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Abstract
This note is an attempt to define precisely the meaning of ‘Normal Place’ in the context
of linear least-squares problems. Under certain conditions, it is found that the use of
normal places allows an exact decomposition of the problem. Its relation to the Ring
Solution and the Ring-to-Sphere Solution is briefly discussed.
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1 Introduction

The use of ‘normal places’ (Normalorte in German) is ubiquitous in older astronomical litera-
ture, e.g., for least-squares determination of the orbits of asteroids, comets and visual binaries.
The basic idea is that multiple observations that have been made within a limited time interval
(say a single day, month or even year, depending on the period of the orbit) can sometimes be
grouped together, and subsequently treated as a single observation with the combined weight
of the individual observations. When considering a single coordinate (e.g., declination δ) the
method amounts to computing a weighted mean of a group of residuals (O−C)δ with respect
to some reference orbit, and then treating this mean residual as an observation referring to
the weighted mean time of observation within the group (e.g., von Oppolzer, 1880, p. 371). Al-
though the practice of using normal places is probably at least as old as the least-squares method
itself, it is seldom explicitly described in textbooks and its theoretical foundation is even more
rarely discussed.

Using normal places can be seen as a kind of pre-processing or compression of the data, and
as such could greatly reduce the amount of computation needed to process long series of ob-
servations. Understandably, the method was therefore popular before the advent of electronic
computers. Nowadays it has largely fallen out of use since there is no longer any justification
for trying to reduce the number of data points prior to the least-squares adjustment, especially
since that procedure is likely to involve some approximations.

A somewhat related concept is the use of one-dimensional ‘star abscissae’ in the Hipparcos
data processing (ESA, 1997, Vol. 3, Ch. 9), and the two-dimensional positions obtained in
the so-called Ring Solution (Bernstein et al., GAIA-ARI-BST-001-5; Hirte et al., SH-003) as
part of the Gaia First-Look Processing. Thus the concept is by no means alien to the modern
thinking and a variant of it could perhaps be useful as a practical way to decompose the full
astrometric solution for Gaia, e.g., in terms of the Ring and Ring-to-Sphere solutions. It is
therefore interesting to explore the concept a bit further.

In this note I attempt to define the concept of normal places strictly in the context of linear
least-squares estimation (Sect. 2). It is shown (Sect. 3) that the procedure, under certain cir-
cumstances, is exact in the sense that it produces the same least-squares estimate as a direct
processing of the individual observations. An important modification (and generalization) is
proposed in Sect. 4. Finally, in Sect. 5 I briefly discuss its application to the more common
situation when the decomposition is not exact, with an example from Gaia and a possible appli-
cation to the Ring and Ring-to-Sphere solutions.

Technical Note 3



CU3-AGIS
Normal Places
GAIA-C3-TN-LU-LL-076-01

2 Mathematic formulation

We consider the linear least-squares problem of estimating the n-dimensional parameter vector
x based on a set of m > n uncorrelated measurements z. The observation equations are
therefore

Ax ∼= z (1)

where A is a known coefficient matrix of dimension m× n and rank n. We will use index i =
1 . . . n for the parameters and k = 1 . . . m for the observations; thus the observation equations
in (1) can also be written

∀k :
∑

iAkixi
∼= zk (2)

Here and in the following we use the convention that a subscripted summation symbol implies
a summation over the full range of that subscript.

Without loss of generality we may assume that all the observations have the same weight –
otherwise, just multiply each equation in (2) by the square root of the weight of the correspond-
ing observation (or divide by its standard deviation). The direct least-squares estimate of the
parameter vector is

x̂ =
(
ATA

)−1
ATz (3)

We shall now assume that the observations k are divided into subsets Kj , j = 1 . . . J , subse-
quently called groups, such that each k belongs to exactly one group. The original problem (1)
can now be divided up into the J partial problems

∀j : Ajx ∼= zj (4)

where Aj is the sub-matrix of coefficients obtained by deleting all rows in A except those
belonging to group j, and similarly zj is the sub-vector of measurements belonging to group
j. We use mj to denote the cardinality of Kj , i.e., the number of equations in (4) for each j.
Equation (3) can be written

x̂ =
(∑

jA
T
jAj

)−1 ∑
jA

T
j zj (5)

For each group we now introduce a normal place, yj . Each normal place is a vector of dimen-
sion pj , where 1 ≤ pj ≤ n. However, for simplicity we assume that the normal places all have
the same dimension p. Implicit in the concept of normal places is that p < n (although this is
not strictly necessary).

Using normal places, the least-squares adjustment proceeds in two steps: first, consider sepa-
rately each group of observations Kj and make a least-squares estimation of its normal place
yj . In the second step, all the normal places are combined in a least-squares estimation of x.
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3 Exact decomposition

Under certain conditions, the above procedure using normal places may produce exactly the
same estimate of x as the direct solution (3). To see this, suppose that each sub-matrix Aj (of
dimension mj × n) can be written

Aj = BjCj (6)

where Bj is a matrix of dimension mj × p and Cj is a matrix of dimension p× n. It is readily
seen that this decomposition is possible if and only if rank(Aj) ≤ p.

Then consider in the first step the J separate least squares problems

Bjyj
∼= zj (7)

Assuming that BT
j Bj is non-singular, the solutions are

ŷj =
(
BT

j Bj

)−1
BT

j zj (8)

The observations in (7) are uncorrelated and of unit weight according to our assumptions, and
therefore the covariance of ŷj is given by V j = (BT

j Bj)
−1. Using the Cholesky factorization

of the normal matrix,
LjL

T
j = BT

j Bj (9)

where Lj is a left-triangular matrix, we have V j = L−T
j L−1

j .

Let us now in the second step consider the ‘observation equations’

∀j : Cjx ∼= ŷj (10)

The normal places are mutually uncorrelated (since they are formed from disjoint subsets of
the observations), but they have in general covariances V j that are different from the identity
matrix. The observation equations (10) therefore need to be weight-normalized before they
are combined in a least-squares solution. Consider the transformed equations obtained by pre-
multiplying each equation in (10) with the transposed Cholesky factor:

∀j : LT
j Cjx ∼= LT

j ŷj (11)

The covariance of the right-hand side is seen to be

Cov
[
LT

j ŷj

]
= LT

j Cov
[
ŷj

]
Lj = LT

j V jLj = LT
j L−T

j L−1
j Lj = I (12)

Thus we can treat (11) as a set of pJ uncorrelated, unit weight observations. Forming the normal
equations for x in the usual manner we find(∑

jC
T
j LjL

T
j Cj

)
x =

∑
jC

T
j LjL

T
j ŷj (13)
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Inserting (9) and (8) we have(∑
jC

T
j BT

j BjCj

)
x =

∑
jC

T
j BT

j Bj

(
BT

j Bj

)−1
BT

j zj

=
∑

jC
T
j BT

j zj (14)

Since BjCj = Aj we find (∑
jA

T
jAj

)
x =

∑
jA

T
j zj (15)

which is the same as the direct solution (5).

Thus we have shown that the use of normal places gives identically the same estimate (and
covariance of the estimate) as the direct solution provided that:

1. the partial observation equations matrices Aj are factored as in (6)

2. the full covariance matrices of the resulting normal places are considered when they
are combined in the second step of the procedure.

As previously remarked, the required factorization of Aj is possible if its rank is at most p, the
dimension of the normal place. On the other hand, the calculation of the normal place through
(8) requires that the rank of Bj is exactly p, so that we should have rank(Aj) = p. In particular,
at least p observations are needed in each group (mj ≥ p). In the following sections we consider
how this requirement can be somewhat relaxed.

4 Using information arrays instead of normal places

The condition that BT
j Bj should be non-singular can be relaxed if the normal place and its

covariance is replaced by the slightly more general concept of an information array. The in-
formation array is simply a compact representation of the normal equations in their properly
normalized form – so that the inverse of the normal matrix, if it exists, equals the covariance of
the least-squares estimate. For example, the information array representing the direct solution
(3) consists of the n(n + 3)/2 non-redundant elements of the n× (n + 1) matrix[

ATA ATz
]

(16)

For each group, the processing of the observation equations (7) gives the partial information
array [

F j f j

]
=

[
BT

j Bj BT
j zj

]
(17)

which of course exists also when F j is singular. From (14) we now find that the information
array for x̂ can be obtained by a simple processing of the partial information arrays:[

ATA ATz
]

=
[ ∑

jC
T
j F jCj

∑
jC

T
j f j

]
(18)

This procedure not only avoids the difficulty with possibly singular solutions for the normal
places, but is even simpler because the solutions need not be computed in the first place.
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FIGURE 1: Evolution of the singular values of the partial observation matrices Aj for the
five astrometric parameters, versus the length of the time interval confining the group j. Only
one-dimensional (along-scan) observations are considered, and the plot shows the maximum
relative singular value from many (≥ 1000) experiments using the nominal scanning law for
random positions on the sky and for random starting times of the group.

5 Approximate decomposition

In reality it will seldom happen that the observation equations have a structure that will allow an
exact decomposition according to (6).1 Moreover, rounding errors might change the rank of the
problem. Thus we must in practice consider the effective rank of the partial problems (4) and
possibly allow some slight loss of accuracy due to the neglected components. Here, we should
be guided by a good physical insight into the problem and numerical experiments.

As an example, let us consider the determination of the five astrometric parameters of a star
from one-dimensional (along-scan) measurements made according to the nominal scanning law
of Gaia. In this case the number of unknowns is n = 5, and the observations matrix obtained
in a five-year mission will normally have full rank, rank(A) = n. However, if a group of
observations Aj is restricted to a short time interval, say at most T days, we will often find
that rank(A) < n. If we are going to use normal places of dimension p < n to represent the
observations in each group, it is necessary that rank(Aj) ≤ p for every j. For given T , what is
then the minimum p? Or, for given p, what is the maximum T ?

1Disregarding the trivial cases J = m (with p = 1) and p = n (for any grouping).
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The condition of each group is quantitatively given by the singular values σ1 ≥ σ2 ≥ · · · ≥ σn

of Aj , or more precisely by the relative singular values σi/σ1 for i = 2 . . . n (assuming that
each group contains at least one observation, so that σ1 > 0). The interesting quantities are
the maximum relative singular values, maxj(σi/σ1), obtained for many different matrices Aj ,
as function of the group interval length T . Figure 1 shows the result of such a calculation.
The behaviour for the second largest singular value σ2/σ1 is roughly as expected: it shows that
even for short time intervals of a day or less, you need to consider at least two-dimensional
normal places. The behaviour for the next largest singular value σ3/σ1 is somewhat surprising.
It remains below a level of ' 10−3 up to T ' 30 days, after which it quickly rises.

A possible conclusion from this analysis is that, in the context of a Ring and Ring-to-Sphere
type astrometric solution, one must use (at least) two-dimensional normal places in the Ring
Solution, but that the time interval for each Ring Solution (using two-dimensional positions)
could be as long as a month. Whether this is useful or practical from other considerations is of
course a different matter.

Using two-dimensional normal places somehow seems to imply that the effects of proper motion
and parallax are neglected, and therefore it is surprising that the actual sizes of the parallax or
proper motion effects did not come into the discussion. After all, the proper motion over a 30-
day interval will be very significant for most Gaia stars. But this is not a correct interpretation
of what the normal places mean. They are always defined as estimates based on a group of
residuals (O−C) with respect to a reference solution (C), not of the observations (O) themselves.
This is necessary in order to take into account the many other things that affect the observation,
such as stellar aberration and calibration data. Eventually, the reference solution will have to
include (most of) the proper motion and parallax effect as well, and their absolute sizes then
become irrelevant for the solution. Thus iteration will be an essential feature of such a solution
(also for other reasons), but its convergence properties might be very different from AGIS.
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