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Summary

The wordplanetcomes from Greeklanetes wanderers, because the planets
appear to wander across the celestial sphere, contrarg fodd stars.

This thesis presents several methods for using this matidistinguish between stars and
solar system objects in order to detect and track NEOs, Naxdin Bbjects: Asteroids and
comets following paths that bring them near the Earth. NE®@® [collided with the Earth
since its formation, some causing local devastation, s@using global climate changes,
yet the threat from a collision with a near Earth object hdg cecently been recognised
and accepted.

The European Space Agency mission Gaia is a proposed spsee/atory, designed to
perform a highly accurate census of our galaxy, the Milky Wayd beyond. Through
accurate measurement of star positions, Gaia is expectiddover thousands of extra-
solar planets and follow the bending of starlight by the Sundl therefore directly observe
the structure of space-time.

This thesis explores several aspects of the observatiore@is\Nwith Gaia, emphasising
detection of NEOs and the quality of orbits computed fromaGdiservations. The main
contribution is the work on motion detection, comprisingenparative survey of five
different motion detection tests, one of which is provedd@ptimal among all translation
invariant and symmetric tests.






Dansk resumeé

Jordneaere objekter

Ordetplanetkommer af det greeskdanetes vandringsmaend, idet planeterne
synes at vandre henover himmelhveaelvet, i modsaetning tdtfdasierne.

Denne afhandling praesenterer adskillige metoder der bdegme bevaegelse til at skelne
mellem stjerner og objekter fra vort solsystem, med hentdilat opdage og observere
NEOer,Near Earth Objectsasteroider og kometer, hvis baner farer dem teet pa Jorden.
NEOer har kollideret med Jorden siden dens tilblivelse. IBldgr blot forarsaget lokal
adeleeggelse, andre har forarsaget globale klimaforagehimen farst for nyligt er NEO-
truslen blevet anerkendt og accepteret.

Gaia er et foreslaet rumobservatorium (drevet af det elisigseumagentur ESA) der

har til formal at skabe et tredimensionalt stjernekort atihiiset ngjagtighed. Baseret pa
disse ngjagtige positionsmalinger forventes Gaia at opdiaginder af planeter uden for
vort solsystem, samt at fglge lysets bgjning forarsageobrs tyngdekraft, og herigen-

nem foretage en direkte observation af rum-tidens struktur

Denne afhandling undersgger adskillige aspekter af oasenvaf NEOer med Gaia, med
seerlig veegt pa detektion af NEOer og kvaliteten af banepeatrarberegnet ud fra Gaia-
observationer. Det primaere bidrag er inden for detektiobeategelse, og bestar af en
sammenlignende oversigt over fem forskellige metodereiiebgelsesdetektion, hvorun-
der en vises at veere optimal blandt alle symmetriske ogla@ossinvariante tests.
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Chapter 1

Introduction

Figure 1.1: Near Earth Asteroid Eros at a distance of 200 km, imaged bNf&R-Shoemaker
spacecraft less than a year before it landed on the astétmg.is a large NEA, measuring about
33 x 13 x 13 kilometers (image courtesy of APL/NASA).

Each year during the recent history of the Earth, an averagpmoximately 18 kg of
meteoritic material has been falling onto it, ranging iredimm microscopic dust particles
to asteroids several kilometers across [Ceplecha 1992t Mlfothe influx comes from
bodies more massive than®1Rg. An object whose orbit brings it sufficiently close to
that of the Earth, thus having a non-zero long-term profigluf impacting it, is called a
Near Earth Objectabbreviated NEO.

Although the annual probability of the Earth being struckadwarge asteroid or comet is
extremely small, the consequences of such a collision acatastrophic that it is prudent
to assess the nature of the hazard.

This thesis illuminates some aspects of observing NEOs aopopes elements of a
method to facilitate the computation of orbits using daterfithe Gaia satellite.

1



2 S. Wolff

1.1 Near Earth Objects

NEOs are objects that have been “nudged” out of their stafeotypically due to grav-
itational perturbation by one or more of the major objectthefsolar system. Depending
on that origin, they may be divided into two main categoridsar Earth Comets (NEC)
and Near Earth Asteroids (NEA). It is customary to imposeveelosize limit, typically
a diameter of 50 meters, to distinguish between “space elldid NEOs capable of
penetrating the Earth’s atmosphere.

Near Earth Asteroids

Near Earth Asteroids originate in the Main Asteroid Belt ffog Main Belt), a region in
space between the orbits of Mars and Jupiter. Several hdridoeisand asteroids are
known and catalogued. The Main Belt extends from aboli®atronomical Units (AU)
from the Sun to about.3 AU.

Near Earth Asteroids are divided into the following thremilges of asteroid: Atens,
Apollos and Amors. Each family is named after the first astediscovered, belonging
to that family. Figure 1.2 shows typical orbits for each fiymi

Atens have semi-major axes smaller than Earth’s. Their aphelistarnice is larger than
that of the Earth. They were named for asteroid 2062 Aten.

Apollos have semi-major axes larger than Earth’s. Their perihdligtance is smaller
than that of the Earth. These asteroids were named for 186R20Ap

Amors have semi-major axes larger than Earth’s. Their perihdligtance is between
1.017 AU and 1.3 AU, placing these objects outside the offtitasth. The family
is named after 1221 Amor. The asteroid 433 Eros (see figudebklbngs to the
Amor family of asteroids.

The orbits of Atens and Apollos cross that of the Earth, wagtée orbits of Amors do
not. Amors can be considered to be “Earth-approacherdigerdahan “Earth-crossers”.
Apollos spend most of their orbital period outside the odbithe Earth, whereas Atens
spend most of theirs inside the orbit of the Earth. Asteruiils orbits always inside that
of the Earth (IEO, Inner Earth Object) also exist, but onlyew fare known, since such
objects are difficult to observe from the Earth, always beiegr the direction of the Sun.

The near Earth asteroids are by far the most frequently vbdeMEOsS.

Near Earth Comets

Comets come from the outer reaches of our solar system. H&acth orbit crossing
comets must have highly elliptical orbits. Like the astdspicomets are also subdivided
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Figure 1.2: The orbits of the Earth, Mars and typical Aten, Amor and Apalsteroids.

into groups: Short-period comets and long-period cometi® former group is believed
to originate in the Edgeworth-Kuiper belt, a region of spgst beyond the orbit of Nep-
tune, now known to be occupied by thousands of icy bodies.Edgeworth-Kuiper belt
is thought to be a thick band around the ecliptic at a distévet@een 30 AU and 50 AU
[Allen 2001] from the Sun. The long-period comets are belkto originate in the Oort
Cloud, a region of space much farther away (50,000 AU) frommShin. As opposed to
the Edgeworth-Kuiper Belt, observations of long-periothets show no preferential di-
rection of origin, suggesting that their region of origirofsspherical, rather than toroidal
shape. Comets having an orbital period shorter than 200 kedrs are considered short-
period comets, comets having an orbital period longer tid@Earth years are considered
long-period comets. The comets coming close to the orbihefEarth are presumably
perturbed out of the stable Edgeworth-Kuiper Belt or Oodud orbits by the resonant
gravitational influence of the giant outer planets.

1.2 Impact Risk and Consequence

The Minor Planet Center of the International Astronomicalidh considers an object
“potentially hazardous” when its minimum orbit intersectidistance (MOID, see glos-
sary in appendix A) is less than 0.05 AU (about 20 lunar distahpand the absolute
magnitude (see section 2.2) of this objecHs< 22, roughly corresponding to a diam-
eter of 150 m or larger. As of August 2005, there are more tithKnownPotentially
Hazardous ObjectéPHO) according to NASA/JPL There are more than 150 PHOs of

Lhttp:/neo.jpl.nasa.gov/
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absolute magnitudel < 18, roughly corresponding to a diameter of 1 km or larger. The
minimum orbit intersection distance threshold corresgamadighly to the maximum or-
bit perturbation that could be caused by the gravitatiomdience of other solar system
objects within the next century [Virtanen 2005].

To estimate the order of magnitude of the amounts of energyhviad in an impact, as-
sume a small spherical NEO of 50 m diameter and a density-ef2g/cm?, impacting
the Earth. We will assume that all of the kinetic energy issfarmed immediately when
the NEO strikes the Earth with an impact velocity of 20 km/$yf@ical impact velocity
according to [Chyba 1991] and [Ceplecha 1992]). The madseobbject is thus approx-
imately 131,000 tons, which yields a kinetic energy of al®ut10'° J, equivalent to the
explosive energy of about 6 megatonnes of TNT, or about 3@@sHima bombs.

An object of this size is assumed to have exploded sevem@nlgters above Tunguska,
Siberia in 1908, flattening more than 2000 square kilomeiéfsrest. It is estimated
that one such object impacts the Earth every few hundreds B0 Taskforce 2000].
Even small impactors may cause significant damage, albit@cally. An impact in an
extended urban area will cause an enormous death toll. mpéglobal consequences
to climate, corresponding to impactors greater than 600renestimated to occur on the
average every 70,000 years. A more recent estimate [Mdliétlal. 2002] points to
impact frequencies about one fourth of this, proposing amtimae between impactors
greater than 600 m of 240,000 years. Despite their relatingyy an actuarial assessment
estimates that the 2 km objects pose the greatest risk [CleplE992].

The threat of impacts has only recently been recognisedigivradvances in telescope
technology and the collision of fragments of the comet StedamLevy 9 with Jupiter in
1994. In May 1998, NASA committed to discovering 90% of albkneter-sized NEOs
within ten years, the so-callespaceguard GoalAccording to [Jedicke et al. 2003], this
goal is not feasible given the current effort. The same papeposes a space-based
survey as a means to achieve the goal, or, alternativelynarediate significant increase
of the limiting magnitude of existing Earth-based surveygsammes. Continuing at the
level of performance of the period 1999-2000, the authdimese it would take another
33+ 5 years to reach 90% completeness.

The main task of the European Space Agency mission Gaia ig&sune the positions,
distances and other physical characteristics of about dimenbstars in the Milky Way
and beyond. The Gaia satellite is scheduled to launch in 3@at-2012, and will not
help achieving the Spaceguard goal within ten years of ti88 t@mmitment, but will
add significantly to our knowledge of NEOs. This thesis ergdaseveral aspects of the
observation of NEOs with Gaia.

1.3 Thesis Organisation and Contributions

Following this brief introduction to near Earth objects tiext chapter will provide an in-
troduction to astrometry and celestial mechanics, withleass on three-body orbits and
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Lagrange points. Chapter 3 compares the capabilities ofitie Earth-based NEO search
programmes to those of ESAs space-based survey missiondeaiibed in further de-

tail in chapter 4, exploring the potential for observing NE®ith Gaia. This chapter

also contains new results regarding the probability offigsibservations of fast-moving
objects. The main contribution of this thesis is presentechapter 5. Four methods of
motion detection are introduced and their relative pertoroe analysed.

A fifth, novel, method is also presented and shown to be opamang all translation in-
variant methods assuming a symmetric velocity distributithe relative performance of
all five tests is compared, and their individual advantagesiisadvantages are discussed.
The optimal method is then applied to simulated Gaia obsena Finally, the properties
of the velocity estimate emerging from two of the methodsex@mined with reference
to its use in orbit computation. Chapter 5 also describesrotion detection and motion
estimation may be used to reduce the workload when linkirsgotations to determine
a preliminary orbit. Classical and modern methods for prelary orbit computation are
presented in the penultimate chapter, covering the sea@huss-Encke-Morton method
and introducing orbit computation by statistical inversioethods. Possible avenues of
future work are presented in chapter 7, along with a summatigeowork presented in
the thesis. Appendix A contains a glossary of relevant terms



Chapter 2

Astrometry and Orbital Dynamics

2.1 Coordinate Systems in Astronomy

The most commonly used coordinate systems in astronomyphegisal coordinate sys-
tems originating in deliocentric(Sun-centeredgeocentriq Earth-centered) dopocen-
tric (observer-centered) view. The celestial sphere is an maagispherical surface on
which all the celestial bodies have apparently been placethe case of the topocentric
coordinate system, the boundary between the visible aridilie parts of the celestial
sphere is called the horizon. The poles of the horizon, e ,points on the celestial
sphere directly overhead and straight down, are calledegh#lzand nadir, respectively.
The celestial sphere appears to rotate about a point in theTdks point is called the
North Celestial Pole for an observer on the Earth’s nortihhemisphere. For an observer
on the southern hemisphere, the corresponding point waailtid South Celestial Pole.
The great circle intersecting the celestial poles as wetha®bserver’s zenith and nadir
is called the celestial meridian.

The planets appear move nearly on the same plane on theiaedpstere. This plane is
that of theecliptic. the plane of the Earth’s orbit around the Sun. The ecligitlied
aboute = 235° with respect to the celestial equator. The two points whetestial
equator intersects the ecliptic plane are called the egemoThe equinox that the Sun
appears to pass as it appears to move northward is callecethalvequinoXT, since
this happens near the 21st of March. It is also called theagmquinox. Six months
later, the Sun appears to pass the opposite intersectiot) pailed the autumnal equinox.
This connecting of the equinoxes to a particular season reagebn as an unfortunate
association, as the seasons on the Earth’s southern heresate the opposite of those
on the Northern hemisphere, e.g., the spring equinox hapgenng the autumn on the
southern hemisphere.

The following sections briefly describe the most commonlgdusoordinate systems in
astronomy.
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The Horizon System

The astronomical horizon is defined as the intersection ®fcéiestial sphere with the
plane whose normal is given by the direction of the obsesvecal gravity field. The
direction of this gravity field is called the astronomicaitti@al and its point of intersection
with the celestial sphere is called the astronomical zenilthe definition of the origin

of longitudes varies. The altitude of a point P on the celestial sphere is the angular
distance measured positive towards the astronomicalziaih the astronomical horizon
along the great circle passing throughand the astronomical zenith. K is below the
astronomical horizon, the altitudeis measured negative from the astronomical horizon
towards the astronomical nadir.

The altitude of the North Celestial Pole is the observertroa®mical latitude.

The azimuthAis the angular distance from the origin of longitudes in &klise manner
(north-east-south-west) along the astronomical horizothé intersection of the great
circle passing through the poif® and the astronomical zenith with the astronomical
horizon.

In the horizon system, the altitu@es a representation of latitude and the azimAtls a
representation of longitude. The azimuth is ambiguouseapties.

The Equatorial System

Celestial north pole

e i
Celestial south pole

Figure 2.1: The equatorial reference system. Positions are desigbgtétkir right ascensiony
anddeclinations. From [Danby 1988].
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Instead of using the astronomical horizon as the fundarheintée, the equatorial system
(figure 2.1) uses the celestial equator, i.e., the gredecitee poles of which are the North
and South Celestial Poles, found by extending the Earthé&aixotation to the celestial

sphere. Corresponding to the altitude, there is the dewimd, defined as the angular
distance measured positive toward the North Celestial Roha the celestial equator
along the great circle passing through the point in questimhthe North Celestial Pole.
For a point on the south celestial hemisphere, the dedin&imeasured negative toward
the South Celestial Pole along the great circle passingigitrohe point in question and
the South Celestial Pole.

The right ascensioa of the pointP is the angular distance from the vernal equifiox
measured toward the east along the celestial equator totdeséction of the celestial
equator, and the great circle passing through the goiamd the North Celestial Pole.

The Ecliptic System

North pole of
ecliptic

Ecliptic

Celestial
equator

South pole of
ecliptic

Figure 2.2: The ecliptic reference system. Positions are designataddiyecliptic longitudex
andecliptic latitudes. From [Danby 1988].

The ecliptic system (figure 2.2) uses the ecliptic as theeefse plane. The ecliptic (or
celestial) latitudes of the pointP is the angular distance measured positive toward the
north pole of the ecliptic from the ecliptic along the gremtle passing through® and

the north pole of the ecliptic. The ecliptic latitu@eof a pointP on the southern ecliptic
hemisphere is measured negative from the ecliptic towagdstiuth pole of the ecliptic
along the great circle passing througrand the north (and south) pole of the ecliptic.
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The ecliptic (or celestial) longitude of the pointP is the angular distance measured
toward the east, from the vernal equin®X along the ecliptic to the intersection of the
great circle passing through the poiftsand the north pole of the ecliptic with the celes-
tial equator.

2.2 On Magnitudes

Hipparchus was among the first to classify stars accorditigeio brightness. He divided
the visible stars into six classes, the brightest in clasadLthe faintest in class 6. As
technological progress has enabled astronomers to obsezvéainter objects, a need to
extend and formalise this classification emerged. By intoing a logarithmic scale, such
that five steps in magnitude corresponded to a factor of 10®émsity, a classification
embodying and extending the original ancient Greek systasimtroduced. A magnitude
difference of one corresponds to an intensity ratiovdf00 ~ 2.51. In this way, the
original classification could be retained while enablingter stars to be classified. Since
fainter objects have higher magnitudes, very bright objewy have negative magnitudes.
In this system, Polaris, the North Star, has a mean magniti@l, whereas Sirius,
one of the brightest stars, has a magnitude- ©f46, corresponding to an intensity ratio

of /100 A48 27. The intensity of Sirius thus is about 27 times greaten tha
that of Polaris. The magnitude of the full moon is abetit3.6, and that of the Sun is
about—26.7. In favourable observing conditions, the faintest olgetsible to the naked
eye are of magnitude about 6, corresponding to the faintass cecorded by Plato and
Hipparchus. This implies that the intensity of the Sum-islO'3 times greater than the
intensity of the faintest stars visible to the naked eyesditig to the impressive dynamic
range of the human visual system. Using the Hubble Spacacigle, stars as faint as
magnitude 30 have been observed.

Since all these observations are done on or near the surfaloe Barth, this classifica-
tion is called the apparent (or visual) magnitude, dendted he absolute magnitude is
determined by scaling the magnitude corresponding toipasiilg the star 10 parsecs (1
parsec equals 3.26 light years) away, thus eliminating ffieeteof distance. The Sun has
an absolute magnitude of3! If the Sun was 10 parsecs away, it would be scarcely visible
to the naked eye.

Solar system objects, however, would be practically il&siwhen placed 10 parsecs
away from the observer, so they are normalised at 1 AU. Simesetobjects do not emit
light by themselves, but only reflects light received fromght source (the Sun), they
add the complexity of distance to the light source as welhaphase anglethe angle
between the observer and the light source, as seen from sieevaldl object. The absolute
magnitudeH of solar system objects is determined by normalising theadce from the
observer to the object as well as the distance from the ligintce to the object to 1 AU,
while having a zero phase angle. This corresponds to putiatight source and observer
at the same place while observing an object 1 AU away. An itapbfigure relating the
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diameter of an object to its absolute magnitude isdheedq the ratio of the reflected
light to the received light. Near Earth objects reflect betwd% and 50% of the incident
light, depending on taxonomic class. A typical value for amarth asteroid is about
15% [Morbidelli et al. 2002].

It has been deemed useful to introduce a special magnitadieGdor use with the Gaia
satellite. The relation betwed&b andV depend on the spectrum of the received radiation.
For asteroids, having spectral paraméfer | = 1 according to [Hgg & Knude 2001],

V — G =~ 0.25 according to the latest desfgiThis means that the Gaia’s limiting magni-
tude (the brightness of the faintest objects fully treatedslia) ofG = 20 corresponds

to a visual magnitude 0¥ ~ 20.25 for asteroids and NEOs. However, because Gaia’s
limiting magnitude has not yet been fixed, we will assu@g, ~ Vim ~ 20 for the
remainder of this thesis.

2.3 Keplerian Orbits

This section presents and derives Kepler's three famougeadpaws [Danby 1988] and
provides an essential basis for chapter 6 on the computattmnbits [Murray & Dermott 1999].
In this and the following chapters, overdot (e XJ.refers to differentiation with respect to
timet. Circumflex (“hat”) refers to a normalised vector, esgis a unit vector parallel to

X. We will assume mass@s > 0 and distances > 0. Recall also that the scalar (or dot)
product of a vector and itself equals the magnitude squarbd.vector (or cross) prod-

uct of two perpendicular vectors (such as the position amakcitg vectors of an object
undergoing circular motion) is the product of the magnitidithese vectors.

Kepler's Empirical Laws

By meticulously studying Tycho Brahe’s observations of fi@nets, Johannes Kepler
discovered the following three laws of planetary motiorhat beginning of the 17th cen-
tury:

1. The orbits of the planets are ellipses, with the Sun at ooed of the ellipse.

2. The line joining the planet to the Sun sweeps out equakareaqual times as the
planet travels around the ellipse.

3. The square of the period of a planet’s orbit is proportiomaéhe cube of the semi-
major axis of that planet’s orbit; the constant of propartéility is the same for all
planets.

1Gaia Parameter Database (restricted access), Astro:Affillie_VMInG, contains an approximate
expression, dated February 2005, Yo G as a power series M — |, derived by C. Jordi.



Near Earth Objects 11

In the following sections, these three empirical laws wdldhown to hold true in a New-
tonian universe.

Two-body dynamics

Assume two particles of mass; andm; are affected only by their mutual gravitational
force, inversely proportional to the square of the distdreteveen the particles. The force
acting on particle 1 is directed towards particle 2 and vieesa. Satisfying Newton’s
third law, the forces are of equal magnitude and oppositctons. Letting o1 andr g
denote the positions of the particles with respect to sonealforigin in inertial space,
and denoting the displacement with= ro2 — ro1, the forces acting on the particles may
be written

Fi=mi01 = lemZ#

.. 2.1
Fo=mie = —gmlmZ#- (1)

Denoting the sum of the massks= m; + my, the center of gravity is defined as:

1 m; my
Co=w1 (M1ro1 + Molg2) = o + Vo2

The position vectors; = rq; —Cg andr, = rq» —Cg are vectors from the center of gravity
to object 1 and 2, respectively.

m1 mpy mpy
M1 ="ro1—Cy="Tlo1— <Vrl + Vrz) =M (o1 —ro2)
f[h=Trgp—Cqg=1T —(@r -l—@r)—ﬂ(r —ro1)
2—=102 g — o2 Ml MZ—M 02 ol
By differentiatingr twice:

. " " my .. " mp r ..
'1="Fo1 —Cg=— (o1 —Fo2) = — (GMa +GMy) — =To1,
1="Fo1—Cy M(ol 02) v (Gmy +Gmy) TE ol

we see thaty = 0 meaning that the center of gravity does not accelerate.eSioth of
the position vectors; andr are “attached” to the center of mass, it follows that

mqrq 4+ moro

=0 muri+mero=0 2.2
my -+ my vim ez (2.2)
This implies

my my mp M mp
r1:——r2:——(r+r1)@r1<1+—> =M—=——
mz mz mi
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which gives an expression of as a function of :

mamy mp
rh=- r=——r
miM M

A similar expression may be derived for:

ro= mlr
2T M
Differentiating these equations twice:
f = — 2y
Y
LY
SV

and inserting these expressions in the above differergiz#ons yields:

For object 1:

. my.. gmimg . gmgmgy
mry = —mlﬁf=— 2 1T 2
¢
gM
r == —r—zr
And object 2:
Moty = mzﬂ.r__gmlmzA
M r2
¢
gM
r - —r—zr

Giving the exact same equation, showing, that this probkedeantical to the one-body
problem of a particle of negligible mass orbiting an objeanassM.
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Kepler's First Law

We assume a particle acted on by a central force:

f

) P
F=—GM = —u (2.3)

The produciu = GM is the standard gravitational parameter, also called thedeatric

(or geocentric, depending on the central object) grawiteti constant. Apart from being

a convenient abbreviation, the producis known to a much greater accuracy than the
individual factorsG andM for the cases where the central object is the Earth or the Sun.

As shown in the previous section, (2.3) also describes taghmotion.

The angular momentum is usually given as the cross produbegbositionr and linear
momentunp vectors. Lettindh denote the angular momentum per unit mass:

1
h=—r =r xfF,
m X P X

the conservation of angular momentum may be shown as:

. f
h=fxf+rxif=04+r x (—Mr—2>:O
This shows that the position vector and the velocity vecteraways in the same plane,

perpendicular td, which means that the orbit is in that plane.

We will now show that orbits described by (2.1) are conic isest, thus verifying and
extending Kepler's empirical first law.

Taking the cross product of both sides of (2.3) witand usinga x (b x c) = b (a-c) —
c(a-b) yields:

-r-xh:_r“_zfx(rxr):_rﬁz(r(f.r)_r(f.r)) (2.4)

The dot products are:

-
—
Il

-,

-f
-r

™

f
ref

-

r

Using these, and the fact thiat= rf + rfin (2.4) yields:

.. | , n . . a 2 2
rxh_—r—z(rr—rr)_—r—2<rr—r(rr+rr))_ur
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Sinceh = 0, we have

%(fxh):i’xh+th=?xh=u?=M§f (2.5)

Integrating (2.5) with respect to time, we get

I xh=uf+c

for some constant of integratiane R2 which is independent of time. Dividing by
for convenience, we introduce another conserved quargitydtheLaplace-Runge-Lenz
vector(or just theRunge-Lenz vectde:

—f (2.6)

W W
Whereas conservation of angular momentum holds becaugiéygsaa central force, the
conservation of the Runge-Lenz vectis a direct consequence of the inverse-square law
of gravitation.

Taking the dot product af and (2.6) and using the relatien (b x ¢) = c- (a x b), we
get:

F x h 1 1 h-h h?
r-e:r-(r x —f) =—r-fxh—-r=—-h-(rxf)—r=———-r=——r (2.7)
" s s " s

The dot product can also be written as

r-e=recosv,

wherev denotes the angle between the vectoede. This angle,, is also called the
true anomaly Using this and (2.7), we get the orbit in polar form:

h? h?
recosv=——r &r=—— —— (2.8)

w u (1+ ecosv)
This polar equation describesanic sectionthe intersection of a cone and a plane (see
figure 2.3). By changing the angle and location of intersegtihe conic section changes
type. Omitting the degenerate cases, the conic section raay tircle, an ellipse, a
parabola or a hyperbola. If theecentricity gthe magnitude of the Runge-Lenz vector) is
equal to zero, the radius is constant, resulting in a ciraudait. For 0< e < 1, the orbit
is an ellipse, foe = 1 a parabola and > 1 indicates an hyperbolic orbit.

This shows, that the solution to (2.3) and to the two-bodybfem described above are
circular, elliptic, parabolic or hyperbolic orbits, thusnfying and extending Kepler’s first
law.



Near Earth Objects 15

ellipse circle
O O parabola
hyperbola /\

Figure 2.3: Conic sectionsthe intersection of a cone and a plane. Depending on the amgl
location of intersection, the conic section changes typee ifiverse-square law of gravitational
force implies orbits shaped like conic sections. From [Myr& Dermott 1999].

On Elliptic Orbits

Figure 2.4: A particle in an elliptic orbit about a parent body in the feda. The periapsis is
denoted byP, the geometric center b and the empty focus bl’. Thesemi-latus rectump, is
also shown.

In the following, we will examine the elliptic orbits (& e < 1).

The distance from the focus & 0) to the elliptic orbit, in a direction perpendicular to
the Runge-Lenz vector is called tkemi-latus rectump:

p=r (Z) = h—2 (2.9)
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To minimiser in (2.8), it is necessary to maximise aasT his means that the point closest
to the focus has = 0. Remembering that is the angle between ande, this shows
that the Runge-Lenz vecterpoints in the direction of the point of closest approach, the
periapsis For an object orbiting the Sun or the Earth, this is calleglglrihelionor
perigee respectively.

Conversely, the point of farthest distance is achieved whemntiparallel te, i.e., when
v = 7. This point is called thepoapsisapohelionor apogee depending on the object
which is orbited.

Half the distance between these extrema is called the (matgpof the)semi-major axis
denoted bya:

_1 _1(0p PY_ P
a=500+rm = (1re+1os) ~1oa (2.10)

Using the semi-major ax&, we can write the distance of periapsisias= a(1 — e) and
the distance of apoapsisds= a(l+ e).

The point between these extremities is gfg@metric center CThe distance between the
focus and the geometric center is:

_ 1 1/ p PN _ P
dc—é(f(ﬂ)—r(o))—z(l_e 1+e>_1—e26_ae

Reflecting one focus with respect to an axis thro@gand perpendicular te yields the
other focuds:

fo = —2ae

Combining (2.7) and (2.10), we see thate = p —r = a(l — € —r. This can be
employed to show that the distance between a point on tipsetliandf; is:

fo=|r + 2ae = /(r + 2ae) - (r +2ae) =2a —r,

implying f1 + fo =r 4+ fo =r 4+ 2a —r = 2a, introducing a way to define the ellipse:
The locus of points, satisfying|r — p1| + |[r — p2| = constant. This demonstrates the
symmetry of the ellipse with respect to an axis thro@gand perpendicular ta Because

of this symmetry, the point, on the ellipse having the greatest distance to a line through
C and parallel tee will be on the aforementioned axis of symmetry. This distgralled

the semi-minoraxis, can be found by regarding a right trian@g,f;. Sincery, is on the
axis of symmetry|ry| = f; = f, = a. The distance betweed and a focus has been
shown above to bdc = ae. Using the Pythagorean Theorem to fimd

b?=a’—(ae? =a’(1l—€’) & b=ay/1l— €
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Given an ellipse whose geometric center ixaty) = (0, 0) and whose major axis is
aligned with thex-axis satisfies:

2 2

X
a2

y

pz =1

+

This can be used to find the area by direct integration:

f_a/_/: \/ x2dx 2ba22 _ rab

Kepler's Second Law
Using f andé to denote unit vectors along and perpendicular to the ragtesor, the

velocityr is:

d Y
f:arfsz—l—l’QQ (2.11)

Using (2.11) to write the polar form of the angular momentwemymit mass yields:
h=r xf:r29<fxé),

The magnitude of the cross product of two perpendicular wedtors is unity, so the
magnitude oh ish = r24. Sinceh is constant, so ik.

The area swept out by an infinitesimal increase ia (see figure 2.5):

1 . 1.,. h
A== A= r% =~ 2.12
d 2r(rd9)¢> > 0 5 (2.12)

Sincer2f is constant,A is constant, showing Kepler's Second law: The radius vector
from the Sun to the planet sweeps over equal areas in equairdsnaf time.

Kepler's Third Law

As shown in (2.12), the swept area per time is:
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Figure 2.5: Area swept out by an infinitesimal increasefirfthe angleR'FR). The area of the
shaded isosceles triangle equaks g r (rdo) /2.

Knowing the area of an ellipse of semi-major axis and senmemaxisa andb, respec-
tively, to be A = wab, it is possible to determine the siderial periBd the time needed
to complete one revolution around the focus on the elliptixto

Ph B 2rab

P . Pl
A:nab:/ Adt:f Chat = — & P (2.13)
0 0o 2

2 h

According to Kepler's Third Law, the semi-major axis cubdubsld be proportional to
the siderial period squared. From (2.13), the latter mayxpesssed as:

2 (2 ab)?
p2 =122 (2.14)
Isolatingh? from (2.9):
h? = puza(l—ez),u (2.15)

and inserting this in (2.14):

2

) (zﬂab)z <27Ta2\/ 1- ez) 2a3
P = = :47T -
a(l—ez),u a(l—ez),u 7

This shows that, in accordance with Kepler's Third Law, titeesgal period squared is
proportional to the semi-major axis cubed.



Near Earth Objects 19

The Orbital Reference System

Figure 2.6: The relation between the true anomalgnd the eccentric anomaly.

Given a point on an elliptic orbit, a line may be constructed, perpendictd the Runge-
Lenz vectore, which, pointing in the direction of the periapd®s is parallel to a the line
connecting the focu§ and the periapsi®. Constructing this perpendicular line from
r and to its intersectioQ with a circle circumscribing the orbit (see figure 2.6). The
angle between the radius vector from the geometric cé&hterthis point of intersection
Q and the direction of periapsis is called tecentric anomalydenotedE. The relation
between the true anomaidyand the eccentric anomaby is:

r cosv = acosk — ae= a(cosk — e) (2.16)

Isolatingr in (2.16) and equating the result and (2.8), using: a(1 — €?) from (2.10),
yields:

a(coskE — e a(l-é? cosE — e
( ) = ( ) &S0y = —— (2.17)
coSsv 1+ ecosv 1— ecosE

Inserting (2.17) in (2.8) leads to a simple relation:

1- E
r = p% =a(l—ecosE) (2.18)

Using the Pythagorean Theorem to find siexpressed as a function &fleads to:

2
sinzvzl—coszvzl—( cosE—e) (1-¢)(1-cosE) 1-¢ si? E

1—ecosE) = (1—ecosE)?  (1—ecosE)
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Thus, we find sin, enabling the expression pkinv as a simple function of:

Nipr-.

——sinE
1—ecosE

sinv =

. J1—¢?
r sinv = a (1 — ecosE) T 6cosE

SinE = av1— e2sinE = bsinE
cosE

The orbital reference systemenotes a frame of reference in the orbital plane with the
X-axis pointing toward periapsis and tAeaxis parallel tch. Completing a right-handed
triad, theY-axis then points in the direction corresponding to a truenaaly of 90 de-
grees.

X = rcosv=a(cosk —e)
Y = rsinv=DbsinE =ay1-€e?sinE (2.19)
The time derivatives are:
X = —aEsinE

Y = aE+v/1-e2cosE

In this system, the angular momentum per unit nfassay be expressed as:

X X 0
h=rxft=|Y |x| VY |= 0
0 0 XY — XY
The magnitude ofi is thus
h=|XY — XY| =a’/1— €2 (1— ecosE) |E]| (2.20)
This may be compared to the square root of (2.15):
h=,a(l-e)u=na?yl-e, (2.21)
introducing themean motion n
2
n=L_ |1 (2.22)
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The time derivative of the eccentric anomaly (henceforguated to be positive) is de-
rived by equating (2.20) and (2.21):

a?/1—2(1—ecosE)E=na/1-@ o E=-— " _ (2.23)

1 - ecosE

According to (2.18), - ecosE = r/a, providing an alternative way of expressifg
namely

n an

~ 1—ecosE  r’

which leads to alternative ways of writing the time derivasi of X and:

2
. a‘n .
X = —r—smE
2
. a‘nv1— €2
Y = r—cosE (2.24)

By integrating equation (2.23), we obtdfepler’'s Equation

nt—T)=E—esinE (2.25)

whereT is the constant of integration satisfying the boundary @ E = 0 when
t = T. In other wordsT is the time of pericenter passage. The left side of (2.2%lied
themean anomaly

M=n(-T)

The mean anomaly expresses the position of an object inhbis @ a fraction of one
revolution. AlthoughM has the dimensions of an angle, and it increases linearthytixiie
at a constant rate equal to the mean motion, it has no simplaegeical interpretation.
However, it is clear that at periapsis, whiee: T + kP (for integerk), M = v = 0, and
at apoapsis, when=T + P/2+ kP, M =v = 7.

The Three-Body Problem

After Kepler, Newton, Hooke and their contemporaries soive problem of the orbit of

a single planet around the Sun, the natural next challenge¢avand the solution for two

planets orbiting the Sun. Many of the best minds in mathessaind physics worked on
this problem in the following 200 years.
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The first work went into finding an exact solution in analogythathe two-body prob-
lem. It was quickly recognised that the key was to find a seffithumber of conserved
guantities. Energy, momentum, angular momentum, and th&ate-Runge-Lenz vector
(2.6) provide enough information to solve the two-body peol For problems where
there are enough integrals, the motion is quasiperiodigghty speaking, there are sev-
eral interdependent periodic motions, leading to a motigphase space which lies on a
multi-dimensional torus. It has since been shown that,Herthree-body problem, there
is not a sufficient number of conserved quantities: the thiegy problem is not “inte-
grable”.

The Restricted Three-Body Problem

Gradually, the problem was simplified in order to explorekbmel of the difficulty. The
original eighteen-dimensional problem (three bodieshdaaving six degrees of free-
dom) becomes twelve-dimensional when transformed to cefitimass coordinates. The
planar three-body problem, simplified by restricting thengts to a plane, is in eight di-
mensions. The restricted three-body problem sets one massd, and restricts the two
major objects to being in circular orbits about their cetiemass.

The approach taken in the following is similar to that of [IVay & Dermott 1999].

Consider three objects of masg, my andms. Letm; andmy be in circular orbits about
their center of mass. Furthermore, tet be a massless particle and let the masspf
be greater than that ah,. We assume that; andm; exert a force on the particies
although the particle cannot affect the two masses. Let tiiteofimass be chosen such
thaty = G(my + mp) = 1.

Following the above definitions, it holds th@in; = 1 — g andGmy = 1, where

_ mp
=< 2.26
I —— (2.26)

If the coordinates of the particle in an inertial system @ren, ¢) and the positions of
objectsm; andm, are(&1, n1, ¢1) and(&z2, 12, ¢2), respectively, the particle’s equations of
motion are:

F- a-pit a2t
1 r2

= Q- A (2.27)
1 2
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Wherery = /(&1 — §)2 + (11 — n)2 + (¢ — ¢)? indicates the distance from the particle

to objectm; andr, = /(&2 — £)2 + (12 — )2 + (&2 — ¢)? indicates the distance from
the particle to objeatn,.

If the two large objects are moving in circular orbits abdwgit mutual center of mass, the
distance between them remains fixed and their rotation atcufixed, common angular
velocity.

In a coordinate systefix, y, z), which rotates with the two main objects, centered on the
center of mass, the coordinates of the two main objects refixad. The transformation
from one coordinate system to another may be written as:

& cost —sint 0 X
n | =1 sint cost O y
¢ 0 0 1 z

Differentiating with respect to timeyields:

£ cost —sint 0 X—y
n | =] sint cost O y + X
c 0 0 1 z

Differentiating yet again yields:

£ cost —sint 0 X — 2y — X
i | =] sint cost O y+2Xx—y
9 0 0 1 7

Switching to a rotating reference frame introduces extmaseinx andy, corresponding
to Coriolis acceleration, and xandy, corresponding to the centrifugal acceleration.

Let R denote the rotation matrix:

cost —sint O
R=| sint cost O
0 0 1

Inserting the expressions fgr n and¢, and the corresponding time derivatives, in the
equations of motion (2.27) yields:

LR (- xg) — E (x —
R y+2Xx-y |=R| —3 (Y=Y~ 50~ ¥2)

Y4 1-
- - 5@
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By left multiplying the rotation matrix with its inverse (Wdh is equal to its transpose,
since any rotation matrix is orthogonal), rearranging, asdumingm; is located at

(X1, Y1, 21) = (—it, 0,0) andmy at (X2, Y2, 22) = (1 — 1, 0, 0), thus satisfying (2.2),

completes the transformation of the particle’s equatidmsation into this rotating refer-

ence frame:

X—1+pn

3
rs

X = 2y+x—(1—p)

X+
y

< =

y = —2>'<+y—(1—;1)r——;1 (2.28)

. 1—n [
Z = —(—3M+ﬁ3)z
r rs

wherer; = /(x4 )2+ y2+ z2 andry = /(x — 1+ 1)2 + y2 + z2. Since the per-
formed coordinate transformation is a pure rotatigrandr, are equal in the two refer-
ence frames.

3
1
3
1 r

Nw

Introducing the scalar functiod:

2 2 ~ ~
X< 4+ 1-—
= y+ M+—M

U
2 ri ro

(2.29)

The gradient of this scalar function yields another way dfing the above equations of
motion in the rotating reference frame:

. . 1)
X=2y = 3%

au

V22X = — 2.30

Y — 2X 3y (2.30)
au

0z
(2.31)

Adding these three equation after multiplying withy andz, respectively, yields:

L L PUNE (U (P ¥
¥y - 9X ayy 9z dt

This expression may be integrated with respect to time:

X% +y2+22=2U —C;
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whereCj is a constant of integration.

The quantityC;, called the Jacobi Integral, is a constant of the motion, By be
expressed explicitly:

1—
CJ=2U—>'<2—S/2—12:X2+y2+2< r “+rﬁ>—x2—yz—z2
1 2

The Jacobi Integral is the only integral of motion known tdsein the restricted three-
body system, so a general solution of this problem cannoipeessed in closed form.
However, although the Jacobi Integral cannot provide ait bgbitself, it may provide

information on regions of space into which the object in dgoeswill never venture, i.e.,
the Jacobi Integral may place bounds on the motion of a giegticte. The boundaries
between the domain in which the particle may appear and thaotoin which it cannot,

are the zero-velocity surfaces given by

P
CJ:2u2x2+y2+z< “+ﬁ>
I )

2.4 Equilibrium Points

A
L4
L3 s< L1 \E L2
—u 1
L5

Figure 2.7: The five equilibrium points, known as Lagrange poiats to L5, in the restricted
three-body problem. This diagram shows the Lagrange pmiritee case of the EartHE() orbiting
the Sun §). Not to scale.

By further restricting the previous chapter’s zero-veipsiurfaces to having zero accel-
eration, equilibrium points may be found, i.e., points wharparticle could be placed,
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with the appropriate velocity in the inertial referencenfi where it remains stationary
in the rotating frame. These equilibrium points are oftdfedd_agrange pointsafter the
discoverer, the French-Italian mathematician Josephsloagrange. This section shows
the location of each of the five Lagrange points, dendtédlL 2, L3, L4 andL5 (see
figure 2.7). The stability of each of these fixed points is a@samined.

Assuming =y =2=x=y=2=01in(2.28) yields:

_X+n _xX=14+p
0 = x—(1-pst-—pi—5—F (2.32)
r{ rs
_ _ - n
0 = y—(l—u)ls—u%:(l— ; ——3>y (2.33)
ri rs r{ rs
e
0 - _(_3“+ﬁ3)z (2.34)
r{ r;

Any equilibrium point must be in the-y-plane in order to satisfy equation (2.34). Letting
y = 0 obviously satisfies equation (2.33). This leads to theetbadlinear equilibrium
points. The case of # 0, theoff-axisequilibrium points, will be treated below.

The Collinear Equilibrium Points

Restricting the problem to the axis by imposingy = 0, leaves equation (2.32) to be
solved:

_X4+u _x=14pn T) m
O=x—-(1- — =X— - — — - -
= r3 " r3 X+wx+ul X=1+p@x—1+ pul

Assume that the location of the equilibrium point is betwdentwo masses, i.e5x <
X < 1— . Itfollows, that|x + | = x+ g and|x —1+ | = — (X — 1+ i1). Using the
distance tany, denoted by, as a variable instead &f by usingx = 1 — i —r», yields:

SR RPN A S (A
B H 2 (1—ry)? ” rs

r2
1-r2+ 3%
(1-rd)@L—-rp?

H 3
— =3
1- 1 2

(2.35)

For smallr,, the expression in the square brackets is approximatelgléqul, and a
solution is therefore expected near
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"
—_=3I’3¢>I’2=3—_
1-—pn 2 3(1—p)

To facilitate reading, the parameteis defined as

_ 4 K
«=J3a-% (2.36)

Inserting (2.36) in equation (2.35) yields

1 2
3I’§ —fet+3
(1-rd)@-rp?

o =

To get an approximate solution to the above equation, theeagxpression fow is Taylor
expanded, centered op = O:

2 .3
_ 2 2,934 5
a=rp+2+2+ i +0(r3)

A series of the formx = k + c¢ (k), wherec < 1 is a constant, may be inverted by:

= cldi-t -
K:k—i—Zdej_l[qﬁ(k)]J
=17

This inversion method is due to Lagrange (see e.g., [Whatt&kWatson 1927]).

In this case, the series may be rearranged:

o 1
2—Ol+(—§>¢(r2)

Here,c = —§ and

53
#(r2) =13 +13+ 13 +0(r5)

and
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2
[¢ (@)]? = ((xz +a3+ 2—30{4 + 0 <a5)> =a*+2:°+0 <a6)
% [ @)% = 403+100*+0 <a5)
[p@]® = a®+0()

d2
@] = 30a4+0(a5)

Performing the inversion yields,
2 3
o o 23 4

The position of Lagrange point L1 ifx, y, z) coordinates is thus:

a2 a® 23

Ll 1—f— (0 — — — — — —
( — (a 39 81a)00)

whereq is defined by (2.36).
Examplel. Assumei = 1—10. Henceo = ‘/3(1 5 = . The above series (2.37) yields

2 ~ 0.2886755068, corresponding to_ 1— 4 —rp =~ 06113244932,
whereas numerical solution of equation (2.32) yieiﬁign = 0.6090351100.
A

Looking beyond objean; (i.e., forx > 1—p), [X+i| = X+ and|Xx—1+j| = X—1+j1.
Using the distance, defined in thisinterval a3 = x—(1— 1), equation (2.32) becomes:

1 1
=A-p(l+r2———)-pnl5-r2] &
( M)( 2 (1—r2)2> M(rzz 2)
_ r2
I 3 1+|’2+§2
1- =% 3 2
iy (1-r3) @+

In analogy with the above derivation, the auxiliary vared) defined in equation (2.36),

is used:
r2
3 1+r2+ %
(1-r3)A+r2)
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and a Taylor series expansion performed:

2 3 4
_e_ 2, 2 5
which is inverted:
2 3
at 31 4 5
r2—a+§—3—aa +O<Ol) (238)

2 3
_ o o 31 4
L2~(1—M+O{+§—3—aa ,0,0)

whereq is defined by (2.36).

Example2. Assumein = ﬁo approximately equal to the Sun-Earth mass ratio. Hence,

a=J 3(1‘111) ~ 0.01. The above series (2.38) yields~ 0.01, correspond-
ingtox = 1— x4+ r2 ~ 101. This tells us that Lagrange point L2 in
the Sun-Earth system isl AU from the Sun, or approximatelyS.million
kilometers from the Earth.

A
The last of the collinear equilibrium points may be foundte tleft” of objectm;, i.e.,

forx < —p. Here,|x+ | = —(x+p)and|x — 1+ | = —(X—1+ ), hence,
introducingr; = —u — X as variable:

1 1
oO=A-p|(=-rn)-all+n-—— )«
( m(rf rl) M( +r1 (1+r1)2>

7 1 [ (1=r3)@A+r)?
1l_L 1 33 — r21) (2.39)
H 1 1+r1+ 3

Introducing the variablg = r1 — 1 and Taylor expanding equation (2.39) abgut 0
yields:

L 12 144 1567
K B+ 2——,83+O(,84>

1-a 7 29" " 323

Inverting as previously, this time using/(1 — &) as a variable, yields:
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7 Q 7 ( i \? 13223/ i \° o\
ﬂ‘_ﬁ(l—a>+1_2(1—a) _20736(1—u> +O<(1—a>> (2:49)

The position of Lagrange point L3 ifx, y, z) coordinates is thus:

L3~ (=4 —(1+4),0,0

wherep is defined in (2.40).

Example3. Using i = =, i.e., ﬁ = ¢ yields g ~ —0.05848790570 corresponding
tori = 14+ B8 ~ 0.9415120943. Solving equation (2.39) numerically yields
MNum = 0.9416089086.

A

The Off-Axis Equilibrium Points

We now turn to the case of # 0. To satisfy equation (2.34}, = 0 still holds. In the
following, the problem will be regarded in they-plane only.

Consider a massless particle, stationary in the rotatifeyerce frame. In the inertial
frame, the particle will describe a circular orbit around tirigin. The resulting forc&
acting on the particle is at all times directed towards theereof mass. If the particle is
located at(x, y), the gravitational pull of mass; will be acting in a direction parallel
tor, = (—x — X, 0—y), whereas the gravitational pull of mass will be acting in a
direction parallel ta, = (1 — & — X, 0 — y). If F; andF, denote the magnitudes of the
gravitational forces exerted by, andm,, respectively, the resulting force will be equal

to:
o (Ey B ()
Iraf \ 0=y ral 0—-y
Because the resulting force is directed towards the cehteass, itis parallel t¢—x, —y),

which means the result of taking the scalar product of theltieg force and a vector per-
pendicular to(—x, —Y), such agy, —x), should be zero:

Fi [/ —p—x Fo/1—p—X y F> p I
— —= : =06 2=-"_2 (241
(rl( O-y )+I’2( 0O-vy )) (_X <:>|:1 1—parq ( )

Recalling from (2.26) the definition gi, we write the object masses ag = (m1 +
m»)(1 — ) andmy = (M1 + My) . Because the gravitational fordq is proportional
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tomy andrl‘z, andF; is proportional tam, andrz_z, each with the same proportionality
coefficientk, we can write:

m 1-p

F1 = k—zl = k(my + mp) z'u
ry ry
" _

Fo = kg =k(my+mp)L
r2 r2

Dividing F> by F; yields:

Fp_ 1 (2.42)
Fi 1—pr?

To satisfy both equations (2.41) og (2.42), the distanca® fthe particle to each of the
main bodies must be equali = r,. Inserting this in (2.33), and recalling that=£ 0O,
yields:

11— i 1-f |
o= (1= L)y (1o E)

The distance betweem; andm; is always equal to 1. The remaining two equilibrium
points therefore form two equilateral triangles with andm,. These equilibrium points
can be said to be-60 degrees and 60 degrees out of phase. By convention, the leading
equilibrium point is taken to be4 and the trailing points.

The coordinates of these off-axis equilibrium positiors ar

Stability of Equilibrium Points

Linearising the equations of motion (2.30) at an equilibripoint and converting them to
a system of first order differential equations yields:

X 0 0 1 0\ /x
y| | o o o 1]y
X |7 Ux Uy 0 2 X (2.43)
y Uy Uy —2 0 y

whereUyy, Uxy andUyy denote the second derivatives of (2.29) evaluated at thiilequ
rium point in question:
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92U
Do = (3X2>o

92U
ny == D —

aXxay /o

92U )
U = —

The characteristic polynomial for thexd4 matrix in equation (2.43) is:

24+ (4 — Uxx — Uyy))L2 + UyxUyy — Uf

y=0

By substitutings = 12, this equation transforms into a quadratic equatios ifihe four
roots, i.e., the eigenvalues, are:

2
A2 = ﬂ:\ > - >
2
A3a4 = i\ > + >

To a complex eigenvalua + ib, wherei denotes the imaginary unit, there is a corre-
sponding solution of the form:

F(t) = e@FPt = e (cosbt + i sinbt)

If a > 0, thee factor will make this solution tend to infinity as — oo. We are,
however, looking for periodic solutions, so the real parewéry eigenvalue must be non-
positive. Since all four eigenvalues are of the form= + (a + ib), this impliesa = 0,
purely imaginary eigenvalues.

Let the quantitiesA, B, C andD be defined by:
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1-pn “
A = + (2.44)
(o ()
1-a @\,
B = 3 +—)y, (2.45)
((r;% <r§>o) ’
_ Xo+A. Xo—1+p
C =3lAd- o+ Yo (2.46)
( (rf)o (rg)o )
D — 3((1—;1)X°:‘1;1+X°_51+‘7“) (2.47)
o (r3)o

Using these, the second derivatives may be expressed as:

UXX = 1—A+D
C

cC
=
<

Il

The following sections will use these tools to describe tiaditity of the collinear and
off-axis equilibrium points.
Stability of Collinear Equilibrium Points

The collinear equilibrium points are all positioned on #zaxis, which impliesy = z =
0. This means tha = C = 0 andr? = (xo + it)? andr2 = (xo — 1+ j1)?, yielding:

UXX = 1 + 2A
ny == O

The characteristic equation may thus be written

M+ R2-AMP+A+2A01L-A-0=0

The product of the four roots of the characteristic equaftbe eigenvalues) is equal to
the constant term of that equation, i.e.:



34 S. Wolff

Arod3zdg = (1+2A) (1 - A

Since the eigenvalues must be purely imaginary, and sinee —i, andiz = —A4, the

product of all four eigenvalues must be positive. To satilfy, —% < A < 1 must hold.

However, substituting the values of andr, for the collinear equilibrium points into
equation (2.44) shows th#& > 1. This shows that the collinear equilibrium points are
unstable.

Itis, however, possible to find quasiperiodic orbits neasthunstable equilibrium points.
The Gaia satellite (see chapter 4) is to be placed in suchlanhr@ar equilibrium point
L2 in the Sun-Earth system.

Stability of Off-Axis Equilibrium Points

As derived above, the location of the off-axis equilibriuoirgs is given byr; =rp, = 1,
X=3—i,y= i?. This yields,

3

Uxx = Z

9

Uy = -

yy 4
1-2u

The characteristic equation

27 _ _
A4+A2+Zu(1—u):0

the roots of which are

Vo1 VI-27A -

A2 = 7
V-1+J/1-2T0A- )t
Az4 = =
J2

To ensure that the eigenvalues will be purely imaginaryfélewing must hold

27— 4621

1-271—)n >0 n <
QA-wpu=06p4n =< 51

~ 0.0385 (2.48)
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If the mass ratiqu is less than 0.0385 Lagrange points L4 andsbbuldbe stable. How-
ever, due to the effects of resonance, instabilities mayroata finite number of mass
ratios that satisfy equation (2.48). See also [Murray & Detrh999].

2.5 Radiation Forces

So far, only the effects of the gravitational forces havenbieeated in this thesis. Solar
system objects are, however, affected by other forces, asithe radial force exerted by
the Sun’s radiation, and collisions with other solar systémects. The effects of the latter
are impulsive in nature and thus difficult to quantify. Theston presents the direct and
the more subtle indirect effects of the Sun’s radiation andfbit of an object.

Radiation Pressure

Every electromagnetic wave carries momentum. A plane waeling in the direction
given by the unit vectod, striking a body having a frontal areafacing the wave, and
being absorbed by this body, will transfer momentum to tludyb Since a change in
momentum over time equals a force, the electromagnetic wélexert a force on the
body:

F= A?d (2.49)
Here,c is the speed of light, an8 designates the energy flux of the wévéf the wave
is totally reflected, rather than totally absorbed, the nitade of the force is twice that
given in equation (2.49).

Since the energy flux of a wave oscillates in time, it may beemwactical to introduce
the time-averaged energy fli& Rearranging the above expression to express force per
area, yields the (time-averagedyliation pressure

(2.50)

>| T
olwl

The energy emitted by the Sun is globally in the form of a sjghéwave. However, when
comparing the radius of that sphere (say, 1 AU) to the raditiseobody hit by the wave,
these waves may be regarded as planar, so we can use eq@aiin (

The time-averaged energy flux in the sunlight, as a functi@hstancer from the Sun is:

= L
So) =2

Agrr?

2Sis the magnitude of the so-call@bynting vector.
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whereL o = 3.9 x 10°% W is the luminosity of the Sun.

Much of the energy radiated by the sun is contributed by waxtsfrequencies outside
the visible spectrum. Therefore, the use in this thesis®téhm “sunlight” also implies
non-visible frequencies.

The force exerted by sunlight is proportional to the enengy, fand thus it is proportional
tor —2, similar to the gravitational force.

Since the force exerted by the radiation pressure on a baalportional to the frontal
area of the body facing the Sun, and thus roughly proportimnae square of the radius
of the body, whereas the gravitational force is proportidodhe mass, and thus to the
radius cubed, it would be interesting to find the radius attiiihe magnitudes of these
forces were equal.

Letting Frp and Fg denote the force contribution of the radiation pressure grasita-
tion, respectively, and denoting the distance to the Surykand the radius of the body
(assumed to be spherical) by, the desired quantity may be obtained by solving the
following inequality:

GMpm,  GMp4 4 S 2§
Fec = = Sl Fip=A-=mrg—
G r3 r3 3" ol = TP ¢ Tlog
¢
3 L
r0>—7@
167‘[CQ|\/|@,0

where A = nrg denotes the disk-shaped silhouette ayeds the density of the body,
My = 4nr§p/3 is the mass of the body amd, is the mass of the Sun.

Assuming a density equal to the mean bulk density of ordirdagndrite meteorites
[Consolmagno et al. 1998), = 3.3 103%, the critical radius is:

3 3.9. 10w

0> - —=18-10"m
163.14.3.0- 1082 - 6.67- 1cr11Nkm—gz -1.99- 10%%g- 3.3 10°3

Depending on the density, grains of dust smaller than ab@th in across are affected
more by the radiation pressure than by the gravitationdltpulards the Sun, and are
subsequently “blown” out of the solar system. Particleslemthan 107 m across tend

to scatter light, rather than absorb it, and hence theséleasrtare not affected by the
radiation pressure to the same extent as larger objects.

On NEOs, having a lower size limit of 50 m, many orders of magie greater than the
critical radius, the effect of the radiation pressure isyv@odest, and is normally only
measurable when observing across several siderial periods
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Other Forces

Apart from collision forces, NEOs are also affected by thealbed Poynting-Robertson
and Yarkovsky effects. The former acts as a dragging foraeezhby the uneven reemis-
sion of absorbed solar radiation. From the perspective ®NRO, the Sun’s radiation
appears to have a hon-zero composant in the direction opposee motion of the NEO,
thus decelerating it in its orbit. This effect was first désed in [Poynting 1904].

The Yarkovsky effect is a consequence of the Sun’s warmintgeNEQO’s surface as it

rotates: the face exposed to the Sun warms up, and thengadatiee night side where
it cools off. The “sunset” point will be warmer than the “sig®” point and therefore

will radiate a little more. This anisotropic thermal re-iatbn will subject the NEO to a

thrust, accelerating or decelerating it in its orbit, degieg on the orientation of the axis
of rotation. The Yarkovsky effect is described in [Hartmatml. 1999], and has been
directly measured using radar ranging [Chesley et al. 2003]

While the radiation pressure, Poynting-Robertson dragthedrarkovsky effect do not

have a great impact on the short-term evolution of asterdits) and as such are only
peripherally connected to the topic of this thesis, it hasnbproposed that they may
be responsible for the “generation” of near Earth objectsodiMain Belt asteroids by

perturbing orbits [Morbidelli & Vokrouhlicky 2003].

The long-term effect of radiation forces have been estichatg¢Giorgini et al. 2002], in
the case of asteroid (29075) 1950 DA, reported to have a eghgible impact probabil-
ity in March 2880.

For more information on the effect of solar radiation, refefBurns et al. 1979] and
[Mignard 1982].



Chapter 3

NEO Search Programmes

Several NEO detection programmes are currently in operation a preparatory phase.
To facilitate a comparison between detection programrhedgilowing sections empha-
sise three parameters

Sky coverage. The larger the area covered, the higher the probability tfadimg NEOs.

Limiting magnitude. The fainter the limiting magnitude, the higher probabilifiyde-
tection NEOs.

Accuracy in determining epherimides.

The following sections present a selection of the most ficdliEO detection programmes
currently in operation, responsible for more than 90% of N8O discoveries at the
time of this writing (2003). All the major search programnee based in the USA.
The Catalina Sky Survey has been included, being the onlytmearvey the sky of the
southern hemisphere. The Pan-STARRS project is the mostiaogground-based NEO
search programme currently in development.

LINEAR

The Lincoln Near-Earth Asteroid Resear¢dhINEAR) is a cooperation between Mas-
sachusetts Institute of Technology (MIT) and the US Air [Egrasing two one-meter
class telescopes and a 0.5 meter telescope for follow-ugredsons, all located in New
Mexico, USA. Currently, each main telescope employs two €CBne 1024x 1024
pixel CCD covering one fifth of the telescope’s field of viewdaone 1960« 2560 pixel
CCD covering the full two square degree field of view. In fabserving conditions, the
LINEAR programme telescopes has a limiting magnitude otiabz19.5.

1Charge-Coupled Devigeee glossary.
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The sensitivity of the CCDs, and patrticularly the relatywehpid readout rates, allows
LINEAR to cover large areas of sky each night. Each field ofual®square degrees is
scanned five times. Every night, about 600 fields are covés&adling about 1200 square
degrees. The programme searches as close as 60 degreebdr&unt Currently, the
LINEAR program is responsible for the majority of NEO diseaes. Information from
J. B. Evans and [LINEAR 2005].

NEAT

NASA's Jet Propulsion Laboratory and the US Air Force coapein theNear Earth
Asteroid Tracking(NEAT) programme, currently using a 1.2 metre Schmidt tzpse
(designatedNEAT/Pin table 3.1) located at Palomar Mountain, Southern CaditgtUSA.
The limiting magnitude for this telescope is ab®ut= 20.5 and each image covers 3.75
square degrees. The telescope at Palomar Mountain is tkdiitceNEO search for about
130 hours each month.

The NEAT programme also uses a 1.2 metre class telescopgrdexNEAT/Min table
3.1), located at the Maui Space Surveillance Site (MSSSyiM#awaii. This telescope
has a limiting magnitude of abowt = 19.5, but is dedicated to the search for NEOs twice
as many hours per month as the Palomar telescope. Both eftlescopes perform NEO
searches at solar elongations as low as 75 degrees. Infomiaim S. H. Pravdo and
[NEAT 2005].

Catalina Sky Survey

The Catalina Sky Surveig a search programme based in the USA, which has telescopes
at several sites, including a collaboration between thee&et School of Astronomy
and Astrophysics (RSAA) of the Australian National Univgrsand the University of
Arizona Lunar and Planetary Laboratory (LPL) to search f&Q¢ from Siding Springs
Observatory in Australia. A 0.5 m Schmidt telescope is autye(2003) undergoing
modification to provide added sky coverage in regions of thélern sky unreachable
from the currently active NEO search stations. The field efwis about 8 square degrees,
projected onto a 4k4k pixel CCD.

A 0.68 m Schmidt telescope (designat€dtalina/Cin table 3.1) is already operating
full-time under the University of Arizona on Mt. Bigelow, &ona, USA. The Siding
Springs telescope (designat€dtalina/Sin table 3.1) is to be dedicated to NEO search
full-time. A 1.5 metre telescope (designatédtalina/L in table 3.1) at Mt. Lemmon,
Arizona, USA, is available for follow-up observations. $helescope is anticipated to be
performing NEO searches approximately half of the avadaights.
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All three telescopes have a position accuracy of approxipdt2 arcseconds, and are
able to search at solar elongations as low as 60 degreesmiation from S. Larson and
[CSS 2005].

LONEOS

LONEQS, the Lowell Observatory NEO Search is situated nkagstaff, Arizona, USA.

It uses a 0.6 m class fully-automated Schmidt telescopendud a full-time search for
NEOs (approximately 200 nights per year are sufficientiagle Using two 2Kx 4K
pixel CCD detectors to cover a field of view of85 x 2.85 degrees, the telescope is
designed to make four scans per region over the entire giskl each month down to a
limiting magnitude of abou¥ = 19.5, although asteroids as faint¥¥s= 19.8 have been
detected. The telescope has the capability to scan the ekijraccessible from the site
every month. Each clear night, the telescope covers appeigly 1000 square degrees.
The accuracy is approximatelyZarcsecond. The LONEOS telescope regularly observes
at a solar elongation of 70 degrees. Information from B. Koeh

ADAS

The Asiago DLR Asteroid Survey is a joint programme amondXapartment of Astron-

omy and Astronomical Observatory of Padova, Italy, and th& PDeutsches Zentrum

fur Luft- und Raumfahrt) Institute of Space Sensor Techgpland Planetary Exploration,
Berlin, Germany. The program conducts the search using@®&m Schmidt telescope

at Asiago - Cima Ekar, Italy. The telescope is equipped widd48 x 2048 pixel CCD,

and the field of view is 7 square degrees. The search has mainly been conducted in
a strip from—5° to +15° around the celestial equator. The limiting magnitude isuabo

V = 21, and the typical astrometric position accuracy is beitten Q4 arcseconds. The
project is currently at a standstill due to lack of persotrdbrmation from C. Barbieri.

Japan Spaceguard Association

The JSGA, financed by Japan’s National Space Developmemd¥g&ASDA), the Na-
tional Aeronautic Laboratory, and the Space and Technofamgncy, uses an observatory
near Bisei, Japan. There, the NEO search program has aocass @5 m class telescope
and one 10 m Cassegrain instrument, reaching limiting magnitude¥ of 17.5 and
V = 19.5, respectively, in typical seeing conditions, using aegnation time of 60 sec-
onds. Having about 60% of the observable nights availale)BGA is able to cover the
entire visible sky in about three months, taking advantdgkep1.0 m telescopes field of
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view of nearly seven square degrees. For a single set of\waig®ers, the astrometric ac-
curacy is about & arcseconds. The JSGA usually observe near oppositiocorntation
from S. Isobe.

CINEOS

The Campo Imperatore Near Earth Object Survey (CINEOS) isdacdted search and
follow-up program of near Earth objects, born in 1996 fronolaboration between the
Observatory of Rome (OAR-INAF), and the Istituto di AstrafesSpaziale (IASF-CNR).
The CINEOS program uses a0m class Schmidt telescope situated at the Campo Im-
peratore Observatory about 130 km North-East of Rome,, léalgl currently emphasises
observing at solar angles as low as 40 degrees, aiming atuadpmased system opti-
mised towards the discoveries of Aten family asteroids dhdranner-Earth objects. The
field of view is 52 by 52 arcminutes, covering an area of aboth @quare degrees, en-
abling the survey of about 150 square degrees per lunatisingld 60 second integration
time, the limiting magnitude is abowt = 20.5. Single observations on the 2048048
pixel CCD have an astrometric accuracy of abadtdrcseconds. Information from A. Di
Paola.

Spacewatch

The Spacewatch project uses th® @n and 18 m telescopes on Kitt Peak, 45 miles
southwest of Tucson, Arizona, USA. The former telescopsihatedSpacewatch In

table 3.1) is dedicated to NEO surveying, and has a limitirrgmnitude ofV = 217,
whereas that of the latter (designatgaacewatch lin table 3.1) has a limiting magnitude

of V = 224, and the observable hours are split evenly between sumyeyid targeted
follow-up observations. The.& m telescope has, however, recovered objects as faint as
V = 23.3 “at considerable effort”. The Spacewatch Project is uaiguemphasising faint
objects (e.g.V > 20.5) rather than sky coverage. The sky coverage of the telesasp
1500 square degrees and 150 square degrees, respectikelasifometric accuracy of
the Q9 m Schmidt telescope is aboubarcseconds, whereas th& In telescope seems
slightly more accurate atd arcseconds. Although able to observe as close as 60 degrees
in cases of urgent follow-up observations, surveying isgeterally done less than 90
degrees from the Sun. Information from R. McMillan.

Pan-STARRS

Pan-STARRS, th&anoramic Survey Telescope And Rapid Response Systanwide-
field search programme under development at the Universityaovaii’'s Institute for
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Astronomy. By combining four B m telescopes, a limiting magnitude \6f= 24 is ex-
pected. In survey mode Pan-STARRS will cover 6000 squareedsger night, surveying
the whole available sky as seen from Hawaii three times eacitibn. Pan-STARRS PS1,
essentially one quarter of Pan-STARRS, will be completeshdtof the full observatory.
It will have the same optics design and camera design as@ated for the full version
of Pan-STARRS. First light for Pan-STARRS PS1 is scheduted&dnuary 2006, with
deployment of the full array within a further two years. SEwgPanSTARRS 2005].

3.1 Search Programme Comparison

Table 3.1 contains information for comparing the most fiNEO search programmes
currently (2003) in operation. Each observatory is dedgphdy the observatory code
assigned by the Minor Planet CerftéMPC cod@. The table facilitates comparison be-
tween ground-based search programmes and GAIA, in ternmaitiflg magnitude Vjim),
monthly sky coveragecpverage/mo)y) astrometric accuracy€curacy measured as the
average residual, not bias-corrected) as well as minimdar stongation ihin. elong).
The monthly sky coverage are optimistic estimates, disddgg downtime due to hard-
ware failure et cetera Several of the minimum solar elongation reported are otéraed
during urgent follow-up observations, not during regulaweying. The Gaia data is taken
from chapter 4.

Observatory MPC code Viim coverage / month accuracy min. elong.
Catalina/C 703 ~ 202 10000-17000deg =~ 0.2as 60 deg
Catalina/L G96 ~ 225 2500-4500 deg ~ 0.2 as 60 deg
Catalina/S E12 ~200 600-1100defy ~0.2as 60 deg
LINEAR 704 ~ 195 17,000 deg ~ 0.6as 60 deg
NEAT/P 644  ~205  8000-10000ded =~ 0.5as 75deg
NEAT/M 566 ~ 195 8000-10000ded ~ 0.5as 75deg
Spacewatch | 691 ~217 1500ded ~0.5as 60 deg
Spacewatch Il 291 =~224 150 ded =~ 0.4as 60 deg
Gaia N/A ~ 20 25,000de§ ~5mas 45deg

Table 3.1: A list of the most prolific ground-based NEO observatoriegantly in operation,
comparing limiting visual magnitude, monthly sky coveragesition accuracy and minimum
solar elongation. Gaia space observatory information ¢kapter 4) added for comparison.

Jedicke et al. [Jedicke et al. 2003] examines the prospéashieving the Spaceguard
Goal (the discovery of 90% of all 1-km NEOs by the year 200®mparing ground-

based and space-based observations. Perhaps surprigieghaper concludes that there
is little need for distributing ground-based survey tetgss in latitude and longitude

2http://cfa-www.harvard.edu/iau/mpc.html
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as long as the sky coverage is sufficient. The bias of NEO gysx@grammes on the
northern hemisphere apparently does not constitute a temdiWhile admittedly not
considering a cost-benefit analysis, the authors considpaee-based survey to offer an
advantage over Earth-based counterparts.

Gaia observations of NEOs
25 I I I T |
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Figure 3.1: The simulated percentage of NEOs discovered by Gaia as édoraf solar elonga-
tion. From [Mignard 2001]. See also chapter 4.

If the Pan-STARRS project proceeds according to plan, Gami expected to discover
many new NEOs because of its limiting magnitude. By the tinagaGs launched, Pan-
STARRS will have been surveying for several years at lingiimgnitude 24.

While it is possible to observe at solar elongations as sasB0 degrees from Earth
[Hag & Knude 2001], it is not practical for surveying, sin¢as only possible to do so
for a very short time per day.

Due to the regular observation at low solar elongationsaGsiexpected to discover
several of the elusive IEOs, objects having an orbit emntirgierior to the Earth’s orbit.
While theories of existence had been widely accepted, thedirthese objects was not
discovered until 2003 [Evans et al. 2003].

Ultimately, since more of the sky is available to the spaaselnl survey at any time, and
search can (and will, in the case of Gaia) take place 24 halag,dhe space-based survey
has an advantage. Also, because the sky-plane density o NiE@ases in the direction
toward the Sun (figure 3.1), Gaia’s regular low solar elolgabbservation makes it an
excellent candidate for observing not only Atens and IEQsNEOs in general.
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Gala

Figure 4.1: Schematic view of a possible design of the Gaia spacecraéiméter of deployed
solar array~ 9 m.

Gaia is a European Space Agency mission aimed at making alemgensus of all
objects down to apparent magnitude 20. The positions of gea®&d 1 billion objects
are to be determined with unprecedented accuracy from tieespace observatory. The
resulting scientific harvest will provide detailed infortimm on stellar evolution and star
formation, as well as a clarification of the origin and forraathistory of our galaxy. Gaia
is expected to discover thousands of extra-solar planetiodow the bending of starlight
by the Sun, and therefore directly observe the structurpaxdes-time. Relativistic param-
eters and the solar quadrupole moment will be determinddwviprecedented precision.
All this is achieved through the accurate measurement ofpstsitions. Designated an
ESA cornerstone mission, the Gaia spacecraft is expecteel femunched in 2011-2012.

Although the main goal of Gaia is to clarify the origin andtbry of our Galaxy, this
chapter will explore its capabilities for observing neartB@bjects. Section 4.2 describes
the Gaia instruments relevant for NEO observation. Folgathis section, the Astro
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instrument is explained in further detail, as is a simulétpF. Mignard, predicting Gaia
observations. In the penultimate section of this chapités, dimulator is used to predict
the number of objects that “evade” observation due to thep@ motion. Section 4.7
describes a proposed method for observing NEOs by dedic&tur detectors in the
Spectro instrument to this task.

4.1 Orbit and Scanning Principle

Gaia will perform its observations from a quasi-periodizddit about Lagrange point L2
of the Sun-Earth system (see figure 2.7 and section 2.4). Asrsin example 2, this
point is situated 1.5 million kilometers from the Earth ajdhe Sun-Earth line, opposite
the Sun. Owing to the dynamical properties of this point,a3&n maintain a roughly
constant distance to the Earth for several years, using molgest corrective manoeu-
vres. To avoid steep temperature gradients and to ensdr@enif sunlight reaching the
solar panels, Gaia must stay out of the Earth’s shadow, alairzone of radius only
slightly larger than that of the Earth — approximately 6,%il0meters. Hence, Gaia is
placed in a so-called Lissajous orbit about L2 of an exterahbafut 300,000 kilometers,
completing a full cycle every six months. The thermal sigbof the region is very im-
portant, since a temperature variation of less than onestiraith of a degree over a few
hours would disturb the alignment of the mirrors and thusi§icantly degrade the images
[Mignard 2003].

The duration of the operational phase of the Gaia missiowésyfears. During its life-
time, the satellite will continuously spin with a constapeed corresponding to one full
revolution every six hours. The spin axis is kept at a corisdagle with respect to the
Sun, precessing about the direction of the Sun approxisnatery 70 days. The image
of a spinning top, revolving around its axis while the axisqasses around the vertical, is
appropriate. The spin and precession of Gaia, coupled witbrbital motion around the
Sun, enables the scanning of the entire celestial sphere.

The anglet between the spin axis and the direction towards the Sun esrdeted as a
compromise between thermal stability, power requiremantsastrometric accuracy. It
is currently 50 degrees, but is likely to be reduced to 45 elegto enable the use of a
smaller, and thus lighter, sunshield. Bore= 50°, Gaia will be able to observe objects
as close to the Sun as 40°. If £ is decreased to 45the minimum solar elongation is
correspondingly increased to45

Figure 4.4 shows an example of the monthly sky coverage &, @aing the a solar aspect
angle of¢ = 45° and an across-scan field of view o737 (see section 4.2). Based on a
simulation of 10,000 random positions uniformly distriédtover the sky, the plot shows
the 6068 positions that were observed at least once. Thoinaaf the sky covered in one
month varies between 51% and 68% depending on the stamimegdf the month. The
average coverage is close to 60%. The scanning leaves twhdlgs” (the blind spots
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Figure 4.2: The scanning principle employed by Gaia. Line-of-sight dresponds to the preced-
ing field of view (Astro 1), line-of-sight 2 corresponds teetfollowing field of view (Astro 2).
Gaia makes a full revolution every 6 hours, while the spirs @xecesses about the direction of the
Sun once every 70 days. From [de Bruijne 2003-I1].

illustrated in figure 4.3) centered on the direction of the &nd on the direction opposite
the Sun. Data from L. Lindegren, Lund Observatory (persoogiespondence).

4.2 Gala Instruments

Inside Gaia’s payload module are three telescopes, two mhwdre identical. These two
Astroinstruments are dedicated to the accurate measuremet stiflhar positions. Each
consists of three curved, rectangular mirrors to focus tadight. The largest mirror in
each telescope system is 1.4 metres long. Each will focustarsight onto the focal
plane, an array of CCDs. They will measure the position anghbress of the celestial
objects that Gaia detects. The lines of sight of the two Altlescopes are separated by
abasic angleof 99.4 degrees. Due to the 6-hour spin period, the second Astedepe
(Following Field Of View,FFOV) will observe approximately the same as the first Astro
telescope (Preceding Field Of VieRFQV), only 994 minutes later.

The third telescope is of a different design. It is called 8pectroinstrument and is
designed to perform photometry (the detection of the briges of celestial objects in a
number of different colour bands) used to determine theiphlparameters of celestial
objects. It will also measure the radial velocity of celalstibjects. This information can
then be combined with that from the Astro instruments, te @vfull picture of how the
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Figure 4.3: Diagram illustrating the “blind spots” of Gaia versus th&Earth-based telescopes.
Gaia does not observe in the directions towards and away thensSun, but does observe closer
to the Sun than is routinely done from Earth, which is impatrtfor discovering NEOs inside
the orbit of the Earth. While it is possible to observe claban 90 from the Sun from Earth-
based telescopes, this is typically only done in case abviellip observations. Cf. figure 4.4. The
diagram is not to scale.

celestial object is moving through space.

Focal Planes

The light from the Astro and Spectro telescopes is projeoted the Astro and Spectro
focal planes, shown in figures 4.5 and 4.7, respectivelys@liecal planes are arrays of
CCDs, each consisting of a regular grid of several milliotefs. Each box in the figures
represents a vertical (i.e., in the across-scan directiolynn of CCDs, sometimes also
called aCCD stripor aCCD row.

The Astro Focal Plane

The Astro focal plane, shown in figure 4.5, consists of tworskappers (Astro Sky Map-
per, ASM) and eleven astrometric fields (AF1-AF11). Thetifsbm both of the Astro
telescopes is projected onto one focal plane, with the déxaepf ASM1 and ASM2
receiving light only from the preceding and following fielfl\oew, respectively. As the
satellite spins, the light from celestial objects movesfieft to right. As an object enters
the preceding field of view, it is detected in ASM1. To avoidispus observations caused
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Gaia monthly sky coverage, example
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Figure 4.4. Gaia’s monthly sky coverage in ecliptic coordinates. Thiarneple shows a typical
sky coverage of 60%. Note the blind spots in the direction of the Sun and opag(cf. figure
4.3). Data from L. Lindegren, Lund Observatory (personatespondence)

by defective pixels or cosmic radiation, the observatiorsiine confirmed as it reaches
AF1 a few seconds later. This confirmation happens by exagiaigroup of pixels (a
window) corresponding to a position in the sky centered on the timeevhere the object
was detected in the ASM1. The shape and size of the windovehwhay differ for each
of the astrometric fields AF1-AF11, are determined baseti®btightness of the detected
object. Because windows are fixed in the sky, they shouldige lanough to make sure
moving objects do not pass outside them. Contrarily, bexailsdows containing multi-
ple objects are of little value, windows should be as smafiassible to avoid crowding.
Once the object is confirmed, windows are recorded in eacheofen remaining astro-
metric fields. To reduce the amount of data transmitted tohiz#éne pixel data can be
summed into samples to be transmitted instead. For faieictdbjn AF2-AF11, the sam-
pling includes a projection, drsinning onto the along-scan direction leading to a signifi-
cant reduction in across-scan accuracy (see figure 4.6)a3semed windowing scheme
is detailed in section 4.3. For details on the Astro sampéing windowing schemes,
refer to the deep, comprehensive and dedicated studieshhgdein [Hag, et al. 2003-11],
[Hag 2004], [Hag 2004-11], [Heg & de Bruijne 2005] and [Hag(A).

Since the windows sampled in the astrometric fields are fixethe sky, centered on the
position where the object was detected in the sky mapperyvaigobject may “escape”
and thus evade observation. The probability of such an edtappening is examined in
section 4.6.

For each transit of a sufficiently slow object, we can obthafollowing data from each
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Figure 4.5: Simplified diagram of the Astro focal plane. As the sateliweeeps the sky, celestial
objects appear to move from left to right, in the along-scah)(direction. AC: Across-scan
direction. ASM: Astro Sky Mapper. AF: Astro Field.

CCD strip: object position, position standard deviatiom antime tag. The position

standard deviation is an estimate of the accuracy of thdipogibservation. It depends
on the brightness of the object, but also on the samplingselenployed and on whether
the result of the on-board centroiding (the process of edtirg the true position based
on samples) is transmitted to ground. Such triples of infdrom will be extensively used

for motion detection in chapter 5.

The Astro focal plane also contains a group of CCDs dedidatbtbad-band photometry.

The Spectro Focal Plane

The Spectro focal plane, shown in figure 4.7, is where muchudfmof Gaia’s photomet-
ric data originate. Since not every pixel can be transmiibeground, due to the limited
telemetry budget, in analogy with the astrometric focal plane, a setkgfmappers is
used to detect when an object is about to transit the Speatad plane. These Spec-
tro sky mappers, SSM1, SSM2, SSM3 and SSM4 in figure 4.7, carsée to observe
NEOs. An object entering the field of view of the Spectro tetge is detected in SSM1
and confirmed in SSM2 to avoid false detections, e.g., thageed by cosmic rays. This
detection/confirmation is repeated in the SSM3/SSM4 pa©@Db columns. The motion
of the object between the SSM1/SSM2 and SSM3/SSM4 is estdndt the object has
moved significantly, it is likely to be a near Earth object.ifgar method for performing
NEO observations in the Spectro instrument is describeddtian 4.7.

Telemetry: the data transmitted to ground, and the prodesarsmitting it.
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Figure 4.6: To reduce the amount of data transmitted to ground, pixel dagometimes “binned”
in the across-scan (AC) direction before transmitting. sTdata reduction comes at the price of
reduced on-ground AC accuracy.

4.3 Astro Telescope Technical Data

In the remainder of this thesis, we assume the use of the gd&scopes, following the
design in [Hag, et al. 2003-I1] for faint objects, i.e., Gaiaual magnitude 16 to 20. This
implies a Sun aspect angle of 50 degrees and a basic angledsetiie Astro telescopes
of 106 degrees, rather than the current basic angle .df@grees.

Regarding the focal plane, the widthf an ASM and the width of an AF (both including
CCD interspace) is.03684 degrees and@b017 degrees, respectively. Assuming an
ASM of 2600 pixels and an AF of 4500 pixels and an along-sca&elgize of 1um, this
corresponds to an ASM width of 26 mm + 4 mm interspace and an lEhwof 45 mm

+ 4 mm interspace, in accordance with [Pouny et al. 2003]s @hta, coupled with the 6
hour spin period, leads to the transit times given in table 4.

The size of a pixel, projected onto the celestial sphere4ig mas along-scan and 133
mas across-scan, corresponding to a focal length of abobitd.6

The assumed windowing scheme is described in [Hag, et aB-BD&nd summarised in
table 4.2. Note, that these windows may be truncated anahioed before being transmit-
ted to ground. The philosophy behind this windowing schestie have a relatively large
AF1 window to ensure confirmation of even the fastest objédtsy moving objects will
also be observed in the large AF11 window, facilitating acuaate velocity estimation
because of the large timebase. The latest scheme has a leégeiAdow instead of the
AF11, in order to observe faster-moving objects at the cbatsmaller timebase.

2width refers to the on-sky extent in the along-scan direction.
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Figure 4.7: Simplified diagram of part of the Spectro focal plane. As thelite sweeps the sky,

celestial objects appear to move from left to right, in thengtscan (AL) direction. AC: across-
scan direction. SSM: Spectro Sky Mapper. The remaining sigaors are used for photometric
observations.
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4.4 Gala Simulator

To investigate various properties of the observations sdGhe author has made use of
a Gaia software simulation written by F. Mignard of the Obatgire de la Cote d’Azur
[Mignard 2001], [Mignard 2001-I1]. This simulation takes @aput the orbital elements
of a population of solar system objects and computes all Gzsarvations of each object
in the population during the predetermined mission dumati®he output includes the
time of transit, the position and position standard devigtthe apparent magnitude and
instantaneous inertial velocityor each observation of each object.

Originally, the simulator output consisted of one obseoraper telescope. In February
2004, F. Mignard and the author modified the simulator to i®wutput for each of the
twelve CCD strips in each Astro telescope. The windowingsahis not simulated, so if
the object is within the field of view, the observation is netgal. This enables subsequent
analysis of the recorded observations, imposing the oéistnis of the windowing scheme,
see section 4.6. Figure 4.8 shows an example of the outphedfitulator.

The simulator is also able to calculate for each observatiposition standard deviation,
i.e., the position standard deviation a similar observabyg Gaia is expected to have.
The error model determines the standard deviation baseldeoolject’s apparent mag-
nitude, angular size, velocity and the phase angle. Wherifymogl the simulator, the
measurements from each of the CCDs were implemented to totltplsame position
standard deviation. Owing to the difference in windowingl aampling, this is not the
case. The error model (see [Mignard 2003-II] and [Hestradfeal. 2003]) is essentially
only correct for the astrometric sky mappers, but lackingpalfiixed version of the win-
dowing and sampling scheme, it was decided to keep this iptEimimplementation as

3The inertial velocity is the motion of the object on the skytwiespect to the fixed stars, i.e., corrected
for the motion and attitude change of Gaia
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PFOV FFOV
ASMx— AF1 5.1s 29s
ASMx— AF2 87s 6.5s
ASMx—AF3 | 12.3s 10.1s
ASMx—AF4 | 16.0s 13.7s
ASMx—AF5 | 19.6s 17.3s
ASMx—AF6 | 23.2s 21.0s
ASMx—AF7 | 26.8s 24.6s
ASMx—AF8 | 30.4s 28.2s
ASMx—AF9 | 34.0s 31.8s
ASMx—AF10| 37.6s 35.4s
ASMx—AF11| 41.2s 39.0s

Table 4.1: Assumed transit times: The time it takes for a fixed objectdo@from the sky mapper
(ASM1 in the case of the Preceding FOV, ASM2 for the Followi@V) to each astrometric field,
CCD center to CCD center.

CCD | Size in pixels Angular size

AF1 12 pixelsx 12 pixels 530.4 mas 1596 mas
AF2-AF10| 6 pixelsx 12 pixels 265.2 mas 1596 mas

AF11 68 pixelsx 14 pixels 3005.6 mag 1862 mas

Table 4.2: Assumed read window sizes (AL AC). From [Hgg, et al. 2003-I1].

an approximation.

4.5 Simulator Input Data

The input data for the simulation is a file containing the @ibélements and absolute
magnitude of each object in the population. Two populatitange been used:

The first population consists of the first 20,000 numberegragts. Being the first 20,000
numbered, one would expect them to be the 20,000 brightésthveonstitutes a bias.
Although this population is designated MBO (Main Belt Oligen the following, it also
contains a number of NEOs, such as 433 Eros. A truncated g@tpulof the first 2000
asteroids has also been used.

The second population consists of a simulated populatiddE®s, based on the work
presented in [Bottke et al. 2000] and kindly provided by Fghard [Mignard 2001]. It
constitutes a roughly complete NEO population for absatuagnitudedd < 22. Figure
4.9 shows the number of NEOs as a function of absolute maimitéds shown in the
figure, the number of bright objects is fairly low. To remetist in order to obtain a large
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1 1 Ceres 720
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Figure 4.8: Simulator output example. The first line is a header, indigabbject number, name
“1 Ceres” and the number of observations of this object duitire mission (720). The second line
is the CCD id (200: ASM2, 201: FFOV AF1, 202: FFOV AF2, etc).eTiird line is the time

of transit (in days). The fourth line contains the appareagnitude (V). The fifth and sixth lines
contain the object’s instantaneous inertial velocity ia #iong-scan and across-scan directions,
respectively (in mas/s). Line seven contains the curresiination (in degrees) of the scan circle
with respect to the ecliptic plane. Lines eight and nine aletc longitude and latitude (in
degrees), and lines ten and eleven contain along-scan evsbasran position standard deviations
in mas. Each of the lines 2-11 have 720 entries, as indicatéteiheader line.

number of simulated observations for statistical stghiéiaich object is made brighter by
the simulator by reducing the value éf upon loading the orbital elements. Because
of this increased brightness, many NEOs will be observed grteater distance, thus
introducing a bias reducing the average instantaneousaheglocity observed.

4.6 Escape Statistics

Because the observation windows sampled in the astroniigtids AF1-AF11 are fixed

on the sky, centered on the position where the object wastdetén the sky mapper
ASM1/ASM2, a moving object may “escape”, i.e., move outdite window, and thus

evade observation. This section describes the computatibese “escape probabilities”.
Based on the window sizes and transit times given in secti@yrit4s possible to compute
the critical “escape velocities” for each CCRR(CCD), as:
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Figure 4.9: The number of NEOs as a function of absolute magnitddi®r the simulated NEO
population. The brightest object is of absolute magnittitie= 13.1, the faintest objects have
H = 22.0. From [Mignard 2001].

W(CCD)
CCD —_—
ve(CCD) = 51 ccp
whereW(CCD) is the window size (in the along-scan or across-scan dmec#s appro-
priate), givenin table 4.2, and(CCD) is the transit time for the appropriate CCD column,
givenintable 4.1. If the object displacement (velocity tiplied by transit time) exceeds
half the window width, the object will escape. Table 4.3digte critical velocities.

Defining aset of observationas the observations obtained from a single object crossing a
single telescope, such a set may contain up to twelve oligmrggone ASM and eleven
AF observations). Because a detection in the ASM withoutiooation in the AF1 is not
recorded, the smallest number of observations in a set witho.

By examining each set of observations, it is possible to ggaesscape probabilities.
Since the windowing scheme is not implemented in the siragl#te probabilities are
generated using a software tool, written by the author, @mgnting the windowing
scheme in section 4.3.

Figure 4.10 shows the probability that an object’s inerelbcity is sufficiently low for
it to be observed in a CCD strip, based on simulations of a ladipa of the 2000 first
numbered asteroids. Because of the larger timebases imgbeding field of view (table
4.1), the probability of “survival” is slightly lower thamithe following field. Note that
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PFOV AL PFOVAC FFOVAL FFOVAC
AF1 | 51.8 mas/s 156 mas/s 91.1 mas/s 274 mas/s
AF2 | 15.2mas/s 91.4mas/s 20.3mas/s 122 mas/s
AF3 | 10.7 mas/s 64.7 mas/s 13.1 mas/s 78.8 mas/s
AF4 | 8.31 mas/s 50.0 mas/s 9.65mas/s 58.1 mas/s
AF5 | 6.78 mas/s 40.8 mas/s 7.64 mas/s 46.0 mas/s
AF6 | 5.72mas/s 34.4mas/s 6.33mas/s 38.1 mas/s
AF7 | 495 mas/s 29.8 mas/s 5.40 mas/s 32.5mas/s
AF8 | 4.36 mas/s 26.3mas/s 4.71 mas/s 28.3 mas/s
AF9 | 3.90 mas/s 23.5mas/s 4.17 mas/s 25.1 mas/s
AF10 | 3.53 mas/s 21.2mas/s 3.75mas/s 22.5mas/s
AF11 | 36.5 mas/s 22.6 mas/s 38.5mas/s 23.9 mas/s

Table 4.3: “Escape velocities”. Objects moving faster than the inidavelocities in either the
along-scan or across-scan directions will not be obsemetat particular CCD. Example: An
object moving at 5 mas/s AL and 22 mas/s AC, observed with @\ will be observed in

ASM1 and AF1 to AF6, but not in AF7, AF8 and AF9 because of the v&llocity exceeding

the critical velocities listed. The critical velocities both the AC and AL directions rule out
observation in the AF10, whereas the object will be obsemedF11. Thus, the object’s transit
of the PFOV will lead to a set of eight observations. Extemgibthe table in [Wolff 2004].

because of the larger AF11 window, observations not obderv@ne or more of the
astrometric fields may “reincarnate” in AF11.

The same population of asteroids is compared to a simulatiomvith the NEO popula-
tion in figure 4.11, where the survival probabilities of prding and following fields of
view have been averaged. Because of their greater averagmlivelocity, the survival
probability of the NEOs is significantly lower. Less than 10%he NEOs provide ob-
servations from all astrometric fields, but more than 40%naxeertheless observed in the
big AF11 window, facilitating accurate velocity estimatibecause of the large timebase.

To get a larger number of accurate NEO velocity estimatidrnsas been suggested to
change the windowing scheme described in section 4.3 toensekexchanging the win-
dow sizes of CCDs AF5 and AF11, such that AF5 would have a laigdow, whereas
AF11 would have one of normal size. This change has been mgriged in the software
tool mentioned above, leading to the results shown in figut@.4The “big-AF5” win-
dowing scheme led to a 10% increase in the total number of NlES@r@ations whereas
the number of asteroid observations decreased by 4%, whepared to the original
scheme. At first glance, this decrease might seem odd. Howdwe to the relatively
low inertial speed of the asteroids, the gain from havinggaviindow in AF5 is almost
negligible, whereas the loss caused by a small window in A5 hbt.

Recalling the bias introduced by the artificial brightenirighe NEO population (see sec-
tion 4.5), reducing the average velocity, the figures inva@\this population are believed
to be slightly optimistic.
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Survivability AF1-AF11, 2000 first asteroids
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Figure 4.10: “Survivability” of observations of the 2000 first asteroiiseach of the astrometric
fields AF1 to AF11. The probability that an object’s inert@locity is sufficiently low for it to
be observed in a CCD strip. The preceding FOV loses more wdits@ns because of the greater
distance to its sky mapper, ASM1. Almost all asteroids areoled in the larger AF11 window.
From [Wolff 2004].

Note, that this method disregards any possible problensechoy the centroid being near
the edge of the CCD. This and other problems are touched udae iBruijne 2005-111],
which contains a simpler method for doing a similar calgatassuming normal velocity
distributions and independent AL and AC velocities. Whemgishe same focal plane
design, the results obtained with the simple statisticahodare comparable (within 10
percentage points) to the results presented here. It isveelithat the difference can be
attributed to the difference in assumptions of the velodisgributions.

4.7 NEO Observation in the Spectro Instrument

The method described in this section was developed jointNlEbH@g, F. Arenou, P.
Hjorth, U. G. Jgrgensen, F. Mignard and the author of thisihélag, et al. 2003]. It was
originally envisioned for a slightly different design ofetispectro focal plane, described
in [Hag, et al. 2003-I1], but is straight-forward to transte the current design, which
was approved by the Gaia Science Team in March 2004 [Pacg.2G0%akes use of
four CCD columns, namely RVSM (Radial Velocity Sky Mappef), #2, #7 and #8,
corresponding roughly in position to SSM1, SSM2, SSM4 an& Rfigure 4.5.

The previous design of the Spectro instrument consistsw@rakclusters of CCDs, in-
cluding an eight-CCD “auxiliary” cluster. We propose (ingH, et al. 2003]) to use some
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Survivability AF1-AF11, 2000 first asteroids + full NEO pdption
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Figure 4.11: “Survivability” of observations of the 2000 first asteroidad the simulated NEO
population in each of the astrometric fields AF1 to AF11. Liéssr 10% of the faster-moving
NEOs provide observations from all astrometric fields, boterthan 40% are nevertheless ob-
served in the big AF11 window. From [Wolff 2004].

of the CCDs in this cluster for detecting faint moving obgcncluding NEOs. The in-
tegration time for each CCD is 5.5 seconds and the intemsgasi2.1 seconds, yielding
7.6 seconds between each CCD. CCDs #1, #2, #7 and #8 are usaditnise time base.
The CCDs are used in pairs to reduce false detections fromicaays.

1. Detect object in CCDs #1 and #2. This redundancy is nege$saeject false
detections from spurious cosmic rays.

2. Rediscover the same object using CCDs #7 and #8.
3. Reject object if it is not moving.

4. Otherwise, transmit data to ground.

Ad 1: The basic assumptions on RVSM are listed in table 4.4re® is the apparent
visual magnitude from the point of view of Gaia. The detatgwobability for a single
field transit is denoted b¥?. The standard deviation in the determination of position is
given byoa andoac in the along-scan direction and across-scan directiopecively.
The probability of successful detection in all four CCDs éndted byP#4, ands,,, and
ovac Oive the standard deviations on the velocity approximatmothe along-scan and
across-scan directions.
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Survivability AF1-AF11, 2000 first asteroids + full NEO pdption
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Figure 4.12: “Survivability” of observations of the 2000 first asteroidad the simulated NEO
population in each of the astrometric fields AF1 to AF11, “Big5” windowing scheme. This
windowing scheme gives rise to a 10% increase in NEO obsengat the cost of a 4% decrease
in asteroid observations, when compared to the originatlairing scheme (figure 4.11). From
[Wolff 2004].

Ad 2: This rediscovery should be performed by examining @a aentered on the ex-
pected position in the sky, i.e., the position at which it whserved using CCDs #1 and
#2. The radial extent of this area equals the expected maminalocity (according to
figure 5.9, 60 mas/s for NEOs appears to be a reasonable,quiaffmising the window
size while still retaining more than 75% of the observatfmnsultiplied by the time base.
What to do when several objects are detected inside thisre®aot yet been decided
upon. This typically happens in areas of great star desggi@y within 10 degrees of the
galactic plane, constituting 20% of the sky), where teleynpeaks. However, in these
high density areas, the priority of NEO search can be limitedan be seen in table 4.4
that the probability for detecting an object of magnitude2G#n all four CCDs is 41%,
indicating the faintest feasible magnitude for detectisimg this method.

Ad 3: To reduce telemetry, objects that are deemed not to leng@with respect to the
fixed stars) are rejected, since they are expected to bevausierthe Astro instruments.
This rejection is performed by calculating the standardaten of the velocity, which
in turn is approximated by the displacement divided by theetbase. Across-scan and
along-scan standard deviations on velocity for a time b&4é seconds may be found in
table 4.4 for various G magnitudes. The proposed methodestigigejecting objects not
satisfyingv > 30,. Using the appropriate estimates, this is shown in sectiémdbbe an

4mas: millisecond of arc.
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OAL
100 mas
140 mas
210 mas
260 mas
310 mas

OAC

240 mas
280 mas
360 mas
405 mas
495 mas

P4

68%
60%
41%
4%
0%

OvaL

2 mas/s
3 mas/s
5 masl/s
6 mas/s
7 mas/s

OvaL

5 mas/s
6 mas/s
8 mas/s
9 mas/s
11 mas/s
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Table 4.4: RVSM assumptions. Time base (#1 to #7 6.5+ 2.1)s = 45.6 s. Does not include

blurring due to motion.

optimal rejection strategy.



Chapter 5

Motion Detection and Estimation

This chapter, constituting the main contribution of thiegts, presents five different meth-
ods of motion detection, based on the fields of data-fittirgdytheoretical statistics. The
last of the five is proved to be optimal among all translatiorariant method, assuming
a symmetric velocity distribution. The relative perfornsarof all five tests is compared,
and their individual advantages and disadvantages arastied. The optimal test is ap-
plied to simulated Gaia observations in section 5.10. Infitred section of the chapter,
the properties of the velocity estimate emerging from twohef methods are examined
with reference to its use in orbit computation.

5.1 Overview

In order to accurately compute the orbit of an object, it isassary to obtain many obser-
vations, spanning a significant portion of the orbit. Thigitglly involves distinguishing
observations belonging to the object in question from olz&ms belonging to other
objects. In other worddjnking a series of observations of that particular object. The
Gaia mission is expected to observe on the order of one bilgects on the average
of about 80 times each [de Bruijne 2005], leading to a sigaifi@mount of work when
linking observations. Although temporal and spatial letitns may be imposed to re-
duce the search space, the total task of linking all obsenafor each of the expected
half a million solar system objects [ESA 2000] is obviouslyan-negligible undertaking.
Introducing a filtering step to discard observations of sotar system objects would re-
duce the needed work by many orders of magnitude. Such aditéd be approximated
by thresholding according to the apparent instantaneolagit)e since nearby objects
would, in general, appear to be moving faster than remotectdj

Whenever an object passes through the field of view of one dd'€sastrometric tele-
scopes, up to twelve observations are recorded within dooytseconds. These obser-
vations may be used to estimate the object’s velocity atithe of the crossing of the

60
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field of view. Thus, every field of view crossing may be inteted as leading to a posi-
tion measurement as well as a velocity measurement, cgnérapnventional astrometry,
yielding only a position measurement.

The star having the highest knowroper motions Barnard’s Star, the fifth closest known
start to Earth, moving 1@ seconds of arc per year. Pluto, one of the “slowest” members
of the solar system, having a siderial period of 248 yearsyasanore than 5000 sec-
onds of arc per year. Distinguishing solar system objedi: fnon-solar system objects
based on instantaneous proper motion thus seems féaditdevever, the method is not
flawless: A solar system object having an instantaneougigieector (almost) parallel
to its topocentric position vector, will have an instantaue proper motion that is very
small, and may thus be regarded as a star and erroneousbderdrom the set of ob-
servations of solar system objects. However, this is exgoeict occur only rarely. Figure
5.9 displays the inertial speed of simulated Gaia obsematof the synthesized NEO
population described in the previous chapter.

The proper motion of Barnard’s star, 10.3 seconds of arc ear, orresponds to about
0.3 microsecond of arc per second. The along-scan cemigpgtror of a single CCD
transit for a bright object, such as Barnard’s star, is axprately Q04 milliseconds of
arc [de Bruijne 2005-11]. In section 5.9 it is shown, that e\his, the fastest-moving star,
will be regarded as a fixed object by Gaia, whereas nearlybakkivations of NEOs and
Main Belt Asteroids reveal the underlying motion.

This chapter will show that, owing to Gaia’s impressive (fjeite) astrometric accuracy,
an approximate distinction between observations of sgktes objects and observations
of objects outside the solar system may be obtained by disghing between moving
and fixed objects. Because of the limited astrometric acgyeaslow-moving object will
be regarded as a fixed object.

The across-scan pixel binning (see section 4.2) leads taeedaccuracy in the across-
scan direction. Because of this, as well as to initially difpphe problem, we will only
consider position data in the along-scan direction. Thuesassume we have obtained a
set of observationsonsisting ofN along-scan position observations (between two and
twelve, from ASM and AF1-AF11Xs, X2, ..., XN, at observation timeg, to, ..., tn,
along with an approximate residual variance for each obsenv. o2, 02, ..., o3. The
following sections describe several methods to use susdt af observationt obtain

a Boolean variable (a flag) indicating whether or not the plesk object is (currently)
moving, and hence, indirectly indicating whether or not theserved object is a solar
system object.

The assumed model is:

Xi = Po+ vt + ¢, (5.1)

1The Sun being one of the five
2Transneptunian Object®bjects with an orbit beyond that of Neptune may move slaivan Pluto.
However, at Gaia’s limiting magnitude, not many TNO obs#&ores are expected
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wherex; is theith observed positiort; is the time of thath observationPy is the true
position the time of the first observation, which impliestttiee time of the first observa-
tion equals zero. The velocity, defined as the instantangayser motion, assumed to be
constant during a field crossing, is denotedvbyWe will assume that the measurement
errorse; are independent normal variables, of zero mean and varighcAccording to
the discussion on the error statistics of asteroid obsenstn [Carpino et al. 2003], this
is a valid assumption. We assume constq:htz o2 for all but the generalised method
presented in section 5.8. All spatial quantities are ptajes on to the along-scan direc-
tion. Detecting motion is tantamount to analysing the ol positions to test whether
or notv equals zero.

We assume as a null hypothesis that the observed object dsifixée sky, i.e., that the
fluctuations observed are due to measurement error. Ttwvialy sections present four
methods, co-developed by F. Mignarand the author, for testing this hypothesis; four
statistical tests fotrend, a (linear) change in position over time. The philosophyihéh
these four tests is to assume as little as possible aboutighé@udtion of the position
residuals when devising the test statistic. The last pahisichapter describes an optimal
method for motion detection, arising from a fundamentaiffedent approach to the one
followed when developing the first four tests: To calculatest statistic based directly on
the comparison of the computed probability of the measunesrggven a zero velocity and
a known (non-zero) velocity, assuming full knowledge of th&tribution of the position
residuals.

Applying a test we can commit two type of errors. We can laldedlexd object as moving,
in which case we say we commit a type | error, and we can lab&hang object as fixed,
and in that case we commit a type Il error. The situation isreechup in the following
diagram:

| Object fixed Object moving
Flagged as fixed| Correct type Il error
Flagged as moving type | error Correct

In the following, the probability of erroneously labellirgfixed object as moving is de-
noted byp;, and, conversely, the probability of erroneously labeglilnmoving object as
fixed is denoted by, .

5.2 Linearity Assumption

In this chapter we assume that the underlying motion can funaed to be linear during
the short periods of observation. This section investigtte plausibility of this assump-
tion.

30bservatoire de la Cote d’Azur, France.
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A way of examining whether or not it is plausible that the $iierm motion of an object
can be described by a straight line, is by using simulatiowmFone field crossing, the
orbit is propagated assuming (I) linear motion and (Il) Ke@n motion. A statistical
analysis of the difference in position may then be perforaradi interpreted as a measure
of non-linearity. The work in [Mignard 2005], based on theslated observations of
Main Belt Asteroids, indicates that the mean distance betvtiee two predictions after 60
days is about 4.9 degrees.The mean distance is describ@gpasianately proportional

to the square of the time. Scaling these values accordingiggotoportionality yields

a mean distance of.33 pas after the 45 seconds needed for a transit of the astrametri
focal plane, thus providing a rough order of magnitude cd&fbf non-linearity.

An alternative way of testing the linearity assumption iditmbservations to a straight
line in a least-squares sense, and subsequently examir@mgagnitude of the residuals.
Observations from the crossing of one field of view were gateer using the simula-
tor described in chapter 4, and subsequently filtered usiagdol that implements the
windowing scheme. These filtered observations were thegdfitt a straight line in a
least-squares sense, and the maximum residual extradiedodt-mean-square of these
maximal residuals proved to be less than half a microarecgktar the NEO population,
which was expected to have the most non-linear behaviown he largest of the maxi-
mal residuals was less than 1/60th millisecond of arc.

Because most NEO observations will be very faint, we exp&®Mbservations to have
position errors of several milliseconds of arc. Hence, the-lnearity is expected to be
far smaller than the measurement error, thus justifyindittearity assumption.

5.3 Evaluation

In order to compare different methods of motion detectiolamte Carlo software tool
was developed by the author. Given the number of obsenstibe velocityv of the
observed object and the residual variance, a simulated séservations is generated as
randomly perturbed observations of linear motion, acewdl (5.1). A given method can
then be applied on this data set, yielding a flag that indscditdhe method has detected
motion. This sequence of generation and application is tepeated a large number
of times to obtain the probabilitpsx that the method cannot reject the null hypothesis,
givenwv. In other words,psix is the probability that the set of observations is labelled a
belonging to a fixed object. This probability may subseqlydm plotted as a function
of the velocity, facilitating visual comparison of the metls. The ideal plot would be
similar to as-function, such that the null hypothesis accepted if angt dni = O:

o _J 1 forv=0
Prix, ideal(v) = 0 forv#0

Because of random measurement errors, such an ideal pludtda@ achieved.
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The tool scales the velocityaccording to the observational ereoywhich, as mentioned
above, is assumed to be the same for all observation in a sdigures 5.1 to 5.8 the
simplified timingt; = i (in seconds) is used. Figures 5.10 and 5.11 are based on the
transit times for Gaia’'s preceding field of view (see tablB 4.

5.4 Non-parametric Tests

This section describes two tests for motion. Both are inddget of the distribution of
the residuals, and are thus said to be non-parametric. Weassume that, under the
null hypothesis, each positional error is independent dadtically distributed. The tests
make no use of the relative measurement times, only the andehich the position
measurements are made.

Successive Squared Differences
Under the null hypothesis (i.e., assuming the object is firdte sky), letxy, Xo, ..., XN
denote a series dfl independent and identically distributed elements, witlame and

variances 2. The expected value of the square of the difference betwaetwa elements
Xi andxj,i # |, is:

E ((xi — Xj)z) =E (xiz + x5 — 2Xin> =2 (E (xiz) — (E(xi))2> = 202,
where the definition of variance is used: &y = E ((x — E (x))?) = E (x?) — (E (x))%.
In short, half the squared distance is expected to equakiti@nce. We now pair element
I with its neighbour, element+ 1, fori = 1,2,..., N — 1. Half the average of the

squared distance between the neighbours in each dfithel pairs, is also expected to
equal the variance. We write this as

E(q?(N)) =02, (5.2)
where
2 1 iy 2
PN =555 ;wl —x)%.
The test statistic is the ratio gf(N) to the variance:

a%(N)
SZ(N) ’

ysp(N) =
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where the variance is expressed as an unbiased sampleceagistmmate:

N
SN) = iZm - %7,
N-1 =

and wherex is the estimated mean:

. 18
x=x(N)=Nin
i=1

Because the expected value of the variance esti®atgjuals the variance?, the ex-
pected value of the test statistigp(N), under the null hypothesis, would be 1, as seen
from (5.2). Conversely, if there was a trend, one would ekpacelement to be, on the
average, closer to its neighbouring element than to the paahthus, the test statistic
ysp(N) would be less than 1.

By calculating the test statistigsp(N) and comparing it to a threshold value, one may
estimate whether or not the object in question was movingeatiine of observation. If
the test statistic exceeds the threshold value, the nulbbtimgsis cannot be rejected and
the object is assumed to be fixed. The threshold value maytbewieed from statistical
tables or computed using, e.g., a Monte Carlo method.

This method has some interesting asymptotic propertielafge sample sizes, but since
the sample size never exceeds twelve elements in this apiph¢the reader is referred to
[Aivazian 1978], where the method is described uheleritére des carrés des différences
successives

Figure 5.1 showgxix as a function of the velocity for the method of successive squared
differences. The method has been calibrated suchgihat 4.5%. This seemingly arbi-
trary value is caused by a limitation inherent in the Manm#al method, described in
the next section.

Mann-Kendall

The Mann-Kendall method is based on Kendatl'statistic, described in [Kendall 1938],

used as a measure of correlation in a bivariate populatiave treat the element number

(1,2,3,4,...) as one of the variables, and the time-ordpresition observations as the
other variable, then the correlation between the two pdimuia can be considered as an
indication of a trend.

Under the null hypothesis, i.e., when the observations radegendent and identically
distributed, a positive or negative sign of the differeneéneen any unique pair of ob-
servations is expected to be equally likely. This obseovefibrms the basis of the Mann-
Kendall test [Mann 1945]. The test statistic of this test is:



66 S. Wolff

Probability for a 'fixed’ label, based on 12 observations

1
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Figure 5.1: The probability that an object, moving at velocity is labelled as fixed. Based
on twelve observations and calibrated such that= 4.5%. For velocitiesv > 0.470/s, the
probability of erroneously labelling an object as fixgd, is less than 5%. From [Wolff 2005-111].

N i—1
mak (N) = > “sign(Xi — X;)
i=2 j=1
where
-1, z<0
sign(z) = 0, z=0
1, z>0

Ignoring the possibility of identical observation$i(= Xj,i # j), the mean and variance
of the test statistic may be derived as follows:

Introducing the variabl¥jj, defined for > j, as

Vi — 1, Xi>Xj
D7) -1, X < X;

Under the null hypothesisj is equally likely to be 1 or-1 and thereforeE(Yjj) = 0
and E(Yijz) = 1. The mean of the test statisjigk (N) is

N i—-1

EGmc(N) =E > > Y| =0

i=2 j=1
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The variance may be found by evaluating

Var (m) = E (nik ) = (B = E (i) = E ( > Yimf,-f) (53)

i>j,i’>j’

This is may be done by splitting up the sum into six cases:

Case no. Property No. of terms
1 i, aldistnet  (5)(",)
2 i=ij=] (2)
3 i=ij#] 2(%)
4 i £i =] 2(%)
5 i>j=i">j (%)
6 > =0 > (%)

Summing the number of terms yieléNZ(N —1)2 as expected, the total number of terms
in the sum (5.3).

Case 1. i, j, I, j’ all distinct. By independenceE (Y;; Yi/j;) = 0. Total contribution is
zero.

Case2.i=i’, j = j’. Inthis caseE (Y;j Yi:j) = 1. Since this happens @') = W
terms, the total contribution r@%

Case 3. i=i', ] # j’. Ifand only if X; is either greater than or less than both and
X] , thenYjj Yi-j» = 1. The probability of this, under the null hypothesis%isTherefore,
E (YijYij) = (+1)2 + (=1)% = 1. Since the number of terms of this case equély)2
the contribution i (5).

Case 4. i#i’, j = j’. This case is similar to case 3. The contributioé(g).

Case 5. i> j =i’ > j’. If and only if X; is betweenX; andX/j, thenYjjYi;j; = 1. The
probability of this, under the null hypothesis,%s Therefore,E (Yini/j/) = (+1)% +

(—1)% = —%. Since the number of terms of this case eqt@l}s the contribution is

-3(5).

Case6.1> j’ =i > j. This case is similar to case 5. The contributiopr%(g).
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Summing the total contributions of each case gives the vegiafy\yk (N) according to
(5.3):

Var(k (N) =E | Y Yij Yy | =0+

i>],i’>j’

N(N —1)+2(N) _ N(N-1@2N +5)
2 3\3/) ™ 18

For large sample sizes, the test statistic converges toraateandom variable under the
null hypothesis [Mann 1945]. The test statistic divided bg square root of its variance
is NV (0, 1)-distributed, which leads to the easy determination of table threshold.

For smaller values o, as is the case in the present problem, the thresholds caube f
in statistical tables or computed using, e.g., Monte Carthwods. These small values of
N also lead to an additional difficulty using this method: ®itice test statistic can only
take on values-N(N — 1)/2, —N(N — 1)/2+2,...,N(N = 1)/2— 2, N(N — 1)/2, it

is not possible to test against arbitrary levels of confide®r example, foN = 8, the
double sided tedtyk (N)| < o has confidence levels 386, 969%, 939% and 82%

for @ equal to 18, 16, 14 and 12, respectively. Testing agains®a&nfidence level is
thus not possible foN = 8. The use of the Mann-Kendall test for an observation set of,
say,N = 2 observations, is also of little value, since, in this cdbe,test statistic will
only assume the valuegk (2) = £1. This limited threshold resolution is the reason for
the apparently arbitrary levels of confidenceppf= 4.5% andp, = 8.3% in figures 5.1
to 5.8.

Figure 5.2 showgyix as a function of the velocity for the method of successive squared
differences and the Mann-Kendall method. The latter perfosignificantly better at
intermediate velocities.

5.5 Parametric Tests

In the following sections, the residuals are assumed todtelalited according to normal
law with meanyu = 0 and constant varianag® = o2. The first test compares the
bias-corrected sample variance to the expected variandesanilar to the previous two,
ignores any details about the specific measurement timegy asly the ordering of the
measurements. The second test fits the measurement datadmhtdinex; = a + bt;
and subsequently tests whether the slbpgeing a velocity estimate) is significantly
different from zero.

Variance Ratio

This test is based on the ratio of the empirical variar§e,to the expected variance,
i.e., the expected position standard deviation squaretthelbbserved variance (the em-
pirical variance) can be explained by the expected variatmee, no trend is observed.
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Probability for a 'fixed’ label, based on 12 observations
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Figure 5.2: The probability that an object, moving at velocity is labelled as fixed. Based on
twelve observations and calibrated such tha& 4.5%. The Mann-Kendall method is the better
method in this case — it is closer to the ideal plot, as desdrih section 5.3. The probability of
erroneously labelling an object as fixqw,, is less than 5% fov > 0.360 /s for the Mann-Kendall
method, whereas in the case of the method of successiveesiqdiffierences, this is only true for
v > 0.470/s. From [Wolff 2005-II1].

Conversely, the case of the observed variance exceedingxfiexted variance can be
explained by a trend in the series of observations.

Under the null hypothesis, i.e., when the observed varignfidly explained by the ex-
pected variancey?, it holds that

N

yxz(N>—<N—1> = Z X — X)?

i=1

is distributed according to #2(N — 1) law (see e.g., [Kendall & Stuart 1961]). Thus,
testing for a trend may be done by performing a one-sidedaketite above statistic
against a¢2(N — 1) distribution.

Figure 5.3 showgxix as a function of the velocity in a comparison of the method of
successive squared differences, the Mann-Kendall metta¢he variance ratio method.
The difference between the first and last methods is sliglomgare figure 5.3, based
on twelve observations (e.g., Gaia’s ASM and AF1-AF11), gorfe 5.4, based on only

four (e.g., a Gaia set of observations reduced to four ob§ens because of a large
across-scan velocity). Apart from the fact that the veloo#eds to be greater to properly
distinguish moving from fixed objects, based on four obg@yua rather than twelve, the

relative performance of the three methods differ signifilgabetween the two figures.

The variance ratio method seems better adapted to copihgwatlest datasets.
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Probability for a 'fixed’ label, based on 12 observations
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Figure 5.3: The probability that an object, moving at velocity is labelled as fixed. Based
on twelve observations and calibrated such tfhat 4.5%. The variance ratio appears slightly
inferior to the other methods far < 0.30/s. Exceeding this velocity threshold, it performs
slightly better than the method of successive squaredrdiftees. For relatively large velocities,
the performance of the three methods is very similar. FromlfvVZ005-111].

Regression-based Test

A different approach to trend testing may be taken by periiogna best fit, in a least-
squares sense, of the observed data onto a straight;lisea + bt;, and subsequently
testing whether the linear coefficient (the slope) can berassd to be zero. This assumes
that the alternative to the null hypothesis is a linear tremd not, e.g., a quadratic trend.
In section 5.2 it is shown that this can be safely assumed whating with observations
from one field transit.

The linear coefficient (and thus, the velocity) is estimasdollows:
N v  ovi T
> izt -2

Using this, the test statistic may be written as (see [Kd@&i&ltuart 1961)):

b

PN 4 —x02—2 N D)2
(N-2) 3N (-2

YR(N) =

Under the null hypothesis, this can be shown to be distribatzording to a Student’s
t-distribution withN — 2 degrees of freedom.
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Probability for a 'fixed’ label, based on 4 observations
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Figure 5.4: The probability that an object, moving at velocity is labelled as fixed. Based on
four observations and calibrated such that= 8.3%. As opposed to figure 5.3, the variance ratio
method is clearly superior (closer to the ideal plot, asdesd in section 5.3), whereas the method
of successive squared differences and the Mann-Kendahodeire almost indistinguishable. In
the case of the variance ratio methqul, is less than 5% for > 1.75% /s, whereas for the two
other methods, the velocity must exceed' 8. From [Wolff 2005-I11].

Assuming that the observations may be described by a stiagh(see section 5.2), the
null hypothesis, i.e., the case of a zero slope, may be téstéy performing a two-sided
testin at(N — 2) distribution.

Exampled. Given the set oN = 7 observationst;, X;):

[ ti Xi
1 -3 -26
2 -2 =22
3 -1 09
4 0 15
5 1 02
6 2 04
7 3 33

we wish to determine whether or not this series of obsematman be as-
sumed to come from a noisy linear process with a non-zereeslbpst, we
determind, X and, for convenience, we find the value of the sums involved:
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t=0
15
7

N
Z(ti — 02 =28
i=1

N
Z(xi — %)% ~ 2543
i=1

X = ~ 0.21

N
Z(ti — (x5 —X) =222

i=1

The slope estimate is:

S =P —%) 222

0.79
YL — %2 28

b=

The test statistic is:

0.79

RN —F—————
25.43-0.7%-28
(7-5):28

=331

This should be compared witht & — 2) distribution at the required threshold
a. For 7— 2 = 5 degrees of freedom, a selection of confidence intervals for
the Student’s t-distribution is shown in the following tabl

Level Threshold

95.0% 2.02
97.5% 2.57
99.0% 4.03

In this example, the null hypothesis will be rejected in thse of 95% and
97.5% confidence intervals, but accepted for a 99% confidiemeeal.

A
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The four methods thus far presented are compared in figurefo@ingpsix as a function
of the velocityv. The regression-based method appears slightly betterttigaann-
Kendall method,p;; being less than 5% for > 0.340, as opposed to > 0.360 for
the Mann-Kendall method. Comparing figure 5.5, based onvenabservations, to figure
5.6, based on only four, it is perhaps surprising that thesssion-based method, despite
being the only method that includes temporal informatiane$ as badly as the method
of successive squared differences and the Mann-Kendatiaddor four observations.

Probability for a 'fixed’ label, based on 12 observations
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Figure 5.5: The probability that an object, moving at velocity is labelled as fixed. Based on
twelve observations, using transit times defined;as i (in seconds), and calibrated such that
p = 4.5%. The regression-based method appears slightly better tigalann-Kendall method,
pi being less than 5% far > 0.340. For relatively large velocities, the performance of therfo
methods is very similar. From [Wolff 2005-II1].

Based on figures 5.5 and 5.6, none of the four methods presgmigfar is unequivocally
the “best” method. It would seem that the best results woalatio come from applying
different methods depending on the number of observatidssa consequence of an
attempt to avoid this relatively complex composite mettaod] to answer the question of
whether there is a theoretical limit to the quality of a motaetection method, an optimal
motion detection method was developed.

5.6 A New, Optimal, Motion Detection Method

This section presents a new and optimal motion detectiohadetdeveloped following a
methodology essentially different from the one previowstyployed, namely attempting
to create an optimal method from the outset. This methodlex@loped by C. Henrik-
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Probability for a 'fixed’ label, based on 4 observations
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Figure 5.6: The probability that an object, moving at velocity is labelled as fixed. Based on
four observations, using transit times definedtas= i (in seconds), and calibrated such that
p = 8.3%. As opposed to figure 5.5, the variance ratio method is cleanberior (closer to the
ideal function, as described in section 5.3), whereas,gpartsurprisingly, the regression-based
method fares almost as badly as the remaining two methodm Polff 2005-111].

serf and the author, is also described in [Wolff 2005-11] and, tiee simplified case, in
[Henriksen & Wolff 2005].

The following sections describe an optimal technique féegarising groups of observa-
tions in a way that is computationally inexpensive and easynplement. Initially, we
regard a simplified case having unit time steps and unit neeia This is subsequently
generalised to encompass arbitrary observation timesmaliddual residual variances in
section 5.8.

Introduction and results

This section presents an optimal method of distinguishiegifand moving objects based
on short-timebase astrometric observations. The methodg=to the class dikelihood
ratio (LR) tests, using the ratio of two probabilities of the sarmerg under different
hypotheses as a test statistic. The proofs of the resultseéound in the next section. A
generalisation of the method can be found in section 5.8.

When we in the following say that some function is measuralbéeunderstand with re-
spect to the sigma algebra of Borel sets. When we talk abawatigpility distributionitis
defined on this set. The symbotlenotes the Lebesgue measure (see, e.g., [Rudin 1988]).

4Department of Mathematics, Technical University of Derknar
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As in the previous sections, we restrict ourselves to thedimensional movement, i.e.,
movement on the real line. Suppose we have exactly two kihdbjects: fixed objects
and uniformly moving objects, moving at constant speett was shown in section 5.2,
that the motion of celestial bodies, observed over shorbgsiof time, may be regarded
as linear.

Changing the indexing, we imagine that we have measureddbitign of an object at
timesQ1,..., N, thus obtaining a vector dfl + 1 measurements. Note, that this equidis-
tant sampling means = i. Theith measurement, denotédl, is the sum of the true
position of the object and an error teen according to (5.1). We assume that the error
termse; are independent stochastic variables, each normallytoisdd with mean 0 and
variance li.e., ¢ € N(0,1). Since the variance of the error terms are typically well
known (as a function of visual magnitude, see chapter 4j,vamiance may be obtained
by appriopriate scaling.

Denote byx,; € RN*! the stochastic variable that corresponds to the measuted da
of a fixed object. Fow > 0 denote by, the stochastic variable that corresponds to
data coming from an object moving with velocityv with probability 1/2 andv with
probability 1/2. Since we do not want to make any assumption on the initiakijposof

an object, we introduce the stochastic variablee RN, describing relative positions:
We write &, = (X9, XL, ..., XNy and set), = (YL,...,YN) = (X} - X9, X2 -

X0, ..., XN — X9, Then we can compute the density function associated Wjth
i 1 ¥ : .
Proposition 1. Let n(y) = Ton exp( 2) denote the density function of the normal

distribution with mearx = 0 and variances2 = 1. The distribution of the stochastic
variable ) is given by the density function

fo(y) = /Rn(S) n(y1+9) N(y2+9)---nN(yn +9) ds,
and the distribution of), given by the density function
fuly) = %fo()& —v,¥2—2v,..., YN — Nv)
+%fo(y1+v,y2+2v,...,yN + Nv)

The likelihood ratio §/fg is given by

fv(y) _ UZ v i A
oy exp(—ﬂN(N + 1)(N + 2)) cosh(é Z (2 —N) y.) .

The proof of this proposition is in the next section.

We now define the concept oftast. A test is a measurable subddt of RN*1, where
we label an object as moving i € M and as fixed it ¢ M. We say that a te is
translation invariantif x e M = x+ (r,7,...,7) € M, forall r € R.



76 S. Wolff

In the following, we assume that the velocitys knowna priori. Later we show that the
derived test is independent of the distributiorvof

To a translation invariant ted we associate a number and an error probability func-
tion Q,(M) = py (v). As before, the numbgp, is the probability that the test commits a
type | error, andQ, (M) = py (v) is the probability that the test commits a type Il error,
for an object moving with speed More formally, we define

M={yeRN|(©yL....,yn) € M},
P = / _ fo(y) dy,
M

Qu(M) = |o||<v)=1—/M f,(y) dy.

Clearly the lower the numbgp and the function valueg (v) the better the test. The
main result is that there is an optimal test, which we now diesc

The following expression defines an estimator of the (lipealocity, derived in the next
section:

N
6

v(X) = 2i — N)X;. 5.5

(X) N(N—|—1)(N+2)§( )X (5.5)

This estimator is translation invariant in the sense that+ (z, 7, ..., 7)) = v(X), for

all r € R.
Using the velocity estimate (5.5), we define the tegtby

Ke = (x e RN [3(x)| > a). (5.6)

This means that according to this test an object is labeBadaving if the absolute value
of the estimated velocity exceeds some threshold walue

Recall thatp, (K,) is the probability that the tesf, commits the mistake of labelling a
fixed object as moving, which is equivalent to the probapiit |v| being greater than or
equal tow, givenv = O:

pi(Ke) = Po(X)| > | v=0) (5.7)

According to (5.5)p(x) is a linear combination of stochastic variables) = ZiN=o i Xi,
wherex; € N'(Py+iv, 1). Therefore, the mean and variancev¢f) are:

N
Mf):ZVI Mx; =V
i=0

12
_ 2.2 _
" _;y' T NN+ DIN+2)
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Owing to the symmetry abowt= 0, we may write thaP (|v(X)| > @) = 2 P(v(X) > «),
and p;(K,) may therefore also be written as:

6u%zg)zzp(ﬁzﬁ):zpazuw»

0% 03 03

pI(K(x) =2P (

wherezis a stochastic variable, distributed according to thedaedised normal distribu-
tion: ze N (0, 1).

Suppose we have a maximum acceptable véloiep, (K, ). A corresponding value far
can now be found by solving far

§ = pi(Ky) =2P(z = u)

and findingx as follows:

12
a=Uoj;=U .
JMN+DW+3

Example5. As an example, suppose we have measured 4 positions, igaW¥ia= 3:
Xo = 139, x1 = 17.2, xo = 15.3, X3 = 15.4. The velocity estimate is:

1
v(X) = 10 (—3xg — 1x1 + 1xo + 3x3) = 0.26

Supposing we accept 10% type | erra¥s< 0.1), a statistical table yields the
valueu ~ 1.96, leading to threshold @f ~ 0.88. Since|v(X)| < «, this set
of observations is flagged as belonging to a fixed object.

A

As the example shows, the test (5.6) is easy to implement amgbatationally inexpen-
sive. Itis also optimal in the following strong sense.

Theorem 1. Supposd® < § < 1. There exists a such that p(K,) = § and for any
symmetric and translation invariant test M with(M) < § we have Q(Ky) < Q,(M),
for any velocityv.

Notice thate does not depend an We say that a measuneon R is symmetridf for any
intervall C R we haven(l) = n(—1). We have the following corollary.

Corollary 1. Fix «. For any symmetric distribution of object velocities, ang aransla-
tion invariant test M committing type | errors with probabjl p; (M) < pi(K,), the test
M commits type Il errors with a probability equal to or greathan that of the test K
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Loosely speaking, (5.7) and the theorem says that for amngivobability of type | errors
we choose to accept, there is a tiégtthat commits this amount of type | errors, and any
other test that performs as well in this regard will commiteaist as many type Il errors.

Notice that we can say that the test is optimal without angriori knowledge of the
velocity distribution except that it be symmetric. Thisigrsficant, since in many appli-
cations one typically does not know much about the velodgribution, except that it is
symmetric.

5.7 Proofs of the results

First, we prove Proposition 1, then we show how the main #gmamplies the corollary.
The proofs of the main theorem and the lemma then follow ihdhder.

We start by proving Proposition 1, beginning with the deismaof fo(y):

Whenv = 0, the residuals may be expressedeas= X; — p, according to (5.1).
Since the residuals are independent and distributed aogaa@\/ (0, 1), we may express
fo(Xo, X1, ..., XN) as (see [Kendall & Stuart 1961]):

f (X0, X1, ..., XN) =N(Xg — PIN(Xy — P) - - - N(XN — P)

We now perform the following mapping:

_Xo_ i X0 ] _Xo_
Y1 X1 — Xp X1
Y2 | =] X2—Xo | =A| X2

| YN | | XN — X0 | | XN

The transformation matrii is easily seen to have a unit determinant, and hence:

fo(Xo, Y1. Y2, ..., YN) = N(Xo — P)N(Y1 + Xo)N(Y2 + Xo) - - - N(YN + Xo)

The marginal probability density functiofy(y) = fo(y1, Y2, ..., Yn) can be found by
“integrating out”xp (see [Kendall & Stuart 1961]):

foy) = fRn(S— PIN(Y1+S)N(Y2+S) - - - N(YN+S)ds = /Rn(S)n(lerS) ---N(yn+9s)ds
(5.8)
We continue with deriving the likelihood ratif, / fo. Define
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hiy,v) = fo(yr+v,y2+2v,...,yn+ Nv)
= /n(S)n(Y1+v+S)...n(YN+Nv—|—S)dS
R

= /kexp(—asz—bs—c) ds
R

where

N
bw) = Y (v +iv)
i=1
1 N
F N2
cv) = éé(y‘“”)

Performing the integration yields

hly,v) = k\/g exp(d(v)),

where

2
d(v) = b(v)

— c(v).

Since fo(y) = h(y,0) and f,(y) = 3 (h(y, v) + h(y, —v)) because of the symmetric
velocity distribution, the ratidf, / fo is equal to:

fuy) _ 1h(y,v) +h(y, —v)

foly) 2 h(y, 0)
lexp(d(v)) +exp(d(-v))
2 exp(d(0))

Observe, thatl(v) may be written as a quadratic polynomiakind(v) = lv2 + mv + n,
where
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2
(ZiNzli> ZiN_liz 1
a3 2—2—4N(N+1)(N +2),

ARY N
m:<z'=1y2a<z 1|>2N:iyi—;i2::(2imyi,

() s ¥

n =
4a 2

This means the ratid, / fo may be written as

foy)  lexplv®+mu+n) + explv? — mv +n)
foyy ~— 2 exp(n)
= exp(lv?) cosh—mv)

2 N
= exp(—%lN(N + 1)(N +2)> cosh(% Z(Zi — N)yi> .

i=1

O

A large numerical value of the ratif, / fg indicates that the object is likely to be moving.
Conversely, a small absolute value indicates that the blgeikely to be fixed. Since
andN are known constants and c@gh increases ap«| increases, the magnitude of the
ratio f,/fo depends monotonically on the magnitudeEﬁ‘:l(Zi — N)y;. Expressing this
usingx; rather thary;:

N N N N N
D @=Nyi =) @-N)(xi—x0) =) (2i-N)xi—x0) (2-N)=) 2-N)xi .
i=1 i=1 i=0 i=0 i=0

sinced N 12 —N) = 23N Ji = N(N+1) = 0. Usingt; =i implied by the equidistant
sampling, the expected value of this sum is:



Near Earth Objects 81

N N
E<2}z—Nn):=E( (Z—NM%+W+GO (5.9)
i=0 i=0
N N
= EG§:®—¢®O+E<%EXZ—NO (5.10)
i=0 i=0
N
+E(§:(Z——N)a) (5.11)

i=0
N(N+D(N+2)
v 6

+0+0 (5.12)

This shows, that if the SUT\*;(2i —N)x; is scaled by (N (N + 1) (N + 2)), we have
an unbiased estimator of Its translation invariance is seen froEiN:O(Zi —N)=0,as
shown above. We have now derived the velocity estimate:(5.5)

6 N

V= NNTD(NT2) ;Qi —N)x

This scaling does not affect the test in any way. It does, kewdurnish a physical
interpretation of the test: For large numerical values ef\blocity estimator, it is likely
that the object is moving, and vice versa. This could harélyrore intuitive. However,
it is important to stress, that this intuition is not the amigf the test. The origin is the
ratio of the probability density functiong, to fo, the likelihood radio.

Using Lagrange multipliers, it is straight-forward to shtvat (5.5) has minimum vari-
ance among all translation invariant, linear, unbiasedaigt estimators. The general
formulation for a linear velocity estimator is:

N
i=> X (5.13)
i=0
Because 2 = 1, the variance is
N
Var (i) = ) of . (5.14)
i=0

To ensure that (5.13) is translation invariant, we impose:

N

Zai =0 (5.15)
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Furthermore, we impose the following to ensure an unbiasghator:

i =1 (5.16)

Mz

i=0

If a function f : A — R has an extremum at € A° and f is differentiable inu,
thenV f (u) = 0. Introducing the two constraints (5.15) and (5.16) usirglthgrangian
multipliersi1 anday, respectively, we can minimise (5.14) by solving:

N N
a - .
0 = a—al (Var(v) + )\]_ E oj + )\2 E |O[i)

i=0 i=0
0 = 2ai+Ai1+1iA (5.17)

fori =0,1,..., N. Adding (5.17) fori =0, 1, ..., N, and using (5.15) yields:

N N N
0 = ZZOli +Z)\1+Zik2
i=0 i=0 i=0

N+1

0 = O+(N+Dxr1+N A2 (5.18)

By multiplying (5.17) byi before adding for = 0, 1, ..., N yields an expression we can
reduce using (5.16):

N N N
0 = 2) i+ i+ i%
i=0 i=0 i=0

N+1 (N+1)(2N+1)A
2

0 = 2+ N—2A N 5.19
+ 5 1+ 6 ( )

By simultaneously solving (5.18) and (5.19) forn, A2), we get:

A . 12
1 = (N_+1><N2+42>
A2 = TRNNFDNTD

Inserting these values far andiz in (5.17) yields:
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1 6 |
o=zt =g yNTy @V

Subsequently inserting these valuesdpin (5.13) yields the velocity estimator in (5.5),
proving that, among all linear, translation invariant, iasied velocity estimators, (5.5)
has minimum variance.

Before proving the main theorem, we show how it implies theoltary. Let M be an
arbitrary translation invariant test committing type Ia@s with probability py(M) <

P (Ky). We must show that the teM commits type Il errors with a probability equal to
or greater than that of the teit,. DefineM = {y € RN | (0, y1, ..., yn) € M}. SinceM

is translation invariantwe havee M <y € M wheny = (X1—Xo, ..., XN —Xo). Define

in a similar way the seK, from K,. Let, be the symmetric probability measure Bn
given the distribution of velocities among moving objedd®fine a probability measure
wu on the non-negative reals by lettipgU) = n(U U —U), for each measurable subset
U C [0, 00). If X denotes the measured positions of a randomly chosen moljegto
then) = (X1 — X0, ..., XN — Xo) has the density functiog(y) = [;° f,(y) du(v).

We now introduceQ(M) and Q(K), the probabilities that the teskd andK,, respec-
tively, commit type Il errors. These probabilities dependtte velocity distribution rather
than on thea priori knowledge of the object velocity, which was the case V@ M).

To prove the corollary, we need to prove tlatM) > Q(K,):
e = 1= [ [ h e day)
=1 [ [t ) duw)
0o Jm

= 1 [ 1- Q) duw.
According to the theorenQ,(K,) < Q,(M), so

QM) = 1—/0 1— Qu(M) du(v)
> 1_fw1_Qv(Ka) d[L(U)
0
_ 1 / / f,(y) di(y) du(v)
0 Ko

-1 fo () duv) dry)
= Q(Ka)-
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That we can exchange the order of integration follows fromellds Theorem. We have
finished the proof of the corollary.

(]
The proof of the theorem hinges on the following lemma:
Lemma 1. Let f, g : R" — R be non-negative representatives of functions such
that [ f d» = [g d» = 1. Define A = {y | f(y) > Bg(y)}, for 8 > 0. Then the

set A; has the following extremal property: For any measurablesaitB ¢ RN with
Jg9di = [, gdiwehavefp fdi< [, fdi

Equipped with this lemma, the proof of the theorem is striafghward. Lets be given
and leta be chosen such that;(K,) = 8. Such anx exists due to continuity. Le
be an arbitrary translation invariant test with a proba&pitf type | errorsp (M) less
than or equal top(Ky), the probability of type | errors oK, for some fixede. We
must show that foiM the probability of type Il errors is greater than or equal he t
corresponding probability fak,. We havep, (M) = [; fo d, andpy(K,) = fKa fo di,

S0 by assumption
/~ fodi < / fo dA. (5.20)
M Ko

By Proposition 1

fy)
fo(y)

Now, "N .2 — N)y; = YN (2 — N)x;, and it follows that the seK,, is equal to
Ag =1{y | fu(y) = Bfo(y)}, for somep = B(«). By the lemma and (5.20) we have that

/~ f, di < f,)olx:/~ f, da
M Ag Ko

which concludes the proof of the theorem.

v2 v .
exp(—ﬂN(N +D(N + 2)) COSh(z D @ =N yi)

All that remains is to prove the lemma. First note that

/ gdk+/ gdk:/gd/\g
AgNB B\Ag B

gdA:/ gdk—l—/ g dh.
Ag AgNB Ag\B

/ gdxr < / g dx.
B\Ag Ag\B

It follows that
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We compute

/ fdkz/ ﬂgdkz[ ﬂgdkz[ f da
As\B As\B B\Ag B\Ag

Adding [, g fd on both side of the inequality we see thfat f di > [ f di, which
ends the proof of the lemma.

O

Figures 5.7 and 5.8 show the relative performance of eacheofite tests presented in
this chapter. The optimal method performs better than therdests: It is closer to the
ideal curve, as described in section 5.3. This was to be ¢xgebecause it is optimal
among all symmetric and translation invariant methods @ltog to corollary 1, proved

above.

Thus far, we have assumed transit times (in seconds) deddojt; = i. For the fifth,
optimal, method, we have assumed a constant position sthddsiation of unityo; =
o = 1. The following section will generalise the optimal methodenable arbitrary
transit times and position standard deviation.

Probability for a 'fixed’ label, based on 12 observations

Successive Squéred biffer'ence'@ _

S N Mann-Kendall +
X gg Variance Ratio O
A§+ @g Regressmln x
N timal A
Prix ST P

03r
0.2
01r

O ! PR 2
0O 005 0.1 015 0.2 0.25 0.3 0.35 04 045 0.5
v/(o/9)

Figure 5.7: The probability that an object, moving at velocity is labelled as fixed. Based on
twelve observations, using transit times defined, as i (in seconds), and calibrated such that
pi = 4.5%. The optimal method appears slightly better (closer to tikalifunction, as described
in section 5.3) than the regression-based metippdheing less than 5% far > 0.300/s in the
case of the former, as opposed the latter, requiving0.340 /s for this to be true. See figure 5.10
for a similar example using Gaia transit times. From [WoG03-I1].
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Probability for a 'fixed’ label, based on 4 observations

L ' ! ] P T
o_gm@ Successive Squared Differences
opl ABe Mann-Kendall +
0'7 - A R Variance Ratio O |

' AR Regression x
0.6 ADD 9@ Optimal A 7

Prix 0.5 |- %
0.4
0.3
0.2
0.1
0 |
0 0.5

Figure 5.8: The probability that an object, moving at velocity is labelled as fixed. Based on
four observations, using transit times definedtas= i (in seconds), and calibrated such that
p = 8.3%. As expected, the optimal method is superior (closer to thaliflinction, as described
in section 5.3) to even the variance ratio method. In the chske former, p; is less than 5%
for v > 1.50/s, whereas the latter requires> 1.750 /s for this to be true. See figure 5.11 for a
similar plot using Gaia transit times. From [Wolff 2005:I1]

5.8 Generalising the results

In this section, we will be generalising the one-dimensi@naplified case of; = i
andcri2 = 1 to arbitrary sampling times and variances. The derivatidhbe analogu-
ous to the derivation of the simplified case, leading to tloycekng of several variables
to facilitate the transition. As an implication of this aogy, the proofs of optimality
and independence of velocity distribution shown in the fones section also hold for the
generalised case.

As in the previous section, the speed is initially assumdakt&nown, and any direction
of motion,+|v| or —|v| is assumed to be equally likely. The probability densitychion
of a random variabl&X € N (u, 02) is

f(x):%n(X;M>

wheren(x) is the probability density function of a random variabletdlgited according
to A/ (0, 1). Rewriting (5.1) agj = X — vtj — Pg, the marginal probability distribution,
given the velocity, is (cf. (5.8)):
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N 1 S y1 — vt yo — vt yn — vt
hy —vt) = H(—)/n(—)n( : 1) ( 2 2>-.-n<—N N)ds
i_o \0i/Jr \OO 01 02 ON
N N+1
1 1
= = —— exp(—as® —bs—c)ds 5.21
il:([)(m)/ﬂ%(\/&r) p( ) ( )
where
N
1 1
a = - — (5.22)
ZZ;oiz
N Vi — vt
b — Z ! 5 ! (5.23)
i—1 i
N 2
1 Vi — vt
c = EZ( - ) (5.24)
i=1
Performing the integration in (5.21) yields:
N N-+1 2
1 1 T b
h(y — = — | —= — — — 2
oo = [ (G e
where
2
N yi—uti N
b2_ B ( =102 ) _1Z(yi—vt.>
4a - 2X:iN:O Ul_2 2 i=1 9
(Zi:l%}) + v Zizli—:z) —2v (ZizlaL;Z)( i:l%
- ZX:iN:Oal_2
N 2 2 N 2 N
1 Yi v t; Yyiti
- — - L + i,
2;‘%2 2 ;Ui = of
= 2+ mu+n (5.26)

We introduce the following short-hand notation:
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N 1 N i _ «N
‘I’l—Zi:oa—iz qjt_Zizla_:Z ‘I’y—Zizla—;z

_ N Vit _ N t? . N Y'2
Up=2lim17 Ye=2imaz Yy =2iays

Note, that¥,. in general is different fromllf, = Wy Wy. We may now writd, m andn
from (5.26) as:

o w1,
2w 20°®
m = ‘pyt—\py\pt
Wy

n = W—)Z/ 1\1-’2
o2y 2

We are now ready to express the ratio of the probability defsnctionsf, /fo:

f, sh(y — vt) + 3h(y + vt)

fo h(y)

1exp(v? 4 mv 4 n) + exp(lv? — mv + n)

2 exp(n)

= explv?) coshmv) (5.27)

As seen before, the magnitude of the probability densiip d¢pends on the magnitude
of m. We writem as a linear combination of the elementsy/of

Sincey; = Xj — Xp = vtj + €1 — €q, the expected value o is:
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N
_ N
Em - E (z y ( ¢)>
N f A
= E (; (vti + €1 — €0) <U_|2 - Giz‘lf1>)
N
i A
e (Z ti <_ _ T))
\IJZ
= v (\I—’tz — —t>
41

Thus, by scaling appropriately, we have a velocity estimate

V=

N
- - X (5.28)
i=0

W — 3_5 WV — W W W — WP o2

n i
As before, this scaling is merely done to assist in the unadedsng of the test.

To show that this velocity estimate is the most efficient (thesleast variance) among
all translation invariant, unbiased estimators, we wilinpute the most efficient velocity
estimate and show that it equals (5.28), in analogy with itm@lied case.

The general form of a linear velocity estimate is:

N N
17=Zozixi =Zai (vt + p+€) (5.29)
i=0 i=0

The variance of which is:

N
Var(v) = Z ozizaiz
i=0

The expected value is:

N N N
E(v) = E(Zai (vt + p—l—ei)) = vZaiti + pZai
i=0 i=0

i=0

To make sure the estimator is translation invariant, thersgterm on the right hand side
must be zero for anyp, so:
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An unbiased estimator is defined as having an expected vglus ® the value it esti-
mates, so Bv) = v. We ensure this property by imposing the following consirai

N
Zaiti =1
i=0

As before, we introduce two Lagrange multipliersandi2. The following must now
hold fori =0,1,2,..., N:

d
0 = o <Var(v)+klza.+AZZa.t|>

i=0 =0
¢
0 = 2ai07 4 A1+ Azt
=[x
1 {j
0 = 201 +r1— +r— (5.30)
0j 0j

Summing (5.30) over=0, 1, 2, ..., N yields:

N N 4 N o N LI
0=2) ai+r) —+k2) —=h Z_z 2) (5.31)
i=0 i=0 "I i i i=0 i i

Multiplying (5.30) byt; before summing yields:

N

N N [ t2 N t; N ¢
0=2> aiti+r) —5+hi)y —5= Z—z 2) 5 (632
i=0 i—o i i—0 %i 0 O

By simultaneously solving (5.31) and (5.32) forn, A2), we get:

2w
PP — -
1 ‘Dl‘I’tZZ w2
— l
Ao = R

Inserting these in (5.30) and solving f@ryields:



Near Earth Objects 91

Wit — W,
aj =
T 02 (WY — D)

When inserting this expression far in (5.29), we get the same velocity estimator as in
(5.28). This shows that (5.28) is the velocity estimate ihguninimum variance among
all linear, translation invariant, unbiased velocity esites.

A least-squares estimator, such as the velocity estimatbeiregression-based approach
(5.4), also has minimum variance [Kendall & Stuart 1961]s ktraight-forward to show
that (5.29) reduces to (5.4) for constant varianée= 2.

Insertingt; = i ando; = 1 in the general formulation, one obtains the simplified test
based on the velocity estimate in (5.5).

5.9 Discussion

Figures 5.10 and 5.11 show the performance of each of thesfis tor transit times cor-

responding to the Gaia preceding field of view, see tableBetause the new method is
optimal, not just among linear methods, but among all symmand translation invariant

methods, it is expected to perform better than the four atiethods. In both the case of
four and the case of twelve observations, this is the case.improvement, compared
with the other methods, is not dramatic, thus attesting ¢odtinality of the other meth-

ods. However, knowing that the method is optimal providesabvantage of needing
only one method, instead of using one method or another,ndiépg on the number of

observations.

The optimal method is general in the sense that it is not dichib treating data from the
Astro telescopes, or even to Gaia data. It can be used foashkeof reducing the number
of observations before attempting to link them when conmgubrbits. It can also be
used as a NEO detection strategy in the method for NEO olsamvasing the Spectro
instrument, described in section 4.7.

Unlike the Mann-Kendall method, the optimal method enatilesuser to choose an ar-
bitrary confidence level. Unlike both the Mann-Kendall neeti{because of its integer
statistic) and the regression-based method (because tithe2) distribution required),
the optimal method can provide meaningful results for setdeervations containing as
few as two observations.

We now return to beginning of this chapter, to the originalgmse of investigating motion
detection, namely distinguishing between stars and NEQs wish to show whether a
fast-moving star, such as Barnard’s Star, is detected asvingiobject. The inertial
speed wag = 3 x 1074 mag's and the single-CCD position standard deviation was
o = 0.04 mas. Looking at figure 5.10 for= 7.5 x 10~30/s, it is clear that this velocity

is so low, that Barnard’s Star will be treated like any fixeal st
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With NEOs, moving much faster (see figure 5.9), things arteidint. Assume a near
Earth object, moving in the along-scan directionvat 3.5 mas/s. Because of this low
speed, it is observed in all of the astrometric fields. Assigai = 7 mas, the velocity is
v = 0.50/s. Referring to figure 5.10 we see, that this NEO is almosaoeto be labelled
a moving objecty = 0.5¢/s is off the chart!

Let us consider a faster NEO. Assume a motion in the along-dgaction atv = 10
mas/s and, because of this greater speed, we assume therpstindard deviation is
larger than in the previous example:= 10 mas. Because of the speed, we only obtain
four observations according to table 4.3, in the ASM, AF124d AF3. Looking up

v = lo/s in figure 5.11, we see that this object also almost certaiuillybe correctly
labelled a moving object.

NEO inertial speed
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Figure 5.9: The inertial speed of observations of the synthesised NEDIption, generated using
the simulator described in section 4.4, Less th&¥%®of the observations come from objects
moving at|v| = 2 mas/s or slower. Only the fastest of these objects willgscanfirmation, and
thus observation, in Gaia’s AF1. See table 4.3.

5.10 Detecting Motion in Gaia Observations

This section deals with the application of the optimal motoetection method to sim-
ulated Gaia observations. Because Gaia position data igliwensional, and all the
methods described above, including the optimal methodpaeedimensional, we need
a solution that enables the use of a one-dimensional methaetect motion in two-

dimensional data. One way of overcoming this problem is ®the motion detection
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Probability for a 'fixed’ label, based on 12 observations
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Figure 5.10: The probability that an object, moving at velocity is labelled as fixed. Based
on twelve observations, using transit timesorresponding to the Gaia PFOV (table 4.1), and
calibrated such thgt, = 4.5%.

Probability for a 'fixed’ label, based on 4 observations
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Figure 5.11: The probability that an object, moving at velocityis labelled as fixed. Based on
four observations in Gaia’s preceding field of view (ASM1, ARAF2, AF3), using the transit
times from table 4.1, and calibrated such tpat 8.3%.

method on the positions along each of the dimensions in &na flag an object as fixed
if and only if none of the tests indicate motion.

The results of applying this method to simulated observatiof NEOs, at differenp,
levels (p; being the probability of committing a type | error, i.e., tteafixed object is
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labelled as moving), is shown in table 5.1. This shows thaheat ap, level of 0.01%,
only 0.084% of the NEO observations were not detected as comingdnmmving source.
Assuming all stars are fixed stars (see section 5.9 for stalidion), thisp, level means
that 9999% of all observations of stars are rejected, but on88% of the simulated
NEO observations.

AL AC | pp=10% p=2% p =01% p =0.01%

Yes Yes| 90.063% 86.387% 80.118% 75.967%
Yes No| 8.057% 11.295% 16.805% 20.404%
No Yes| 1.857% 2.279% 3.008% 3.545%
No No| 0.023% 0.038% 0.069% 0.084%

Table 5.1: Motion detection on simulated Gaia observations of NEOs fiiobability of a fixed
object being labelled as moving, is denotedgpy The first two columns indicate whether or not
motion was detected in the AL and AC directions, respegctivehis shows that even ata level

of 0.01%, only 0084% of the NEO observations were not detected as coming &anoving
source.

Although this method of combining the result of two one-dirsienal tests provides a
very efficient way of distinguishing between observatiohstars and observations of
NEOs, it is not necessarily optimal. An optimal method footdimensional motion

detection is one of the entries in the list of obvious dir@tsi of future work (see section
7.2).

5.11 Velocity Estimation

Unlike traditional observation of the motion of celestisjects, Gaia observations will,
for each field of view transit, provide both a very accuratsifgon and velocity. Mak-

ing the best possible use of this added information is a ehgé to the field of orbit
computation in the time to come.

This section, deviating slightly from motion detection agls, deals with the velocity
estimate appearing as a side effect of both the optimal rdethscribed above (equation
(5.29)) and the least-squares approach of the regresamedbmethod (equation (5.4)).

As shown earlier, these two velocity estimates are idefécaonstant variance? = o2,

Receiving such an estimate “for free”, it is only natural kplere the quality ofv as a
velocity estimator.

Simulating Gaia’s observations of the 2000 first Main Beteesids and the simulated
population of NEOs for the full five-year mission durationgdaestimating the along-scan
velocity for each field crossing, we compare the velocityneste with the actual (simu-

lated) object velocity and plot the corresponding veloegyimate errors as a function of
actual velocity. This can be seen in figures 5.12 and 5.13.
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Along-scan velocity errors, NEOs
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Figure 5.12: NEO velocity fit errors. Only observations from the precedfield of view are
shown. RMSva, ) = 15.6 mas/s. RM&Ava ) = 0.49 mas/s. From [Wolff 2004].

The figures show data from the preceding fields of view onlg anly display sets of
observations consisting of more than two observations.cfitieal velocities of table 4.3
are evident: No sets of observations containing more theeetbbservations occur for
lvaL| > 15.2 mas/s, because an object moving at that velocity will noblieerved in

AF2-AF10 in the preceding field of view. Similarly, no setsadfservations containing
more than four observations occur foi. | > 10.7 mas/s.

Assume a NEO is observed, movinglat_| = 13 mas/s. This along-scan velocity rules
out observations in AF3-AF10 (see table 4.3). If we assureeatitoss-scan velocity is
lvac] = 25 mas/s, this will cause the object to not be observed in AEither. This
particular object will yield a set of three observationgnirthe ASM, the AF1 and the
AF2, implying a very short timebase, thus resulting in a pesocity estimate. This
explains the apparent drastic deterioration in velocityrestes for three-observation sets
as the speed falls below bmas/s (figure 5.12).

Keen eyes may detect that the plots exhibit a few apparentimgvmeasurements, e.g.,
having a set of four observations of an object having an akma velocity|va | >
15.2 mas/s, which should never occur. These blemishes areccayselimitation in the
version of the Gaia simulator used (see section 4.4). Thieasgcribing the orientation
of Gaia’s scan circle is approximated by a constant for eatbfobservations. However,
since the simulator works in time steps, if a set of obsepmatihappens to straddle the
transition from one time step to the next, a step in the ocatgrm angle may be recorded.
When using this recorded orientation angle along with tloended ecliptic coordinates
to obtain the observed position with respect to the scattegitise step in the orientation
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Along-scan velocity errors, asteroids
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Figure 5.13: Asteroid velocity fit errors. Only observations from the gading field of view are
shown. RMSua, ) = 6.77 mas/s. RM8Ava ) = 0.08 mas/s. From [Wolff 2004].

angle leads to inconsistent results. Fortunately, thig bappens rarely, approximately
one in each thousand sets of observations, and is not rebasde problem affecting the
results of the examination.

Not easily decipherable from the plots, the accuracy of #lecity estimate from one
field crossing (the RMS of the errors) of the simulated NEOybafion and that of the
2000 first Main Belt asteroids are:

oya NEO ~ 0.6 mas/s
opa .MBO ~ 0.08 mas/s

This predicts that the velocity of about 95% of the NEOs andnMgelt asteroids can
be determined with an absolute error of less th&as/s and A6 mas/s, respectively,
based on measurements from a single astrometric field ogpssi

Furthermore, these simulations indicate that the relaiver on the velocity estimation
based on a single crossing is less than 10% for about 80% esirthdated NEO popula-

tion. For 95% of this population, the relative error on théoedy is less than 30%. As

to the velocity error of the 2000 Main Belt asteroids, 95%lwge have a relative error
better than 10%, and 80% better thab%.

Remember, though, that because of the bias in the NEO oltisgrvgsee section 4.5),
the figures for the NEO population are probably slightly oysiic.



Chapter 6

Orbit Computation

This chapter will provide a brief introduction to orbit contption, covering both classical
approaches as well as modern statistical techniques. Timeotbit computations used
to cover all three aspects into which astrometry has ti@uhlly been divided: Finding a
preliminary orbitto be used for theredictionof future positions to help obtain additional
observations used to improve the orbital elements to betédch all observations, a pro-
cess callearbit improvementOrbit computation is usually treated as an inverse problem
— the corresponding direct problem is the prediction of feitsky positions of an object.
This chapter mainly deals with finding a preliminary orbdrfr a few observations. A pre-
liminary orbit is a set obsculating elementescribing the orbit at a certagpoch If the
universe was a Newtonian two-body system, the osculatemgehts would remain valid.
However, effects such as perturbations (described in@e6ti7) affect orbits, invalidat-
ing the osculating elements over time. Even for an ideal Meianh two-body “universe”,
the osculating elements may be erroneous owing to obseneierrors. Therefore, a set
of computed orbital elements is often accompanied by arsassmt of the uncertainty
of the orbital parameters. Orbit improvement, the procéseducing the uncertainty by
fitting model parameters to better suit observations, eflyriouched upon in section 6.6.

6.1 Orbital Elements

The orbital elements (figure 6.1) comprise a set of parametsed to refer an orbit to a
standard reference frame. When considering objects ogditie Sun, it is customary to
use a Sun-centered, beliocentricreference frame, where the reference plane is that of
the ecliptic. Within the reference plane, the reference isithe direction of the vernal
equinoxT". In general, orbital planes do not coincide with the refeeeplane. The
angle between the reference plane and the orbital plandleddae inclination i. If

0° <i < 9, the orbit is callegorograde Conversely, i > 90°, the object appears to
move “backwards”, and the orbit is calleetrograde The line of intersection between
the orbital plane and the reference plane is calledlittee of nodes The point where

97
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Figure 6.1: Orbital elements in the heliocentric reference frame. TineiS atO, X points toward
the vernal equinoX”, andz toward the north pole of the ecliptic. The perihelion is deqdoy P
andH is the ascending node. The vectois perpendicular to the orbital plane. The position of
the object on the celestial sphere is givenfyFrom [Danby 1988].

the orbit passes the reference plane moving north is cadlledidcending node The
corresponding point where the orbit moves south throughreéference plane is called
the descending nodeThe angle between the reference direction and the radicterve
to the ascending node is called tlomgitude of ascending noddenoted2. The angle
between the ascending node and the perihelion (the poitdsdst approach to the Sun) is
called theargument of periheliordenoted». The sum of the longitude of ascending node
and the argument of perihelion is called tbhagitude of periheliondenoteds = Q + w.
Note, that the two angles are generally in two different pfarin general, therefores is

a “dogleg” angle.

The set of orbital parameters used in this chapter condists o

a: The semimajor axis

e. The eccentricity of the orbit

i: The inclination of the orbital plane
Q: The longitude of ascending node
w: The argument of perihelion

T: The time of perihelion passage
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6.2 Early Orbit Computation

When an abundance of observations is available, it is pleswidetermine the orbit of
a celestial body without imposing many restrictions, eagthout restricting the orbit to
a conic section. The following method was known and used kyld€eo postulate his
three famous laws of orbital motion, introduced in sectidh[Zollins 2004].

First, thesiderial period(the time it takes the object to make one full orbit around the
Sun, relative to the stars) of the object must be found. Werasghe orbit of the Earth

is well known. The siderial period of the foreign body is foluoy observing it at some
particular configuration, e.g., observing the object atogipon (when the object and the
Sun are 18Dapart, as seen from the Earth). The next time the object cabderved at
opposition, is exactly ongynodic periodater, i.e., the synodic period is the time it takes
for the object to reappear at the same spot in the sky, relaiithe Sun, as observed from
Earth. We denote the synodic period By The angular distance travelled by the Earth
is:

P
Av6 = 27 - ,

Ps

where Py denote the siderial period of the Earth. If we denote thergitiperiod of the
foreign body byPsiq, the angular distance travelled can be determined by

Psyn
Psig

Av =27

Since the configuration is the same, the difference in amglisdance travelled must be
27, and hence:

21 Psyn 21 Psyn .

!Avé — Av‘ = =2
P Psid
This can be rewritten to:
N I |
Psid B Pgs I:)syn ,

from which the siderial period of the object is derived. Tfasmula was devised by
Copernicus [Collins 2004].

Two observations from EarttiPsig apart in time, will, in general, furnish two observations
from two different vantage points, as the siderial periodhef object will not in general
be commensurate with that of the Earth, see figure 6.2. Krgpthi@ position of the Earth
with respect to the Sun at the two times of observation méwiswo sidesr(; andr,) and
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three angles), y» andys) are known of the quadrilateral defined by the position of the
Suns, the positions of the EartB; andE», and the positions of the object, coinciding at
P. This enables the computation of the remaining lengths tlatermining the position
of the object. Repeating this procedure throughout thet abthe object, the entire
orbit can be determined. Obviously, this procedure reguarkt more observations than
the minimum three pairs required to determine an orbit, vewé enabled Kepler to
determine the orbits of several objects without any assiompbout the orbital shape.

Figure 6.2: Early orbit computation

Whereas this method was sufficient for determining the eaduit of Mars, it was less
suitable for the orbit computation of comets, since thegeatric orbits would rapidly
bring them close to the Sun, making them unobservable. A nethod for the compu-
tation of orbital elements was needed. Almost a century &fmwvton’s proof that the
orbits of celestial objects was conic sections, and onlyadecades before the ground-
breaking work of Gauss, Laplace developed a method to detertihe orbital elements
from a limited number of observations on a short observatiarc. If a heliocentric po-
sition vector and a corresponding velocity vector is knoalhprbital elements can be
derived (see section 6.4). Laplace’s method is based omiTaglies approximations to
derive the velocity from a series of observations. Althotlglke observations are enough
to determine the orbital elements, in order for these Tagéwies approximations, and
hence the orbital elements, to be accurate, more obsanmgadi® needed. Nevertheless,
Laplace’s method has been polished by many researchetsefgaist two centuries, and
is still popular [Marsden 1985].
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6.3 Classical Orbit Computation

This section describes an orbit computation method origigan Gauss’ work leading
to the recovery of Ceres, the first asteroid discovered. eSttauss’ first work in 1801,
many people, including Gauss himself, have improved upemtathod. The method de-
scribed, is called the Gauss-Encke-Merton (after the mamributors) in [Danby 1988]
and [Marsden 1985]. We will start by introducing a few usdbdls: thef andg func-
tions, and the sector-triangle ratios. The presentatidrioilow that of [Tatum 2005] and
[Danby 1988], using a notation similar to the latter.

The f and g functions

A convenient tool when solving problems in celestial medtgare the so-called andg
functions. These functions describe the motion of an olijats orbit as the displacement
in radial and tangential directions with respect to a refeegposition, the position at time
to. Denote the position and velocity of an object in its orbitiate to by ro and vy,
respectively. Assuming these vectors are not parallelptsition of the object at time
may be uniquely described by:

rt) = f(t, to)ro+ gt, to)vo . (6.1)

Since these functions are independent of the referencersystey also hold in the orbital
reference system (2.19), and hence

X(t) = fX(to)+ gX(to)
Y(t) = fY(to)+gY(to) .

Isolating f andg from this system of equations, we get

X(1)Y (to) — Y (1) X(to)

D
Y (1) X(to) — X ()Y (to)

g = D 9

whereD = X(tg)Y (tg) — X(to)Y (to), which is the same ds (see (2.20)). Using (2.19)
and (2.24) to exprest andg as functions of the eccentric anomaly, we get:
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2
a(CosE — g) £V — Vrol_ez cosEg + av/1— € sin E@ sinEg

f = 5
_ ri(cos(E— E)—1) +1
0
g — av/1—e?sinEa(cosEg — e) — a(cosE — e) av/1 — e2sinEg
N D
= % (Sin(E — Eg) — e(sinE — sinEp)), (6.2)

whererg and Eg denote the distance to the focus and the eccentric anomiihyest.
A first-order Taylor series approximation otentered orgy would be:

r~ro+(t—to)ro=ro+ (t —tg) Vo

Comparing this to (6.1) we see that lowest-order approxonatof f andg are:

«Q —
& L
H

t—to (6.3)

Sector-Triangle Ratios

Figure 6.3: The sector-triangle ratig = As/ A, whereA is the area of the triangl8 RP.. The
area of the sectof, swept by the radius vectors of the object position as it mdn@m P; to P,
is the sum of the area of the triangle and the shaded area. [Braniy 1988].

The sector-triangle ratig is the ratioAs/ A;, whereAg is the area of the sector swept out
by the radius vectors of two positions, aAd is the area of the triangle these same two
positions make together with the focus. See figure 6.3.

The area of a sector is easily obtained, since it is propmatito the time between obser-
vations according to Kepler's Second Law. Assuming we haxetteliocentric positions
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r1 androp, at timest; andty, respectively. The true anomalies areand v2, and the
corresponding eccentric anomalies &reand Eo.

According to (2.13), the swept area is:

h
AS = E‘L’ , (64)

wheretr =ty —t;. The area of the corresponding triangle equals half thesqromduct of
the radius vectors, or:

1 1 .
A = ér1 Xy = érlrgsln(vz —v1)

The sector-triangle ratio may be written:

As ht ht

y Ar  rirzsin(vp —v1)  rirpsin 2f (6.5)

where 2f = vy — v1.
According to (2.16), the true anomalyand eccentric anomally are related as
r cosv = a(cosk — e)

Making use of the trigonometric identity c?o§ = ”C—ZOS” we find:

v E
r0052§ —al—-e) 00525 (6.6)

Using the trigonometric identity strv + cof v = 1, we find

.oV .-, E
r sm2§ —a(l+e smzi (6.7)

Substituting 1, v1, E1 andry, va, E», respectively, into (6.6) and multiplying, yields, after
taking the square root of the product:

E E
Jr1ro cos% cos% =a(l—e cos?1 00572 (6.8)

A similar treatment of (6.7) yields:

. V1 . V2 - E1 . BEo
Firosin—sin— =a(l n— sin— .
1ro2Si 25| > a(l+esi > Si > (6.9)

For convenience, we introduce



104 S. Wolff

2f = vo—1g
2F = v+
20 = Ex—E1

2G = Ex+ E;
Using the trigonometric identity 2 coscosy = cogX + Yy) + cogx — Y) to rewrite (6.8):

J/rir2 (coskF + cosf) = a(1 — e) (cosG + cosQ) (6.10)

Using the trigonometric identity 2 sisiny = cogx — y) — coSX + V) to rewrite (6.9):

J/rira(cosf — cosF) = a(1 + e) (cosg — cosG) (6.11)

Adding (6.10) and (6.11) and subsequently dividing by twelds:

J/rirocosf = a(cosg — ecosG) (6.12)

Substituting the 1, v1, E1 into (6.6) and », vo, E2 into (6.7) and multiplying, yields, after
taking the square root of the product:

. E:1 . E
r1ro cos% sm% =avl-— eZCOS?1 S|n72 (6.13)

Exchanging the indices, i.e., substituting thevy, E; into (6.7) and 2, vy, E» into (6.6)
and multiplying, yields, after taking the square root of pheduct:

. Eo . E
rirs cosv—é2 sm% =ayv1l-— e2cos72 sln?1 (6.14)

Using the trigonometric identity 2 sincosy = sin(x + y) + sin(x — y) on (6.13) and
(6.14) yields, respectively:

Jrirz2 (sinF +sinf) = ay'1 — €2 (sinG + sing) (6.15)
Jrirz2 (sinF —sinf) = ay'1 — €2 (sinG — sing) (6.16)

Subtracting (6.16) from (6.15) and dividing by two:

Jrirzsinf =av/1— €e2sing (6.17)
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Using (2.18) and the trigonometric identity 2 cososy = cogX + Yy) + cogx — y) to
expressri| + |rol:

rr+r» = a(l—-ecoskp)+a(l—ecosky)
= a(2—e(cosk; + cosky))
= a(2—e(cogG —g)+cogG +Q)))
= 2a(1— ecosG cosg) (6.18)

Now we can use (6.18) and (6.12) to eliminat@osG:

ri+ry — 2/fir2cosh cosg = 2asir’ g (6.19)

Using (2.22) to express the mean motion in the left hand didd@pler's Equation (2.25),
we get:

nt—-T) = \/g(t —T)=E —esinE (6.20)

SubstitutingE, t1 and Eo, tp, respectively, into (6.20), and subtracting the formenfro
the latter, yields:

to —t1

E, — E; —e(sinEyx — sinEp) = 372

Using the trigonometric identity 2 cossiny = sin(x + y) — sin(x — y) yields:
. T
2(g — ecosGsing) = 2372 (6.21)
We can now eliminate cosG from (6.21) and (6.12):

. 2 . T
29 —sin2g + 5“/r1r2 singcosf = 372 (6.22)

From (2.21) we see th&t = na?v/1 — €2. We can use this to rewrite (6.17) to give an
expression foh:

a./rirzsinf uwa/rirasin f Jurirzsin f
sing a sing Jasing

Expressing the sector-triangle ratio (6.5) using this eggpion forh, reduced using the
trigonometric identity sin® = 2 sinx cosx:
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_
~ 2 /arrscosf sing

From this expression we may obtain an expressiomafor

y

a= ad
 4y2riryco? f sintg

Introducing, for convenience:

M = Vi
) 32’
(/Farzcosf)

r+ro

2. /rirocosf’

We may now express as:

J f
— Mz% (6.24)

a
y2sirt g

Substituting this into (6.19) and isolatiryg, we get:

M3
2
= — 6.25
y N — COSsg ( )

Substituting (6.24) into (6.22) and isolatiyg — y?, we get:
s .2 M?(g—singcosg)
y - -y = :
sin’ g

Given two radius vectors, we can now find the sector-triangfi® y by simultaneously
solving (6.25) and (6.26) numerically, using, e.g., a NewlRaphson method.

(6.26)

The Method of Gauss

This method of orbit computation uses three two-dimengidimaction vectors to deter-
mine a velocity vector corresponding to one of the obsemwati From this information,
all orbital elements can be derived (see section 6.4). Thbadexpects the heliocentric
radius vectors 1, ro andrs (corresponding to three observations at tihe$, andts) to
be coplanar. Assuming the vectors are not parallel, thisydaat:
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o =C1r1 +Cars (6.27)
Using thef andg functions to describe; andrs fromr, andi, = vy, we get
ri = firo+o1vo
r3 = fara+0gavo (6.28)
This gives an alternative way of expressimg
ra = C1(firo+ gava) + c3 (faro + gsvo) (6.29)

By taking the right cross product of (6.29) with and the left cross product witt», we
have:

1 = c;fi+c3fz and
0 = c101+C303

from which we may express andcs using f1, f3, g1 andgs:

g3
KT = ——MM—— 6.30
! f103 — 0113 (6.30)
01
3 = ———M 6.31
® f103 — 0113 (6.31)

Using the approximation (6.3), we get approximate valueg @hdcs:

o A t3 —12 t3 -1
1 ~ =
(tz—t) —(t1—1t2) t3—1
tp—t [
G A~ — 12 21 (6.32)
(tz3—t2) —(1—t) -1

By taking the cross product of both sides of (6.27) wigtandr 1, respectively, we get:

Ir2 x rs

3 XIp)=C1I3 XN +C3lrza Xrz<& C =
Ir1 x rs
Ir1 xro

MM Xrrp=0Cry Xrp1+Czry Xrz<& Cc3 =
Ira xrs|

(6.33)

Introducing the area of triangles:
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Ai1 denotes the area of the triangle made pgndrs
Ai> denotes the area of the triangle made bgndr s

A3 denotes the area of the triangle made bgndr

We introduce the same numbering scheme to denote the ar¢hs séctors, e.gAs1
denotes the area of the sector defined bgndr 3. Using the fact that the sector areas are
proportional to the difference in time between the corresiiog observations, we may
write:

= raxrsl _ Au_ AdAub  Ga—tays
rixrsl Az A2AaAr t3—tiyr
= rixral _ As_ AshcshA2 -ty
rixrsl Az A2AsAr  t3—11ys3

(6.34)

Equation (6.34) shows how, knowing the three heliocenwsitons of the object in ques-
tion, the coefficientg; andcz may be derived using the sector-triangle ratios described
in the previous section. By using (6.34) to determip@ndcs we are bringing Kepler’s
laws into consideration.

E

Figure 6.4: Diagram of the position vectors, R andr in relation to the Surs, the EarthE and
the observed objed.

Introducing the geocentric position vectors (see figurg p4 p, and p; and the geo-
centric positions of the SuR1, Ry, andR3, we have thap; =r; + R; fori = 1,2, 3.
Dividing p; into an unknown magnitude and a known direction unit vectgr , we can
rewrite (6.27):

p2pp —R2 = c1(p1p1 — R1) + c3(p3p3 — R3)

<

C10101 — P20y + C303p3 = C1R1 —R2+Cc3R3 (6.35)

Equation (6.35) is the fundamental equation to solve fothihee unknowng;, p2 andps
when using Gauss’ method for orbit computation. Siocandcs are not independent of
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01, p2 andps, the problem is solved by initially using approximations3@®) forc; andc;

to calculate approximations f@n, o2 andps, to be used to obtain better approximations
for c1 andcs, et cetera The convergence of this iterative procedure is by no means
certain, but given sufficiently accurate data over a sufiityelong arc, the procedure
usually converges to an accuracy matching that of the oasens after less than 100
iterations.

Because this vector equation is ill-conditioned, numémgcablems may be reduced by
transforming it into a more well-suited coordinate systegfobe attempting the iterative
procedure. This new coordinate system uses the &xeand¢, with & pointing toward
the first observed position, and so that the direction oftivel bbservation intersects the
n-axis. The¢-axis completes a right-handed triad wittandy.

§ = m
f’lx(ﬁsxﬁl)
1p1 % (3 % p1) |
& = &xn

Expressing the observations in this coordinate systendyiel

A 1
pr = [& n ¢ ]| ma |=[&E n ]| O
| V1| | O
[ Ao ] 2R
po = [&Em ]| w2 |=[& n ¢]| p2en
| v2 | | 02-¢ |
[ a3 ] [ p3-& ]
p3 = [& n ¢ ]| ns |=[& n ¢]| b3

Notice the zeros on the right hand side, indicating thatdisem of equations is solvable
using back substitution. To do this, we introduce the getrze8un position transformed
in the same way:

Xi .
Yi =[§ ﬂC]Ri,i=1,2,3
Zi

The transformed version of (6.35) is:
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M A2 A3 X1 X2 X3
Cipr| m1 | —p2| M2 [+Cp3| m3 | =cC1| Y1 [—| Yo |+cC3| Y3
V1 Vo V3 Z1 Z Z3

(6-36)

The first unknown to determine in the back substitutiopidsFrom the¢-component of
(6.36), we have:

—C1Z1+ Zp — C3Z3
p2 =

V2

We see that for very small values af, numerical problems are to be expected. Since

is a measure of departure of the observed arc from a gre#,caresmall value indicates

that the observed arc is (almost) coincident with a greategiand thus the problem has
no unique solution.

Knowing p2, the back substitution continues by findipg

. P22 + C1Y1 — Y2 + C3Y3
Caus ’

and, finally,p1:

_ p2A2 —C3p3r3z + 1 X1 — X2 +C3X3
C1

1

Having obtainegb1, p2 andps, the heliocentric position vectors, r, andr3 are obtained
usingri = pijp; — Ry, fori =1, 2, 3.

Knowingr andr, the velocityv; can be computed from the following (see (6.28)):

ro=fri4+gvs (6.37)

The values of thed andg functions still need to be determined. Taking the cross yecbd
of r1 with (6.37) yields:

rixrop=fryxri+gri xvy=gri xvy=gh

From this we see, that the area of the triangle (half the ntadeiof the cross product of
the vectors) defined by andro is A; = gh/2. Using Kepler's Law of areas to express
the sector area (6.4), the sector-triangle rgt{already determined in the iterative process
above) may be used to determigre

y=te M T gt
A hg g 77y
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Rewriting (6.2), we get:
a
f=1- o (1 —cos(Ez — Eyp))
1

Using the trigonometric identity 2 sﬁﬁg =1 — cosx:

E>—E1
2

2
f=1— Zasir?
ri

Isolatinga sir? % in (6.23), noting that thé andg used there are differences in true

and eccentric anomalies:

qspp E2— E1_ pnafe SiF 258 jirgrp (1—cos(vp — v1))  w(farz —ry-12)
2 h2 B 2h2 - 2h-h

Finally, we can find the value of the function:

m(rairg —ry-rp)
r h-h

f=1-

Using these values fof and g, we obtain a velocity vectov; corresponding to the
position vectorr using (6.37):

ro— frq
V= ——
g

The following section shows how orbital elements may be aategh from a heliocentric
position vector and the corresponding velocity vectar

6.4 Obtaining Orbital Elements

This section deals with elliptic orbits only. For a treatrmefparabolic and elliptic orbits,
refer to [Danby 1988].

Knowing an heliocentric position vecterand a corresponding velocity vector the
orbital elements (see section 6.1) may be found as follor® angular momentum per
unit mass is given by the cross product of the position vesmalrthe velocity:

h=rxv

From the geometry of figure 6.1, it can be seen that the dinectih can be written:
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R hy sinQ sini
h=1| hy [ =] —cosQsini
h, cosi

The direction ofh can thus be used to find both the longitude of the ascending f20d
and the inclination.

The Runge-Lenz vector (2.6) is given by:

€

The magnitude oé is the eccentricitye. Recall also, that the Runge-Lenz vector points
toward the pericenter.

Define the unit vector pointing toward the ascending node:

cos
A= sinQ
0

The argument of pericentes can be found by using the fact that e = ecosw and
N x e = esinwh.

The semi-major axia is found by isolatinga in (2.15):
h2

a— ——

n(l-e)

The eccentric anomaly at the time of observation can be fénamd (2.18) and its deriva-

tive, leading to:ecosE = 1 — L andesinE = %
m

Then, finally, the time of perihelion passagemay be found from Kepler's Equation

(2.25) as:
. |ad
T=t—(E—esinE),/—
"

6.5 Complications

For practical orbit computation, several complicatiorss @mitted in the above. Some of
these will be briefly discussed in this section.
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Geocenter-Topocenter correction

This describes the act of obtaining geocentric observatioom observations obtained
using a telescope placed on the surface of the Earth, and ii®tanter.

Light-time correction

The observed position of a solar system object is the re$uheodetection of sunlight
reflected off the surface of this object. The time it takesrfn@flection to observation
may be several hours. Thus, the observed position is notthalgosition at the time of
observation.

Effects of phase

What is usually desired when doing astrometry, is the posivf the center of mass, the
barycenter What is observed, however, is the center of the reflectetthpaf light, the
photocenterFor high-accuracy astrometry, the difference betweebangcenter and the
photocenter, the so-callgghotocenter shiftcan be significant. For an extreme example
of photocenter shift, imagine observing the crescent maomrdays after new moon. The
center of the illuminated part of the moon is clearly far arayn the barycenter.

6.6 Orbit Improvement

A classical way of performing orbit improvement is an iteratprocedure called the dif-
ferential correction method. Assuming we have a set of patarsXg = [a, €, i, 2, w, T]

for the preliminary orbit. The residuals correspondingtoareeq. A differential correc-
tion to Xo may be obtained by linearising the map betw&eande in a neighbourhood
of Xo and using it to find the optimal correction Xy in a least squares sense. This new
set of parameters is then used as input as the method i®derat

The model used when calculating the residuals is often metaldd than the one used to
obtain the preliminary orbit, typically taking relativisteffects and/or the perturbations
by other celestial bodies into account.

6.7 Perturbations

The previous sections of this chapter deal with the dynawfiegssystem of two bodies.
Since the mass of the Sun dominates the mass of the solamsystetwo-body approach
is a fairly good approximation of the dynamics of each soyatesm object. In general,
Newton’s second law says that the acceleration of an olggquiportional to the sum of
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the forces acting on it. These (gravitational) forces agpprtional to the masses of the
objects on which they act, and inversely proportional tcstipgare of the distance between
said objects:

Ny gmm
ma=> Fi=Y (6.38)

wherem is the mass of the observed object ands the mass of theth other object. The
distance and direction to th¢h object is denoted bg; andf;, respectively. In the solar
system, the dominating object is the Sun, having a mass t¢indeges of magnitude greater
than that of the second largest solar system object, Jupitavever, according to (6.38),
once two bodies come into close proximity to eachothery theitual gravitational forces
may exceed by far that exerted by the Sun. For comets, hayiically elongated orbits
with transneptunian aphelia, Jupiter is an important peeu For near Earth objects, the
Earth can also constitute a significant perturbing influence

Assume we have a primary mass, denoted by irlexd two secondary masses, denoted
by indicesi and j, respectively. Letting; andr; denote the position vectors of the
secondary masses with respect to the central, primary mass:

X Xj
ri =1V andrj = | Yj ,
Z Zj

we get the following laws of motion in the inertial refererfcame:

. I [
MmcRe = gmcmi—3 +chmj—]3
r; r
. ry —r I
mRi = gmm;— 3 — Imem; —
rj—r i
. li —r1j rj
mjRj = gmimjif —gmcmjr—s

The accelerations of the secondary objects relative toringapy are:
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. . . s —1r; r; Ii ri
fi = R —Re=0gm——— —Gme— — | gmi— + gm;—
[T R S
I I My —rj
= —GMme+m)——gmj |5 -—L—=
3 3 3
h 7y =il
ri—T1]j j j j
ri r r—r
= —G(me+my) =< —gmi [ - ——2L
] i =

These relative accelerations can be interpreted as gtadiéscalar functions:

i = ViU +Rj)
fi = Vi(Ui+Rj),

whereV; andV; denotes the gradient with respect to the coordinates otbbjend j,
respectively.

Me + M Mc + M

U =6

andUj =g
I rj
The parts of the total potential denotedWlyandU; correspond to the unperturbed two-
body dynamics described earlier:

Me +Mj

I >
r2

Fi=Vilj =—-¢

in analogy with (2.3). The remaining part of the potenti@ndted byR, is called the
disturbing functionrepresenting the change arising from the gravitatiorielémce of the
other secondary object. The exact expressioR afepends on the choice of coordinate
system. In this coordinate system, with the primary objé¢ha origin, the disturbing
functions may be expressed:

gm; i -rj amj Fi -1
J _gmj I 31 ande _ i —Gm, i 31
i =il ] i =il r

The above analysis may be extended to any number of pergudbjects. For more
information, refer to [Murray & Dermott 1999].

Ri =
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The transition from two-body dynamics to three-or-morelpdynamics does not lead to
dramatically different orbits, owing to the Sun’s dominand@he orbits of the planets of
the solar system are still elliptical in shape. The perttioioa cause the point of perihelion
to advance slowly, making the elliptical orbits seem to t&tal he orbit of Mercury, for
example, is observed to precess 5600 seconds of arc percebheuVerrier found, that
approximately 5025 seconds of arc can be explained by the precession of theeas.
Taking into account the perturbations of the planets — mafahus and the Earth because
of their proximity, and Jupiter because of its mass — and #teefling of the Sun caused
by its rotation accounts for an additional 583%econds of arc. The remaining 43 seconds
of arc have since been explained through the theory of geredadivity.

6.8 Modern Approaches to Orbit Computation

In the years following his remarkable contribution to theaeery of Ceres, Gauss con-
tinued to improve the method used, in practice developiedghast-squares method inde-
pendently of Legendre. The method of least squares was shsttistical interpretation
of orbit computation, yet it was almost two centuries betbeesubject was given a fully
statistical treatment in [Muinonen & Bowell 1993], where tbrbit computation problem
was treated as a problem of statistical inversion based gedsan inference (see, e.g.,
[Lehtinen 1988]). The full solution to the problem is to deténe thea posterioriproba-
bility density function of the orbital elements. Once thaslbeen obtained, no additional
sensitivity analysis is needed.

According to Bayesian inference, the probability densilydtion of the vector of orbital
elementsP is proportional to the priori probability density functiorppr and the proba-
bility density function of the residualg.:

Ppr(P) pe (AY (P))
J Ppr(P) pe(AY (P))dP

Pp(P) =

whereAy (P) denote the observational errors projected on the sky plEme.expression
may be regularised to maintain the invariancepgfunder transformations from one or-
bital element to another, e.g., from Keplerian to Cartesiaments [Virtanen et al. 2001].

Prediction

Using statistical methods such as this for prediction is tienaf mapping the probability
density function of the orbital elements to a probabilitysiéy function of the future sky
position. According to [Muinonen & Bowell 1993], the jointgbability density function
for the topocentric distandg, right ascensiorr and declinatiord at the timet is:



Near Earth Objects 117

1
PR, 8:0) = o5 5 / dP pp(P) ép(R— R(P, 1)) ép(a — (P, 1)) 6p(8 — 8(P, 1))

wheredp denotes Dirac’s delta function. The integral is evaluateidgia Monte Carlo
method or by linearising tha posterioriprobability density function of the orbital ele-
ments, thus obtaining a Gaussian probability density.

Comparison of Methods

One of the main problems one faces when using the classie@mdinistic methods, is
that the iterative procedures involved, both in the inibiddit computation and the subse-
guent orbit improvement, may converge to “unphysical” obayaous solutions, or even
not converge at all. Methods originating in statisticaldérsion theory, such as the one
described above, always provide meaningful results. Thdtseobtained using a modern
method in the case of, e.g., two observations of an asteseamhnds apart, and with large
observational errors, may not be very useful, but nonetiselalid. In order for results
from classical methods to be meaningful, an assessmeng afritertainty of orbital ele-
ments is needed. Thus, a classical solution may consishglesestimators of the orbital
elements, each with its respective error estimate. A swiudtiom a method originating
in statistical inversion theory provides full error anagysven for non-Gaussianpriori
errors [Muinonen & Bowell 1993], a property absent from th&ssical methods. This
full error analysis comes at a cost, however. Especiallynthe Monte Carlo orbits are
integrated, rather than derived from two-body dynamics,dbmputational cost is fairly
high.

The rapidly increasing computing power available, couplét the additional knowledge
provided by thea posterioriprobability density functions themselves, make this a enatt

of little concern. To quote [Virtanen 2005]: “Adopting thiastical approach to inversion
does not make a complex inversion simple. But it can helpoafn the complexity of
the problem, if not knows priori, and, in ambiguous cases, give more realistic estimates
for the parameters, and most importantly provide meaniregtimates for their errors.”



Chapter 7

Conclusion and Future Work

7.1 Conclusion

The purpose of this project has been to develop and impleaigotithms for the detec-
tion of near Earth objects, with emphasis on how the Gaiaesphaservatory might be
used to that effect. Introductions to relevant topics suchear Earth objects, celestial
mechanics and orbit computation have each been coveredhamer of this thesis. A
technical description of the relevant instruments of Gagmeapresented, as was a com-
parison to the most prolific Earth-based NEO search progesnm

The main contribution of this thesis is to be found in chapten motion detection. Here,
several methods for one-dimensional motion detection seegmted and compared.

The method of successive squared differences is based dadhthat, in a series of
position measurements of a moving object, neighbouringsomeanents are likely to be
closer to eachother than to the arithmetic mean of the series

The Mann-Kendall is based on the signs of every unique paireE#surements in a series.
Under the null hypothesis (assuming no motion), positive: egative signs are equally
likely, contrary to the case of a moving object.

The variance ratio method is based on the knowledge of arceegheample variance. In
the case of astrometric observations, the expected posidivance is often known, as a
function of viewing conditions. If the estimated samplei@ace is significantly less than
the expected sample variance, this indicates a trend.

The regression-based method fits the position measureneeatstraight line in a least-
squares sense and subsequently tests whether the slagsfisantly different from zero.

A fifth, novel, method is presented and shown to be optimalelibngs to the class of like-
lihood ratio (LR) tests, and we show that the test statittie ratio of two probabilities of
the same event under different hypotheses, has a mono@aionship with an estimate
of the speedv|. This leads to a test based on the comparisa |ab a threshold value.
This test is shown to be optimal among all symmetric and tagios invariant tests.
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The application of a variant of this essentially one-dinmenal method to two-dimensional
simulated Gaia observations has shown that it is possihbieaice a clear distinction be-
tween observations of stars and observations of NEOs: Thieathi@vas able to retain
99.9% of the NEO observations while rejecting.99% of the stellar observations.

The final sections of chapter 5 presents the results of aysisalf the velocity estimate,
based on simulated Gaia observations. It is shown thatdo@sene transit of one of
Gaia’s two astrometric instruments, the relative error lo@ telocity is less than 30%
for 95% of a synthesised NEO population. Furthermore, 95%hefobservations of a
test population consisting of the 2,000 first numbered Magit Bsteroids have a relative
velocity error better than 10%

7.2 Future Work

A logical next step, in order to extract the full potential@éia’s accurate observations,
is to generalise the optimal motion detection method to timzedsions. As a temporary
substitute, one can use the method described in the presi@er, or approximate the

proper speed by = ‘/ﬁﬁL + ﬁﬁc. This is, however, not necessarily the best solution,
particularly not in the case of anisotropic residual dttions.

Several of the motion detection methods described in ch&ptely on the knowledge
of the position standard deviations. In practice, thesedstad deviations will always be
estimates, based on the observing conditions. An evaluafithe effects of inaccurate
position standard deviation estimates is needed.

Finally, the effect of the artificial brightening of the NE@guulation, performed in order
to obtain a large number of simulated observations forsttesl stability, also needs to
be thoroughly examined, although the effect is believecktslight.



Appendix A

Glossary

AC: Across-scan. Direction perpendicular to Gaia’s instaetais scanning plane. Par-
allel to Gaia’s instantaneous spin axis. Perpendiculahg@oalong-scan direction,
see AL.

AL: Along-scan. The instantaneous direction of motion of a Gal&scope as it sweeps
over the celestial sphere. Perpendicular to Gaia’s spmand line of sight.

Albedo: Surface reflectivity. The ratio of the amount of electrometgnradiation re-
flected by a body to the amount incident upon it, commonly esged as a percent-
age.

Argument of perihelion: The angle between the ascending node and the perihelion. De-
notedw.

Ascending node: The point where an object in its orbit passes the refereraeep(e.g.,
the ecliptic plane) moving north.

Astro: Gaia instrument, mainly used for astrometry. Gaia has twooAelescopes, pro-
jected onto the same focal plane.

AU: Astronomical Unit, approximately equal to the averageastise between the Earth
and the Sun. 1 AU 1.5 x 10" m

Aphelion: The point on the orbit of an object orbiting the Sun, wheredis¢ance to the
Sun is at a maximum. The opposite of perihelion.

Arcsecond: Second of arc. Sixty seconds of arc is one minute of arc. $mbutes of
arc is one degree.

as: see Arcsecond.

Basic Angle: The angle between Gaia’s two Astro telescopes.
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Binning: The process of irreversibly combining the data from a nunolb@ixels into a
smaller number of samples, to reduce telemetry.

CCD: Charge-Coupled Device. Electronic detectors, used idsiEphotographic plates
or film in modern telescopes and digital cameras.

Chaining: See Linking
Cross Matching: See Linking

Descending node:The point where an object in its orbit passes the refererargegle.g.,
the ecliptic plane) moving south.

Ecliptic: The plane in which the Earth orbits the Sun.

Ephemeris: (pl. ephemerides). A table listing specific data of a movibgeot, as a
function of time. Ephemerides usually contain right ase@nand declination, ap-
parent angle of elongation from the Sun (in degrees), andhinate (brightness) of
the object; other quantities frequently included in ephedes include the objects
distances from the Sun and Earth (in AU), phase angle, anchiploase.

Epoch: An arbitrary fixed instant of time used as a chronologicatmefce datum for
orbital motions (see osculating elements).

FFOV: Following field of view. Referring to the second of Gaia’s twstro telescopes.
See PFOV.

FOV: Field of view. The space visible in a telescope at one view. 880 window.
Heliocentric: Centered on the Sun.

Inclination: The angle between the reference plane (e.g., the ecligtiepland the or-
bital plane.

Inertial motion: See Proper motion.

Lagrange points: Five equilibrium points in the restricted three-body peshl Gaia
will be orbiting Lagrange point L2 of the Sun-Earth system.

Line of nodes: The line of intersection between the orbital plane and tFereace plane
(e.g., the ecliptic plane). Passes through the ascendiohdestending nodes.

Linking: The process of selecting observations from the same olgethdé purpose of
computing an orbit. Also called chaining and cross matching

Longitude of descending node:The angle between the reference direction (e.qg., the di-
rection of the vernal equinox) and the radius vector to ticeading node. Denoted
Q.
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Longitude of perihelion: The sum of the longitude of ascending node and the argument
of perihelion. Denotedr = 2 + w. Note, that the two angles are generally in two
different planes. In general, therefore,is a “dogleg” angle.

Perihelion: The point on the orbit of an object orbiting the Sun, wheredistance to
the Sun is at a minimum. The opposite of aphelion.

MBO: Main Belt Object. Asteroids from the Main Asteroid Belt betwn the orbits of
Mars and Jupiter. See also section 4.5.

MOID: Minimum Orbital Intersection Distance. The minimum distarbetween the
orbits of two objects. MOID changes not more than 0.02 AU ptary, except
in the case of close approaches with major objects, whege [aerturbations may
occur.

mas: See Milliarcsecond.
Milliarcsecond: One thousandth of a second of arc. One degree equals 3,600

Osculating elements: Orbital elements used to describe the unperturbed (twgjbmrd
bit that the object would follow if perturbations were to seanstantaneously. Os-
culating elements are always changing with time and thezafaust have a stated
epoch of validity.

PFOV: Preceding field of view. Referring to the first of Gaia’s twarstelescopes. See
FFOW.

Phase angle: The angle between the observer and the light source, as eene ob-
served object.

Prograde: The “normal” way of orbiting the central object. When vieweaim the eclip-
tic north pole, solar system object on prograde orbits meowarad the Sun in the
counterclockwise direction. Also callelirect See retrograde.

Proper motion: Motion with respect to the fixed stars.

Retrograde: The “abnormal” way of orbiting the central object. When veahfrom the
ecliptic north pole, solar system objects on retrogradé&®orbove around the Sun
in the clockwise direction. See prograde.

Set: A set of observationsonsists of the observations obtained from one objectsargs
one field of view. Sets of observations from the Gaia Astrorumaents consist of
two to twelve observations.

Spectro: Gaia instrument, mainly used for photometry and radialsigfoneasurements.

Telemetry: The data transmitted from Gaia to Earth, and the processaiedmnitting it.
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Trend: A change in over time. In this thesis, a trend is a linear cbangposition over
time.

Window: A group of pixels, ideally centered on an object. Once anaihgedetected,
a window is allocated through which the object is observegtaBise windows are
fixed in the sky, they should be large enough to make sure rgapects do not
escape them. However, because windows containing mudtilgkcts are of little
value, windows should also be as small as possible. To reéleraetry, the pixels
of a window may be binned before being transmitted to Earge. 8so FOV.
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