents of the first two pixels
are:

f21:€, f2221—|-(1—€). (1)
After the third TDI period, the expected pixel contents are:
=€, fu=[1+21-¢le, fiz=1+(1—e)+(1-¢)?. (2)

Generally, after m TDI periods the content of the nth pixel is (n < m):
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After N periods the leading charge packet is in the last row. The final transfer into the
serial register gives the signal

So=fun(l-—=(1-+(1-e+ (1=’ + -+ (1-". (4)
The first trailing packet, after transfer to the serial register, contains the signal
S1=fvpn(l - =[1-+2(1- ) +3(1 -+ + N1=e)"]e, (5
while the second and third trailing packets contain, respectively,
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and so on. Naturally all the charges are eventually transferred to the serial register, so

So+ 51+ 52 +---=N.

¢ being a small quantity, we might neglect terms of order €? and higher to obtain

N +1)N N+ 1)N
(N+DN o (N4

~ N — oMY O)Y
S0 1.2 O 1.2 O

Sp~0 (k>1). (8)
If N is large we find that the fraction of deferred charges is approximately Ne/2, and that
(to first order in €) they are all deferred to the first trailing pixel. To the lowest significant
order in €, the fraction of charges in the kth trailing pixel is ~ (Ne)*/(k + 1)L

Since the process is assumed to be linear, the CTI effect on an arbitrary (electronic) PSF
can be obtained through convolution with the kernel function S;/N, k = 0,1,.... This
will result in both a shift and a widening of the PSF. The shift of the centre of gravity
of the PSF is simply obtained by calculating the centre of gravity of the kernel. To first
order in ¢, this shift is v

€
=5 (9)
pixels. The RMS width of the PSF is increased quadratically by the RMS width of the
kernel. Again to first order in ¢, the RMS kernel width in pixels is

U:E. (10)

The CTI was here treated as a completely deterministic process. In reality the charge
transport is stochastic and the number of deferred charges in each transfer should more
properly be modelled as a binomial process. If the total number of charges is not very
small, this can be approximated by a Poisson process. The number of charges calculated in
the deterministic way is then simply the expected number of charges in the Poisson process.
Since the photon detection is also a Poisson process, it follows that one can equivalently
regard the linear CTI as a shift and widening of the optical PSF, before detection. The
noise contribution from the stochastic nature of the CTI is therefore accounted for by the
widening of the PSF by the kernel width, Eq. (10). This can be shown also by considering
the RMS fluctuation of § in Eq. (9) resulting from the Poisson noise of the deferred charges.

)

To summarise, the linear CTI produces a constant shift of the expected location of the
image centroid, while the stochastic nature of the effect is equivalent to a widening of the
PSF. For a constant CTI these effects are easily (and in fact automatically) calibrated in
the data reductions. As long as the total effect is relatively small (Ne < 1), the linear
CTI will therefore not be a problem for GATA.

3 Charge trapping: A Monte Carlo model

Models of the CTI degradation such as the one described by Hardy et al. (1998) allow to
calculate the expected number of charges trapped and deferred, the fraction of filled traps
as function of position in the substrate, and similar mean quantities. Such models could
also be adapted to calculate the mean electronic PSF resulting in TDI mode, and hence
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Figure 1: Schematic representation of the charge transfer across three successive pixels, and the
capture/emission of charges by traps (shown as small circles). A four-phase CCD (M = 4) is
assumed, i.e. with four gates (electrodes) per pixel. The horizontal layers represent a section of
the buried channel at successive time steps. The figure illustrates several features of the adopted
model: the fixed number and location of traps within the substrate; the gaussian-ellipsoidal charge
density distribution of the packets (at low charge densities); the instantaneous transfer of packets
from one step to the next (71 to 72, etc); the capture of a single charge at a trap with a probability
proportional to the local charge density; the spontaneous emission of the charge from a filled trap,
independent of the charge density; and the diffusion of emitted charges to the nearest packet.
Simultaneously with all this, new charges are added to the packets according to a Poisson process
governed by the local detection rate (stellar PSF plus background).

the expected shift as function of trap density, background and signal levels. However, it is
not obvious that such a treatment is sufficient for the present problem. With reasonable
trap densities, the expected number of traps in the active part of a single TDI column
will be rather small and may be constant over a considerable time, perhaps sufficient for
empirical calibration of the shifts. Thus, while the model could predict the mean shift, i.e.
the average over many different trap configurations, this is not necessarily representative
for the shifts produced by a given, more or less fixed configuration of traps.

An obvious way to study the effects of charge trapping is by means of detailed numerical
simulation. If this is done at the level of the capture and emission of individual charges
by the individual traps, it is easy to consider for instance the stochastic trapping effects
in a fixed configuration. This is the principle adopted for the present study.

Briefly, the simulations follow the build-up and transport of charges along the buried
channel of a single TDI column (Figure 1). Traps are placed randomly throughout the
volume at a given density. Each trap has two possible states: empty or filled (by one



electron). For each step of the charge transfer, the three-dimensional charge distribution
is calculated and hence, for each trap, the probability that its state will be changed during
the step. If the state is changed, through the capture or emission of an electron, the size
of the charge packet is modified accordingly. At the end of the column, the resulting
charge packets are recorded and the location of the star image is determined by means of
a cross-correlation algorithm.

3.1 Notations, coordinates and units

SI units are used consistently. The geometry of the buried channel is described in rectan-
gular coordinates with « = 0 at the beginning of the TDI column and increasing in the
direction of charge transport. y is the coordinate along the pixel rows, with y = 0 at the
centre of the considered column. z is the depth coordinate, again with z at the centre of
the channel. For an M-phase CCD with N pixels along the column, there are M N gates
equidistantly along z. Each gate defines an elementary rectangular volume AzAyAz of
the buried channel. The charge transfer proceeds in discrete time steps, with 2M steps
required for the transfer by one pixel (in one TDI period). At a given time step of the
clock sequence, a charge packet will be constrained to M —2 or M — 1 adjacent elementary
volumes (cf. Figure 1). The charge density within the buried channel is generally written
ne(tv Y, Z) [m_S]'

k Boltzmann’s constant, k = 1.3807 x 1072 J K—!

m.  mass of electron, m, = 9.109 x 1073 kg

q charge of electron, ¢ = 1.602 x 10719 A s

T absolute temperature

A*  effective Richardson constant, A* = 2.52 x 10° A m~2? K~2 for n-type (100) Si

oy trapping cross section

FE; trapping state energy level below the conduction band

ng doping concentration

Te local charge density at point (z,y, z) in the buried channel

N number of pixels along the TDI column

M number of phases in the charge transfer (M = 3 or 4 considered)

At TDI period

T dwell time during a specific step of the charge transfer

Pe probability of capture during the dwell time

Pe probability of emission during the dwell time

S size of the charge packet in electrons

P(z) stellar point spread function (PSF), normalised such that 3~ P(z,) =1,
where z,, is the coordinate of the nth pixel

a stellar signal size (number of electrons under the PSF)

b background level (number of electrons per pixel)



3.2 Capture and emission probabilities

Let n. be the charge density in the vicinity of a trap. If the trap is empty, the probability
that it will capture an electron during the infinitesimal time interval dt is

dp = redt (11)

where
Te = OtVthNe (12)

is the capture rate. (In the literature, this is usually expressed in terms of the capture
time constant 7. = 1/r..) Here oy is the trapping cross section and

3kT

Me

Vth = (13)
the mean thermal velocity of the electrons. If the trap is filled, the probability of emission
is given by

dp = redt (14)

where
Ot A*T?

Te =

exp(—FEy/kT) (15)

is the emission rate. A* is the effective Richardson constant and F; the trapping state
energy level. Considering both processes together, the probability that the trap is filled
after time ¢ is governed by the differential equation

d
d—?:rc(l—p)—rep. (16)

The general solution, assuming that r. and r, are constants, is

p(t) = —— 4 Cexp[—(re + ro)t] (17)

Tet Te

where (' is a constant of integration.

The charge transfer is assumed to be such that the electron density distribution is constant
during a certain time interval 7 (the dwell time), before the charges are redistributed in
the next step of the transfer. Let n, be the charge density in the vicinity of a trap during
the dwell time and consider how p(t¢) changes during the dwell time, from ¢ = 0 to 7.

If the trap is empty at the beginning of the dwell time, then p(0) = 0 and we find
C = —r./(c+re)in Eq. (17). At the end of the dwell time the probability that the trap
is filled is

Te — Te exp[—(7e + Te)T]
= =P, 1
p(7) T p (18)
which defines the effective probability of capture, p.. Conversely, if the trap is filled at the
beginning of the dwell time, then p(0) = 1 and C' = r./(c + r.). At the end of the dwell

time, the probability that the trap is filled becomes

Te + Te exp[—(Tc + 7e)T]
Te+ Te

p(r) =

El_pev (19)



which defines the effective probability of emission, p.. With r(,; = r.+r. these probabilities
can also be written

Te

P = [1 — exp(—TtotT)] » (20)
Ttot
Te

Pe = [1 — exp(—T¢otT)] - (21)
Ttot

3.3 Charge density model

The equilibrium charge density distribution in a given potential can be obtained by solving
Poisson’s equation. Since the potential is itself modified by the charges, both the potential
and charge density must be solved simultaneously. Examples of such calculations are given
in Hardy et al. (1998). The concentration profiles (Figure 6 in that paper) indicate that
the distribution is approximately gaussian as long as the density is small. This corresponds
to the (linear) density model

( ) S 1 (x - x0)2 1{y :
ne(2,y,2) = ——=75———€xp |—= -=|= -
Y (27)3/20,0,0., P17 Oy 2\ oy,

= Sg(z,y,2) (22)

where 5 is the total charge of the packet and g is the normalised gaussian density function.
g is the central coordinate of the packet along the TDI column (in the other coordinates
the packet is centred on y = z = 0). The standard widths o,, o, and o, depend on the
dimensions of the gate and the thickness of the buried channel and are assumed to be
known.

The linear model (22) cannot be used when the charge density approaches the doping
concentration, ng, because of saturation effects which set in at that density. This can
be seen clearly in Figure 6 of Hardy et al., where a doping density of ng = 10?2 m~3
was assumed in the centre of the buried channel. The total charge can however continue
to grow by increasing the width of the density distribution in all three coordinates. A
reasonable ad hoc model for the saturation process is

g S’g(w,y,z)
g + S/g($7y72)7

ne(z,y,z) = (23)
where the parameter S’ must be adjusted to give the correct total charge 5. Let us now
consider how S’ can be computed as function of 5.

The total charge at which saturation sets in is determined by the number of donors in the
ellipsoidal volume,
S0 = (QW)S/QUnyUynO. (24)

Roughly speaking, the linear model (22) is valid if S < Sy, while S > Sy gives a flattened
(partially saturated) density function. In terms of the dimensionless quantity u = 5'/Sg
the total charge is found to be

S = /// ne(z,y, z)dedydz = SoB(u) (25)



where

f/ o Z;dg ) (26)

We need the inverse of the function B(u), i.e. u(B). For given S we then have §’ =
Sou(S/So), whereupon the charge density follows from Eq. (23).

It is possible to tabulate B(u) once and for all by numerical integration of Eq. (26) and
then obtain u(B) by inverse interpolation. However, in the present simulations an ap-
proximate analytical method was used. It is easy to see that u < 1 (the linear case) gives
B(u) ~ u, while u > 1 (the saturated case) gives B(u) ~ (4/3/7)(Inu)*2. One can
then construct a formula which has the correct asymptotic form in these two cases, and
provides a reasonable approximation in the transition region u ~ 1. The following formula

was used: 23
uw(B)~ B-(1+ B>~ .exp [(MB)

: (27)

3.4 Simulation process

In an M-phase CCD the transfer of the charge packets by one pixel requires 2M steps. In
Figure 1 the duration (dwell time) of each step is denoted 7y ...75. The sum of these
equals the TDI period (At = 0.31 ms in the MMS design). It is assumed that the
charge density function n.(z, y, #) remains constant during the dwell time and then changes
instantaneously for the next step. This is reasonable because the time for the charge
distribution to reach equilibrium is of the order of (pixel size)/vy,, or nanoseconds, which
is short compared with the dwell time. In the simulations the given TDI period can in
principle be divided arbitrarily between the 2M dwell times.

Figure 2 is a block diagram of the simulation process. Together with Figure 1 this should
be almost self-explanatory. Only a few additional remarks are given below.

The light detection is simulated by computing the expected number of detected photons
during the TDI period,
E(k)=[b+ aP(z, — £ —vt)]/N, (28)

where b is the background count rate (including dark current), a the intensity and £ the
location of the star image; P(z) is the stellar point spread function, z, the position of
the pixel and » the scan rate. To each packet is then added a number of electrons, k,
generated as a Poisson process with expectation E(k). To simplify the process, this is only
done once per TDI step, rather than for the individual dwell periods. Since P(z) includes
the smearing due to the charge transfer over the TDI period, the end result will be very
nearly the same. a and b are expressed in electrons per CCD crossing; hence the factor
1/N to give the expected counts per TDI period.

For a given column geometry (number of pixels, number of gates per pixel, pixel dimensions
and channel depth) all charge packets are initially set to the given background level and
they are localised under respective gates. Similarly, empty traps are placed randomly
throughout the channel according to the given trap density. Separate initialisations of
the random number generator are used for setting up the traps and for the subsequent
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Figure 2: Block diagram of the simulation process.
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Figure 3: Evolution of the total number of filled traps in the TDI column in two experiments
with the same configuration of traps but different background levels, 6 = 1 and b = 5 counts per
pixel. The image size is @ = 100000 counts. Initially all traps are empty, but some are rapidly filled
by the background count rate. As the star image enters the column, more traps are successively
filled, presumably also those further from the centre of the channel. After the star image leaves,
the number of filled traps returns to an equilibrium level. The time constant for this is about 0.1 s.
Other parameters for the simulations are as in Table 1.

simulation of photon detection and charge trapping. In this way many different simulation
experiments can be made for the same configuration of traps.

On output, the number of charges, 5, in several successive packets around the expected
centre of the image are recorded. The position £ and size a of the stellar signal are
estimated by a maximum cross-correlation method (the background b is assumed known).
Only five successive pixel values 5; are used, centred on the highest value. Trigonometric
interpolation of P(z) is used to obtain the position at sub-pixel precision. The error in
the location, £est — Eirue, and aeq are stored for subsequent statistical analysis.

Typically only the transit of a single star across the CCD is simulated. This requires a
number of time steps (dwell periods) equal to 2M N, where M is the number of phases
and N the number of pixels. However, to correctly simulate the response to an isolated
star requires that the traps have first reached an equilibrium state determined by the
background rate b. Currently this is done by setting the star location £ in (28) to such
a large value that the simulation runs for a few thousand TDI periods with only the
background, before the star image enters the CCD. The required time for equilibrium can
be estimated by monitoring the total number of filled traps as a function of time (Figure 3
shows a few examples).
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Table 1: Parameters used in the simulation experiments.

Description Designation Value
number of pixels N 2780
number of phases M 4
TDI period At 0.31 ms
time steps during transfer 7 =13 =75=1717 77.5 us
Tp=Ty=T6=78 0
packet size parameters Oy 0.36 ym*
(* during odd time steps) o, 2.00 pm
(o 0.04 pm
doping concentration ng 1022 m=3
temperature T 200 K
cross section of trap Oy 6 x 10719 m?
energy level of trap L, 0.42 eV
density of traps ny 0, 106 and 3 x 10'® m=3

4 Simulation results

The numerical results presented below should be regarded as a first demonstration of the
method, to be followed by more extensive experiments after reviewing and tuning the
model and its parameters.

The assumed parameters are summarised in Table 1. The temperature, pixel size and
number of pixels correspond to the current MMS design. The doping density and the
packet size parameters 0., o,, 0. were essentially estimated from Hardy et al. 1998,
assuming that the packet size scales roughly with the dimensions of the gates. The trap
characteristics (o; and F}) were also taken from that paper, but they are similar to figures
published elsewhere for the phosphorus vacancy complex.

The stellar point spread function P(z) (at pixel resolution) was taken to be a very
schematic (0.02, 0.04, 0.24, 0.40, 0.24, 0.04, 0.02), i.e. with 40 per cent of the energy
falling in the central pixel, and so on. It should be noted that there is a roughly similar
distribution of the energy in the perpendicular coordinates (i.e. into the adjacent columns),
which needs to be considered for converting the signal sizes into stellar magnitude. For
instance, a star of magnitude G = 15 produces a total of 29 400 electrons during a CCD
crossing (0.86 s), half of which (or less, depending on the transverse smearing) may come
from a single pixel column. Thus we can roughly take ¢ = 10* to correspond to a 15th
magnitude star. It is this @ that is plotted on the horizontal scale in Figures 4 to 9. It
should not be confused with the charge packet size, which of course increases during the
integration, and reaches at most 0.40a at the end of the integration.

Figures 4 to 9 contain the main results of the simulations. For given trap density, a fixed
(but initially random) configuration of traps was used, and batches of 10 simulations were
made for each combination of signal size (a) and background level (b). The points in the
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figures always represent the mean or standard deviation of the 10 individual simulations.

Figure 4 shows that a considerable systematic shift of the image occurs, especially for
small signals (faint stars). As expected, the effect depends also on the background level
and can be reduced by increasing the background. Figure 5 suggests that the shift is
roughly proportional to the trap density. Assuming that the mean shift can be calibrated
as function of ¢ and b (and time), a more relevant quantity is the standard deviation of
the shifts (Figure 6). This must be compared with the standard deviation obtained in
the nominal case of no traps (Figure 7). The median ratio between the corresponding
points in Figures 5 and 6 is 1.20+0.07. Assuming that the added variance is proportional
to the density of traps, we derive the following tentative formula for the increase in the
astrometric standard error as function of trap density:

Tt

7 - w + (29)
oo 2 x 1016 m=3"°

Apart from the shift, the signal is also reduced by the trapped and deferred charges. This
is shown in Figures 8 and 9, again for the standard trap density n; = 10'® m=2. Clearly
this will complicate the photometric calibration and introduce an additional error source
in the photometry. The non-linearity of the charge deferral may also affect the capability
to disentangle complex objects such as double stars.

5 Conclusion and future simulations

Tentatively, for the particular parameters assumed in the present simulations and without
any special design features for reducing the effect, it appears that a maximum tolerable
trap density is about 101 m™>. According to Hardy et al. (1998) such a trap density
could be produced by a 3-MeV protons at a fluence of about 1.8 x 103 protons m~2. For
‘standard’ 10-MeV protons the same effect should be obtained by 5 x 10'® protons m™2
(using Fig. 1 in Dale et al. 1993).

As can be seen from the figures, the 10 simulations per parameter set is really an absolute
minimum for getting any useful statistics at all. A major disadvantage of the present
method is its computational slowness, and even the meager results shown here required
several days of CPU time on a workstation. For future simulations several tricks could
however be used to speed up the calculations, and we also consider the use of a much
faster, multi-processor computer.
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Figure 4: Mean shifts of the PSF profile due to charge trapping, as function of signal size a
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no shift is expected — the curve shows only the positive random fluctuations), n; = 10° (as in

Figure 4) and ny = 3x 101 m~3. The last two curves indicate that the shift is roughly proportional
to the trap density.
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Figure 7: Standard deviations as in Figure 6, but without traps (n; = 0). The mean shift of the
curves between Figure 6 and this figure is about 20 per cent, which is the increase in the centroiding
noise caused by the traps. This relative increase appears to be practically independent of signal
size and background level.
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Figure 8: Number of deferred charges in the experiments of Figure 4 and 6. The number of
deferred charges is defined as a@ipye — dest, Where a is the signal size in electrons.
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Figure 9: The same results as in Figure 8, but expressed as the fraction of deferred charges,
(atrue - aest)/atrue~
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