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than a few times� � . Nevertheless we use the statistic

D = (� − � 0)=� � (25)

with � � computed from the various formulae. In the limit of large� 0 (relative to the
uncertainty),D will have a unit normal distribution for all formulae. For very small� 0

the observed proper motion is almost certainly larger than the true one, resulting in a
positiveD with a very skewed distribution. The most interesting part is the transition
region, where� 0 (and� ) are of a size similar to the uncertainty, and this is also where
the different formulae may behave differently.

Figure 7 shows the statisticD , computed with the various formulae for� � , plotted
against the true proper motion. Figure 8 shows the same values plotted against the ob-
served proper motion. In both �gures the blue curves are the percentiles corresponding
to±1,±2, and±3 standard deviations. As expected, for� 0=� max & 10 or �=� max & 10
all formulae give a distribution that is approximately Gaussian even at±3 standard de-
viations. For smaller proper motions the behaviour is rather similar for the different
formulae, except that the linear error propagation sometimes gives strongly negative
D in the transition region. From the colour coding it can be inferred that this only
happens for very elongated error ellipses.

Figure 9 shows the geometry in one such case (indicated by the circle in the previous
�gures). It is seen that the observed proper motion vector is directed almost exactly
along the minor axis of the error ellipse. Thus the projected uncertainty in the direction
of the observed vector is small, even though the actual error (which goes in a very
different direction) is much larger. In this particular case we have� 0 = 0:961, � =
0:512, q = 0:070, and� � = 0:073 (from linear error propagation); henceD = −6:2.
(The other formulae give� � in the range0:51� 0:70, resulting inD ' −0:9 to−0:6.)
With real data we would of course not know theD value, but if the linear formula is
used we would �nd� = 0:512±0:073, apparently signi�cant at 7 standard deviations.
In fact, the true proper motion is also signi�cant in this and all similar cases, so it is
not likely that the underestimated� � would be a serious problem. Nevertheless Fig. 9
nicely illustrates why rigorous inference should always be based on the full covariance
information, when available: looking at the binormal distribution (outlined by the error
ellipse) it is obvious that the proper motion at the red circle is not at all unlikely.
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FIGURE 7: Normalised error(µ−µ0)/σ� with σmu from the various formulae, plot-
ted against the true proper motion. The black curve is the median, the blue curves
show percentiles at 0.13%, 2.3%, 16%, 84%, 97.7%, and 99.87%, i.e. corresponding
to ±1, ±2, and±3 standard deviations for a normal distribution.Upper left: lin-
ear error propagation (14). The circle marks the case illustrated in Fig. 9.Upper
right: �rst modi�cation (18). Middle left: second modi�cation (20).Middle right:
approximated Beckmannn (24).Bottom: σ� from the exact Beckmannn distribution.
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FIGURE 8: Same as Fig. 7, but plotted against the observed proper motionµ.

5.3 Comparing error rates

In this comparison we focus on using the ratioR = �=� � to distinguish between
sources that have signi�cant proper motion or not. As discussed in Sect. 3 this is a
classical hypothesis test where the null hypothesis is absence of proper motion. It is
known that the likelihood ratio test, or equivalently the chi test in Eq. (10), is at least
as powerful as any other test for discriminating between the null hypothesis and any
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FIGURE 9: Proper motion and error ellipse for the case marked by a circle in Figs. 7
and 8. The red circle is the true proper motion (µ0), the blue cross the observed
proper motion (µ). The error ellipse is drawn centred on the observed value.

other speci�c value ofµ. Thus it is useful to see how well the simple testR > �
(where, for example,� = 3) compares with the ‘optimal’ test� > � . In the special
case ofq = 1 (isotropic error distribution), the two tests are in fact equivalent for the
linear error propagation formula (14) and the second modi�cation (20), since in those
cases we haveR = � whenq = 1. The question is how well the different methods
work whenq < 1.

In a classical hypothesis test there are two types of errors: false positives (type 1 er-
rors) and false negatives (type 2 errors). With the criterionR > � the probability� of
a false positive is only determined by the (known) error distribution under the null hy-
pothesis (in this case it is the Hoyt distribution discussed in Appendix B.1). By setting
a suf�ciently high threshold� for the detection (= rejecting the null hypothesis), the�
can be made arbitrarily small. This must then be balanced against the probability� of
a false negative, i.e. a missed detection, which increases with� . This � depends on the
actual distribution of true proper motions, and therefore on the particular application,
and is usually dif�cult to evaluate.

The concept of type 1 and 2 errors does not really apply in the present Monte Carlo
experiments, because (i) we are not simulating the null hypothesis, i.e. the case� 0 = 0,
but a continuous distribution of positive� 0; (ii) the alternative distribution is arbitrary,
i.e. uniform inlog � 0 over a �xed interval, and not representative for real applications.
However, we can still compare the performance of theR > � criterion with the ‘opti-
mal’ � > � criterion. (It is not obvious that� should be the same in the two criteria,
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but for simplicity we use� = 3 throughout.) Such a comparison is shown in Table 1.
Three cases are distinguished:

• N0 = number of cases with� > 3 andR > 3 (detected by both criteria);

• N1 = number of cases with� < 3 andR > 3 (‘false positives’);

• N2 = number of cases with� > 3 andR < 3 (‘false negatives’).

The table also givesQ = N0 − N1 − N2 as a kind of overall quality indicator. A
graphical comparison ofR versus� is in Fig. 11. The �gure makes it clear why
N1 = 0 for the linear formula: this is simply a consequence ofRlinear ≤ � , as can be
veri�ed by means of the de�ning equations.

The use of� in Table 1 can be questioned on the ground that it depends on observed
quantities rather than the true parameters. An alternative would be to use� 0, the square
root of the non-centrality parameter

� 2
0 = µ′0C

−1µ0 : (26)

Table 2 shows the corresponding numbers:

• N ′0 = number of cases with� 0 > 3 andR > 3 (detected by both criteria);

• N ′1 = number of cases with� 0 < 3 andR > 3 (‘false positives’);

• N ′2 = number of cases with� 0 > 3 andR < 3 (‘false negatives’).

andQ′ = N ′0 − N ′1 − N ′2 (cf. Fig. 10).

Somewhat surprisingly, it turns out that the linear error model has be best overall score,
closely followed by the exact Beckmann formula. This conclusion is independent of
whether� or � 0 is used. However, the differences to the other formulae are quite small,
at most a few per cent. Again, it should be emphasised that the outcome of these tests
depends on the assumed distribution of the true proper motions, and that a different
set-up of the Monte Carlo simulations could lead to a different conclusion.

6 Discussion

There is clearly no simple answer to the question how to compute� � , the uncertainty
of the total proper motion. The main reason is that the exact answer, i.e. the standard
deviation of the Beckmann distribution, depends on thetrue proper motion compo-
nents which in most practical cases are not known. Although it is possible to compute
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TABLE 1: Number of cases out of the one million simulated cases where the different
criteria based onχ andR are satis�ed (cf. Fig. 11). A higherQ means a better
discrimination between signi�cant and insigni�cant proper motions.

Formula forσ� N0 N1 N2 Q
(OK) (false positives) (false negatives) (overall)

Linear 426 602 0 49 962 376 640
Modi�ed 1 424 533 3 143 52 031 369 359
Modi�ed 2 422 164 118 54 400 367 646
Beckmann approximation 421 655 1 011 54 909 365 735
Beckmann, exact 427 027 1 734 49 537 375 756

TABLE 2: Number of cases out of the one million simulated cases where the different
criteria based onχ0 andR are satis�ed (cf. Fig. 10).

Formula forσ� N ′0 N ′1 N ′2 Q′

(OK) (false positives) (false negatives) (overall)

Linear 409 242 17 360 46 660 345 222
Modi�ed 1 406 821 20 855 49 081 336 885
Modi�ed 2 405 684 16 598 50 218 338 868
Beckmann approximation 404 779 17 887 51 123 335 769
Beckmann, exact 409 132 19 629 46 770 342 733

the expected value of� � for a given distribution of true proper motions, this is in gen-
eral complicated and the result will depend on the assumed distribution, so no general
answer can be given.

By contrast the uncertainties of the proper motionvector, i.e. the standard deviations
of the components and the correlation coef�cient, are well-de�ned concepts related to
the likelihood function if a binormal error model is assumed. The basic difference is
that the size and shape of the two-dimensional distribution in cartesian coordinates is
invariant to a shift of origin, unlike the distribution in polar coordinates. All statistical
inference and estimation should therefore, whenever possible, use this model e.g. as
formulated in Eq. (4).

Assuming that an expression for� � is nevertheless desirable, we have compared �ve
possible formulae. There are surely many more possibilities, and one of them (the
second modi�cation of the linear formula) contains a parameterc that was arbitrarily
set to 1, so it actually de�nes a family of possible expressions which has not been
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explored. Within this limited and somewhat arbitrary range of expressions, the practi-
cal differences in performance, as illustrated for example in Figs. 7�8 and Tables 1�2,
turns out to be rather marginal. The choice should therefore, perhaps, rather be guided
by pragmatism.

The linear error propagation formula (14) has one big advantage and two serious draw-
backs. The advantage is its simplicity both in form and motivation: it is derived by a
well-known and easily understood procedure. The drawbacks are as follows.

The �rst drawback is more of a theoretical or aesthetic nature. It concerns the be-
haviour when the observed proper motion is small, or rather insigni�cant in compar-
ison with the uncertainties in either coordinate, and can be explained with reference
to Fig. 2. The� � obtained by Eq. (14) is the projection of the error ellipse on the
proper motion vector, as illustrated in the �gure. For an anisotropic error distribution
this means that� � depends on the direction of the proper motion vector, even though
the direction in this case is purely accidental. Moreover, if the error ellipse is very
elongated, the resulting� � could be unrealistically small, namely if the proper motion
happened to point along the minor axis. This drawback means that the formula does
not satisfy criterion #3 put forth in the Introduction.

The second drawback is more of a practical nature: (14) cannot be computed if both
proper motion components areexactly zero. This will in practice never happen when
the formula is applied to the data in theGaia Archive, where the components are
�oating-point numbers. However, we have to take into account that any formula that
is provided with the documentation may by applied by users to their own, perhaps
transformed or truncated data. Then there is a non-zero (or even high) probability
that the formula will fail for some sources. For example, inGaia DR2 there are 13
‘zero’-proper motion sources, if the valid proper motions are rounded to the nearest
� as yr−1. Rounded to the nearest mas yr−1 there are 12.5 million. Thus any software
implementation of (14) needs some kind of provision for handling this case.

The other formulae do not have these drawbacks, but are instead less simple. In terms
of simplicity of computation, the ranking is:

1: linear error propagation, Eq. (14)
2: linear modi�ed (ii), Eq. (20)
3: linear modi�ed (i), Eq. (18)
4: Beckmann approximation, Eq. (24)
5: Beckmann, exact (numerical integral)

If the linear formula is rejected because of the drawbacks described above, the obvi-
ous next choice is the second modi�cation, Eq. (20), which is only moderately more
complicated than (14). Moreover, this modi�cation can be described and motivated

Technical Note Lund Observatory 24



CU3-AGIS GAIA-C3-TN-LU-LL-129-01

without too much dif�culty. However, the (arbitrary) choice ofc = 1 is still an open
question: how can it be motivated, and is it even the best choice?

7 Conclusion

Reverting to conventional notation, the total (observed) proper motion is given by

� = |µ| =
√

� 2
� ∗ + � 2

� : (27)

While this quantity may be useful in certain contexts, it should be remembered that its
statistical properties are highly non-trivial. In particular, in the presence of noise its
is always a biased estimate of the true total proper motion, E(� ) > � 0, and the bias
depends in a complex way on both the true proper motion vector and its covariance.
Furthermore, there is no expression for the standard deviation (uncertainty) of� that
does not involve the true vector. Consequently� � cannot be exactly computed from
observed quantities.

If an approximate expression for� � is nevertheless desired, the recommendation from
this study is to use (20), which in conventional notation reads

� � =

√
� 2

� ∗� 2
�� ∗ + 2� � ∗� � � (� � ∗; � � )� �� ∗� �� + � 2

� � 2
�� + � 4

0

� 2 + � 2
0

; (28)

where

� 2
0 =

� 2
�� ∗ + � 2

��

2
: (29)

This formula satis�es all four criteria listed in Sect. 1, and in addition has a simple
geometrical interpretation in the limits of large and small� .

However, while (28) appears to give reasonable results in all cases, including when
the true proper motion is zero, it can be noted that�=� � is in general a sub-optimal
statistic for the signi�cance of the proper motion; a criterion based on (8)�(10) is
always preferable for selecting sources with negligible or signi�cant proper motions.
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FIGURE 10: Comparing the observed signi�cance of the proper motion, as measured
by the ratioR = µ/σ� , to the non-centrality measureχ0 of Eq. (26). Green, red,
and magenta dots correspond to the casesN ′0, N ′1, andN ′2 in Table 2. Only a small
range of values around the critical valueκ = 3 is shown. Upper left: linear error
propagation (14).Upper right: �rst modi�cation (18). Middle left: second modi�ca-
tion (20). Middle right: approximated Beckmannn (24).Bottom: σ� from the exact
Beckmannn distribution.
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FIGURE 11: Comparing the observed signi�cance of the proper motion, as measured
by the ratioR = µ/σ� , to the value obtained with the chi test,χ =

√
χ2. Green,

red, and magenta dots correspond to the casesN0, N1, andN2 in Table 1. Only a
small range of values around the critical valueκ = 3 is shown. Upper left: linear
error propagation (14).Upper right: �rst modi�cation (18). Middle left: second
modi�cation (20). Middle right: approximated Beckmannn (24).Bottom: σ� from
the exact Beckmannn distribution.
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Appendix A: The error ellipse

For convenience we summarise here some important properties of the binormal dis-
tribution. They are formulated quite generally in standard Cartesianxy coordinates.
For astronomical applications it is important to remember that thex andy axes point
towards North and East, respectively; for example, in the case of proper motions in
the ICRS, we havex = � � and y = � � ∗ (see Sect. 2). Equation (39) therefore
gives the position angle of the semi-major axis of the error ellipse in proper motion
as� = 1

2
atan2(2�� �� � �� ∗; � 2

�� ∗ − � 2
�� ).

Let x andy be random variables following a binormal distribution with mean values
x0, y0, standard deviations� x , � y, and correlation coef�cient� . That is,

x ∼ N (x0; � 2
x) ; y ∼ N (y0; � 2

y) ; E[(x − x0)(y − y0)] = �� x � y : (30)

Using vector notationµ = [x y]′ etc., the covariance matrix is

C = E[(µ− µ0)(µ− µ0)
′] =

[
� 2

x �� x � y

�� x � y � 2
y

]
; (31)

and the probability density function (PDF) can be written compactly as

f (µ) =
1

2� |C|1=2
exp

(
−1

2
(µ− µ0)

′C−1(µ− µ0)
)

: (32)

The equation
(µ− µ0)

′C−1(µ− µ0) = 1 (33)

de�nes a curve of constant probability density in thexy plane, known as the error
ellipse (Fig. 12, right). Some properties of the error ellipse are derived below.

The vectorµ can be written in polar coordinates(�; � ) using the transformation

x = � cos �
y = � sin �

}
⇔

{
� =

√
x2 + y2

� = atan2(y; x)
: (34)

The component ofµ in the arbitrary direction is (Fig. 13, left)

u = � cos(� −  ) = � cos � cos  + � sin � sin  = x cos  + y sin  ; (35)

and its variance is

� 2
u = � 2

x cos2  + 2�� x � y cos  sin  + � 2
y sin2  : (36)
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FIGURE 12: Left: Illustration of Eq. (36) forσx = 1, σy = 2, ρ = 0.8. Right: The
red curve is the error ellipse for the same parameters as in the left panel. The blue
curve is a polar plot ofσu versusψ (cf. Lindegren 2012).

As a function of , this describes a sinusoidal variation with period� (Fig. 12, left).
The extreme values of� u are obtained by solving the equation@�2u=@ = 0, with the
results

� max =

√
1
2

(
� 2

x + � 2
y

)
+ 1

2

√(
� 2

y − � 2
x

)2
+ (2�� x � y)2 (37)

for  = � and = � + � , and

� min =

√
1
2

(
� 2

x + � 2
y

)
− 1

2

√(
� 2

y − � 2
x

)2
+ (2�� x � y)2 (38)

for  = � + �= 2 and = � + 3�= 2, where� is given by

� = 1
2

atan2
(
2�� x � y; � 2

x − � 2
y

)
: (39)

� max and� min are the semi-major and semi-minor axes of the error ellipse, and� is the
orientation of the semi-major axis.

An alternative way to derive the principal axes of the error ellipse is by SVD of the
covariance matrix.� 2

max and � 2
min are the singular values ofC, and can therefore be

obtained by solving the quadratic eigenvalue equation

det(C − � I) ≡ (� 2
x − � )(� 2

y − � )− (�� x � y)2 = 0 : (40)

It can be further noted that

� 2
max + � 2

min = � 2
x + � 2

y = trace(C) (41)
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FIGURE 13: Left: Polar coordinates(µ, φ) and the componentu along an axis in
directionψ. Right: Coordinates(ξ, η) along the principal axes of the error ellipse.

and
� max� min = � x � y

√
1− � 2 = |C|1=2 : (42)

The axis ratio� max=� min is known as the aspect ratio of the distribution. The inverse
aspect ratio

q =
� min

� max
(43)

is often a more useful measure of the anisotropy, as it is limited to the unit interval,
0 < q ≤ 1.

(� x ; � y; � ) (or C) and(� max; � min; � ) are alternative and equivalent representations of
the error ellipse, with Eqs. (37)�(39) providing the transformation in one direction.
The inverse transformation is

� 2
x = � 2

maxcos2 � + � 2
min sin2 � (44)

� 2
y = � 2

maxsin2 � + � 2
min cos2 � (45)

�� x � y = (� 2
max− � 2

min) cos � sin � (46)

The one-dimensional uncertainty� u, when plotted in a polar diagram, is not an error
ellipse, however; in general it is an elongated �gure (the blue curve in the right panel
of Fig. 12) with a more or less pronounced waistline along the minor axis of the error
ellipse (red curve).� u therefore has a minimum in the direction of the minor axis,
but in nearly any other direction the one-dimensional uncertainty is dominated by the
projection of the larger error along the major axis. From Eq. (36) it is readily seen, by
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averaging� 2
u with respect to� , that the RMS one-dimensional uncertainty, taken over

all directions, is

(� u)RMS =

√
� 2

max + � 2
min

2
=

√
� 2

x + � 2
y

2
: (47)

It is often advantageous to work in rotated coordinates(�; � ), with the� axis oriented
along the major axis of the error ellipse and� along the minor axis (Fig. 13, right).
The required transformation is

� = x cos � + y sin �
� = −x sin � + y cos �

}
⇔

{
x = � cos � − � sin �
y = � sin � + � cos �

; (48)

where� is given by Eq. (39). In this system� and� are uncorrelated,

� ∼ N (� 0; � 2
� ) ; � ∼ N (� 0; � 2

� ) ; (49)

with mean values
� 0 = x0 cos � + y0 sin �
� 0 = −x0 sin � + y0 cos �

}
; (50)

and standard deviations� � ≡ � max, � � ≡ � min given by Eqs. (37) and (38). The
covariance matrix is diag(� 2

� ; � 2
� ) and the PDF is simply

f (�; � ) =
1

2�� � � �
exp

(
−(� − � 0)2

2� 2
�

− (� − � 0)2

2� 2
�

)
: (51)
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Appendix B: The Beckmann distribution

In Eq. (34) we introduced the polar coordinates(�; � ) of the binormal random variable.
In polar coordinates the two-dimensional PDF is

g(�; � ) = f (x; y)

∣∣∣∣@(x; y)

@(�; � )

∣∣∣∣ = f (x; y)� : (52)

Marginalising over� gives the PDF of the modulus of the binormal random variable:

g(� ) =

∫ 2�

0

f (� cos �; � sin � )r d� : (53)

This probability distribution, known as the Beckmann distribution, is widely used for
modelling the envelope of a complex random variable such as resulting from multiple
propagation paths of radio signal or the scattering from rough surfaces (Beckmann
1962). It includes the Rice, Hoyt, and Rayleigh distributions as special cases.

Since� is invariant to a rotation of the coordinates, the evaluation of Eq. (53) may be
simpli�ed by using the special coordinates� , � in Eq. (48). Thenf is given by Eq. (50)
and we �nd

g(� ) =
�

2�� � � �

∫ 2�

0

exp

(
−(� cos � − � 0)2

2� 2
�

− (� sin � − � 0)2

2� 2
�

)
d� ; (54)

which depends on the four parameters� 0, � 0, � � , and � � . This is the usual form in
which this distribution is given, e.g. Eq. (31) in Beckmann (1962). Note that we have
‘eliminated’ one parameter (� ) by means of the transformation in Eq. (48); in its most
general form the Beckmann distribution does however depend on �ve parameters, e.g.
x0, y0, � x , � y, and� . By suitable scaling, for example setting� � = 1, it is possible to
eliminate one more parameter, but that will not be done here as it does not bring any
particular advantage for the computation.

While it is possible to expandg(� ) as an in�nite series of Bessel functions, the practical
evaluation is usually more simply done by numerical integration. However, a few
analytical results should be noted. From (54) it is immediately seen that

g(0) = 0 ; g(∞) = 0 : (55)

Moreover,g(� ) is unimodal (Wolfram Research, Inc. 2016); thusg(� ) is always more
or less bell-shaped (Fig. 14). Because� 2 = � 2 + � 2, where� and� are independent
normal variables, it is straightforward to derive the even moments ofg(� ). In particu-
lar,

M 2 ≡ E[� 2] = � 20 + � 2
0 + � 2

� + � 2
� ; (56)

M 4 ≡ E[� 4] = (� 20 + � 2
0 + � 2

� + � 2
� )2 + (2� 0� � )

2 + (2� 0� � )2 + 2� 4
� + 2� 4

� : (57)
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FIGURE 14: Left: Nine examples of the Beckmann distribution.Right: Error ellipses
for the corresponding binormal distributions.

Of particular interest to us is the standard deviation ofg(� ),

� � =
√

M 2 −M 2
1 : (58)

The second momentM 2 is known from Eq. (56), but the �rst moment, formally de�ned
by the integral

M 1 ≡ E[� ] =

∫ ∞
0

g(� )� d� ; (59)

cannot be exactly represented except by complicated in�nite series. The simplest way
to evaluate it numerically is probably by numerical integration. Inserting (54) in (60)
results in a double integral, which in rectangular coordinates becomes

M 1 =

∫∫ ∞
−∞

f (�; � )
√

� 2 + � 2 d� d�

=
1

2�� � � �

∫∫ ∞
−∞

exp

(
−(� − � 0)2

2� 2
�

− (� − � 0)2

2� 2
�

)√
� 2 + � 2 d� d�

=
1

2�

∫∫ ∞
−∞

exp
(
−1

2
(u2 + v2)

)√
(� 0 + u� � )2 + (� 0 + v� � )2 du dv : (60)

The last form is readily adapted to ef�cient numerical integration using a pre-computed
set of coef�cientsexp(−u2=2).

A simpler but less ef�cient way to compute the moments is by means of Monte Carlo
simulations: generaten pairs of independent normal deviates� ∼ N (� 0; � 2

� ), y ∼
N (� 0; � 2

� ); thenM k ' 〈(� 2 + � 2)k=2〉. Using for examplen = 106 pairs will give the
moments to about three signi�cant digits.
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FIGURE 15: Variation ofσ� /σ� as a function ofq for the Hoyt distribution.

B.1. The Hoyt distribution

A special case of the Beckmann distribution, of particular interest to us, is the Hoyt (or
Nakagami-q) distribution, obtained with� 0 = � 0 = 0. Apart from a scaling parameter,
it is characterised by the inverse aspect ratioq in Eq. (43), which has the same meaning
in the Nakagami-q distribution. The Hoyt distribution has two well-known limiting
forms: the Rayleigh distribution (forq = 1) and the half-normal distribution (for
q = 0). The �rst moment in Eq. (60) is easily computed in the limiting cases, with
the resultsM 1 = � �

√
�= 2 (q = 1) andM 1 = � �

√
2=� (q = 0). Since, moreover,

M 2 = (1 + q2)� 2
� , we �nd

� � =

� �

√
1− 2=� ' 0:602810274989087 � � for q = 0,

� �

√
2− �= 2 ' 0:655136377562034 � � for q = 1.

(61)

Figure 15 shows the run of� � =� � with q. The moments of� were calculated by
numerical integration of the double integral in Eq. (60) using the trapezoidal rule with
a step size inu andv of 0.1 over the interval[−5; 5].
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FIGURE 16: Variation ofσ� /σ� as a function ofµ0/σ� for the Rice distribution.

B.1. The Rice distribution

Another special case of the Beckmann distribution is the Rice distribution, for which
q = 1 while � 0 and � 0 may be different from zero. Since� � = � � the distribution
does not depend on� 0 and � 0 separately, but only on� 0 =

√
� 20 + � 2

0. Apart from a
scaling parameter (taken to be� � ) the Rice distribution is thus fully speci�ed by� 0=� � .
Figure 16 shows the run of� � =� � versus� 0=� � for the Rice distribution computed by
numerical integration. For� 0 = 0 the Rice distribution is equivalent to the Hoyt
distribution forq = 1 and we obtain� � = � �

√
2− �= 2 as in Eq. (61). For large ratios

� 0=� � the standard deviation asymptotically approaches� � .
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Acronyms

The following table has been generated from the on-line Gaia acronym list:

Acronym Description
DR2 Gaia Data Release 2
FA Field Angle
ICRS International Celestial Reference System
PDF Probability Density Function
RMS Root-Mean-Square
SVD Singular Value Decomposition
TN Technical Note
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