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Abstract. This note describes how the Conjugate Gradient method could be
implemented in the AGIS framework for improved speed and accuracy.

1 Introduction

Since the early phases of the Gaia project, the baseline method for the so-called core
astrometric solution has been some variant of what is now known as the Astrometric Global
Iterative Solution (AGIS). The core astrometric solution aims to determine the astrometric
parameters for a subset of primary sources self-consistently with the instrument attitude
and geometric calibration. The basic idea is very simple. From the way observations are
made with Gaia it is obvious that

1. if the attitude and calibration parameters were known, it would be a simple matter
to solve the (astrometric) source parameters, one source at a time;

2. if the source and calibration parameters were known, it would be a simple matter to
solve the attitude parameters, one attitude interval at a time;

3. if the source and attitude parameters were known, it would be a simple matter to
solve the calibration parameters.

We may refer to each of the above processes as S (source update), A (attitude update),
and C (calibration update), respectively.1 An intuitively natural way to obtain a solution
that is consistent with all three processes is to repeat them cyclically until convergence.
This is the basic AGIS algorithm, hereafter referred to as simple iteration (Sect. 3.1).

A statistical argument can be invoked to explain why the simple iteration ought to converge
to a correct solution. The argument is based on the number of observations that contribute
to the determination of a certain parameter in a given iteration, and their distribution in
time and space. Consider for example the S process, where the source parameters for a
given star is obtained by combining data from many different epochs distributed over the
mission – typically about 80 field of view transits over a five-year period. It can be expected
that the attitude errors from the different epochs are at least partially independent, so
that their effects on the source update to a certain degree cancel out. Since the same
observations are also distributed among the different CCDs, we can expect the calibration
errors on the individual CCDs to cancel out to a certain extent. The net effect is that the

1A fourth process G (global update) is often considered in addition to S, A and C. This is meant
to determine parameters that affect all observations, such as the PPN γ parameter. However, from an
implementation viewpoint these global parameters could just as well be regarded as calibration parameters,
and their determination therefore included in C. The global update is not considered in the following.
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attitude and calibration errors propagate into the source update with a damping factor
depending on the number of ‘independent’ observations contributing to the update. Now
if we instead consider process A, we see that the attitude at any time t is obtained by
combining the observations of a large number of primary sources, namely those that are
simultaneously visible in the astrometric field – typically at least a thousand sources. Their
astrometric errors will not all be the same, and they therefore propagate into the attitude
determination with a certain damping factor. These observations are moreover spread out
over all the CCDs in the astrometric field, so that the calibration errors will to a large
extent average out. Finally, for process C we can see that a similar averaging effect is at
work when propagating the source and attitude errors into the calibration errors. In each
AGIS iteration, therefore, the errors from the previous iteration propagate with a damping
factor less than unity into the errors of the current iteration. The iteration process will
consequently converge, the quicker the smaller this damping factor is.

Naively, from arguments such as the above, one would expect a significant damping of
the errors with each iteration – perhaps with a factor of the order of 0.1–0.3, so that the
simple iteration would converge geometrically in a relatively small number of iterations.
Experience, first with GDAAS [1] and later in AGIS [5] showed however that an initial
rapid improvement was soon followed by a much slower convergence. After several tens
of iterations, the damping factor was usually as large as 0.9 or even closer to unity. This
phenomenon could be explained by elementary theory [3], which also led to a concept for
accelerating the convergence [4]. Although this accelerated iteration (Sect. 3.2) gave very
significant improvements, it was felt that even more might be gained by employing some
standard iterative algorithm such as the Conjugate Gradient (CG) method.

CG is considerably more complex than the simple and accelerated iterations, and it is not
immediately obvious if and how it can be implemented in the AGIS framework. In trying
to answer this question, a main problem is that the formal matrix equations that describe
what AGIS is doing mathematically sometimes have a rather remote resemblance to how
the actual calculations are organized. This makes it non-trivial to translate the formal
CG algorithm into processes that can be implemented within AGIS. For example, CG,
like most standard methods for the iterative solution of large linear systems Nx = n,
depends on the assumption that the vector Ny can be computed, with reasonable effort,
for arbitrary vector y. But what exactly would be the corresponding procedure in AGIS?
In order to clarify such issues we begin by analyzing the current (simple and accelerated)
iteration methods both in formal language and as implemented in AGIS.

2 The normal equations for the astrometric solution

In the subsequent equations, subscripts `, i, j, and k always have the following meaning:

• index ` represents an individual (one- or two-dimensional) astrometric observation;
• index i represents a primary source;
• index j represents an attitude interval, i.e. a time interval for which an indepen-

dent parametrization of the attitude is possible (typically, the attitude intervals are
separated by natural breaks in the data);

• index k is used for successive iterations of the solution.

There is a unique and known mapping from ` to (i, j), such that each observation ` is
associated with exactly one source i and one attitude interval j.

2



The core astrometric processing is a least-squares solution of the non-linear observation
equations for the primary stars, which can be symbolically written

t` = f`(si,aj , c) + noise
µ` = g`(si,aj , c) + noise

}
(1)

where t` is the observation time and µ` the AC pixel coordinate (if it was measured)
in observation `. This observation depends on a certain subset of the total set of un-
knowns, namely the source parameters si, the attitude parameters aj , and the calibration
parameters c. The total set of unknowns for I primary stars and J attitude intervals is

x = ({si}I−1
i=0 , {aj}J−1

j=0 , c) (2)

With R`(x) = t` − f`(si,aj , c) denoting the residual in observation ` as function of the
model parameters, and σ` its estimated uncertainty (from the centroiding algorithm), the
least-squares processing aims to minimize

χ2(x) =
∑

`

(
R`(x)
uσ`

)2

w

(
R`(x)
uσ`

)
(3)

where w(z) is a down-weighting function (intended to take care of outliers, with w(z) ' 1
for |z| < 3) and u is the unit weight error (ideally u = 1). For simplicity we have included
in the sum (3) only the contributions from the AL observations; in reality it must of course
include the AC observations as well.

It is seen that the minimization of χ2(x) (for fixed u) is a non-linear problem for two
reasons: first because f`(x) is non-linear, and secondly because w(z) is non-linear. The
non-linearity of f`(x) (and g`(x)) is however very weak as long as the changes in the
parameters are small; for example, if they are less than ε = 0.2 arcsec then the second-
order terms are of order ε2 ' 0.2 µarcsec. Therefore, the nonlinearity of the observation
model (1) is not an issue for the AGIS iterations.

The outlier treatment via the down-weighting function w(z) does however create signif-
icant non-linearity, and consequently a need for iterating the solution, until the proper
identification and down-weighting of the outliers have stabilized. This only happens after
several iterations. Its interaction with the overall AGIS scheme is a separate problem that
will not be addressed here. Assuming that the weight factors in (3) are fixed after some
initial iterations, we are left with a linear problem. We write this symbolically

Nx = n (4)

where N is the normal equations matrix, x now represents the updates (corrections) to be
applied to the total set of parameters, and n is the right-hand side of the normal equations.
The fact that n 6= 0 just means that we have not yet found the optimal set of parameters
to minimize (3), but we assume that we are in the linear domain of the problem, so that
N is in principle fixed.

Neglecting the dependence of the weights on the parameters, the elements of N and n are

Npq =
∑

`

(
−∂R`

∂xp

) (
−∂R`

∂xq

)
1
σ̃2

`

, np =
∑

`

(
−∂R`

∂xp

)
R`

σ̃2
`

(5)

where σ̃` = uσ`w(R`/uσ`)−1/2 is the standard error modified by the unit weight error and
down-weighting.
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3 Formal algorithms

In this section we first describe the AGIS schemes used until now in terms of formal
procedures for iteratively solving the linear system

Nx = n (6)

based on the initial guess x0 and using the preconditioner K. The significance of the
preconditioner is that K should in some sense be an approximation of N , and that the
system Kw = r should be possible to solve, with moderate effort, for arbitrary r. Thus,
rather than solving systems of the form Nw = r (which we cannot), we instead solve
systems of the form Kw = r (which we can), and use iteration to arrive at the correct
result. How quickly the iterations converge depends on how close (in a certain sense) K
is to N .

Considering only the source and attitude updates, the block structure of the normal equa-
tions matrix is

N =
[

S U
U ′ A

]
(7)

where the source normal matrix S is block diagonal with symmetric 5×5 matrices (one per
primary source) along the main diagonal; the attitude normal matrix A is a block band
diagonal matrix consisting of 4× 4 blocks (for the quaternion components) arranged in a
band along the main diagonal with a bandwidth determined by the order of the attitude
spline; U is a sparse matrix linking the source and attitude parameters. The calculation
of these matrices in terms of the observation equations is detailed in Sect. 5.

Thanks to the simple structures of S and A, there are a few obvious choices for the
preconditioner K. The simplest is

K =
[
S 0
0′ A

]
(8)

where 0 is a matrix of zeroes. We may call this the Jacobi preconditioner, because its use
in the simple iteration scheme (Sect. 3.1) results in a Jacobi-type block-iteration method.
Alternatively, we can use the Gauss–Seidel preconditioner

K =
[

S 0
U ′ A

]
(9)

which is closely related to the Gauss–Seidel block-iteration method. Both S and A are
symmetric and positive definite, so both versions of K are non-singular.

For the Jacobi preconditioner the system Kw = r reduces to two independent systems,
one for the source part (subscript S) and one for the attitude part (subscript A):

SwS = rS , AwA = rA (10)

For the Gauss–Seidel preconditioner the source and attitude parts are coupled,

SwS = rS , AwA = rA −U ′wS (11)

so that the source part must first be solved, and its result used in the subsequent solution
of the attitude part. This means that the attitude update is based on the updated source
parameters. This is normally the case in the current AGIS algorithms (Sects. 3.1 and 3.2),
which therefore effectively use the Gauss–Seidel preconditioner.

4



3.1 Simple iteration

The original AGIS (without acceleration) is an application of the so-called simple iteration
procedure [2], which can be formally described as follows:

initial guess x0

for k = 0, 1, . . .

rk = n−Nxk (12)

wk = K−1rk (13)
xk+1 = xk + wk (14)
if xk+1 accurate enough then quit

next k

The stopping criterion is simply that some norm of wk is below a given threshold. It goes
without saying that (13) is just a short-hand notation for ‘solve the system of equations
Kwk = rk’, cf. (10) and (11).

In the description above, the first parameters to be updated are the source parameters. It
is however also possible to start the iterations by updating the attitude parameters, then
the sources, then the attitude, etc. It is easily seen that this is equivalent to using the
preconditioner

K =
[
S U
0′ A

]
(15)

which is the transpose of (9). This is still a Gauss–Seidel-type preconditioner, but applied
to the problem where the source and attitude unknowns have been interchanged.
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3.2 Accelerated iteration

The accelerated AGIS [4] can be described as follows:2

initial guess x0

for k = 0, 1, . . .

rk = n−Nxk (16)

wk = K−1rk (17)
if mod(k, 2) = 0

ωk = 1 (18)
else

ck = (w′
k−1wk)/(w′

k−1wk−1) (19)
ωk = 1/(1− ck) (20)

endif
xk+1 = xk + ωkwk (21)
if xk+1 accurate enough then quit

next k

Here it is assumed that the acceleration is applied in every second iteration, as recom-
mended in [4]. The stopping criterion is that some norm of ωkwk should be below a given
threshold.3 As in the simple iteration, the Gauss–Seidel preconditioner is used.

The kernel of both the simple and accelerated iteration consists of the two formulae

r = n−Nx

w = K−1r

}
(22)

for calculating the next update w via the intermediate vector r. The actual calculations
do not exactly follow these equations, although the end result is mathematically the same.
To minimize memory usage and allow a high degree of parallelization, the calculations
are done one source at a time, while accumulating the modified normal equations for the
attitude [the second equation in (11)]. This means that the two formulae in (22) are
partially worked on in parallel. This is possible because, formally, it is the same vector r
that appears in both equations. One consequence of this procedure, when used with the
Gauss–Seidel preconditioner, is however that the full vector r is never explicitly calculated.
In Sect. 5 we discuss in more detail the implementation of (22) and in particular how it
may be possible to compute r as well.

2The actual implementation of the accelerated AGIS differs slightly from the algorithm as described
above. First, the regression coefficient of successive updates, ck in (19), is not determined from the full
vectors wk−1 and wk, but only from a much smaller sub-vector corresponding to the parallaxes of some
1000 primary sources. Secondly, even from these sub-vectors, the coefficient ck is determined by a more
robust method than the unweighted least-squares regression suggested by (19). Thirdly, the update is not
exactly applied as in (21). Instead, only the source parameters are updated according to (21), which is
followed by the second step in (11) for the attitude update, using the updated source parameters. Thus,
the acceleration factor ωk is only indirectly applied to the attitude updates via the link matrix U , but
not directly to the attitude part of wk. All of these modifications were introduced for practical reasons.
It is not known how they affect the convergence, but it is possible that a more rigorous implementation
of (16)–(21) might give improved convergence. Also, it is not obvious that the algorithm would fail if the
acceleration were applied in every iteration (except k = 0).

3Actually, it would be better to use the norm of max(ωk, ωk−1)wk as a stopping criterion.
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4 The Conjugate Gradient method

4.1 Formal algorithm

We now consider the Conjugate Gradient (CG) method with preconditioning. A suitable
starting point is the algorithm given in Fig. 5.2 of [6]. With a slight adaptation of notations,
the algorithm is:

initial guess x0

r0 = n−Nx0 (23)
for k = 1, 2, . . .

wk−1 = K−1rk−1 (24)
ρk−1 = r′k−1wk−1 (25)
if k = 1

pk = wk−1 (26)
else

βk−1 = ρk−1/ρk−2 (27)
pk = wk−1 + βk−1pk−1 (28)

endif
qk = Npk (29)
αk = ρk−1/(p′kqk) (30)
xk = xk−1 + αkpk (31)
rk = rk−1 − αkqk (32)
if xk accurate enough then quit

next k

4.2 Analysis of the algorithm in the AGIS context

Comparing with the simple iteration, we see that the first few steps (23)–(24) (with k = 1)
are the same, except that the computed vector wk−1 is not directly used as an update to
xk−1. The ‘acceleration factor’ αk is computed by means of the vectors rk−1, wk−1 = pk

and qk. This immediately poses two questions: first, how to compute the full vector
rk−1 (i.e., including the attitude part); secondly, how to compute qk by (29), which has
no direct counterpart in the simple (or accelerated) iteration. Finally we note that the r
vector for the next iteration is computed by the recursion formula (32) rather than directly
from r = n−Nx.4

Concerning (29), we note that pk is very much like an update to xk−1, in fact it only
differs from the next update by the scalar factor αk, which presumably is of order unity.
Therefore we can regard pk as a vector of trial updates resulting in the trial right-hand
side

r̃k = n−N(xk−1 + pk) = (n−Nxk−1)−Npk = rk−1 − qk (33)
4Using recursion rather than the direct formula saves a lot of calculations but could make the procedure

sensitive to the accumulation of rounding errors. One possible remedy could be to ‘reset’ the residuals
with the direct formula after the recursion has been used for a certain number of iterations. However,
as discussed in Sect. 8.1 of [6], this could have a negative impact on the convergence – in fact, according
to that reference, a stagnation in the convergence is observed in many important situations. Finding a
reliable updating procedure for r is one of the features that remain to be investigated.
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Since the previous right-hand side rk−1 is presumed to be known [it is for example needed
in (25)], we obtain the desired vector as

qk = rk−1 − r̃k (34)

The above calculation of the trial right-hand sides corresponds to the first part of the
kernel algorithm, i.e. Eq. (22a), only with modified (trial) parameters. The second part of
the kernel algorithm, Eq. (22b), has its CG counterpart in (24) for the next iteration. The
problem is that the vector used in (24) is rk−1, not r̃k−1 as obtained from (33). Therefore
we cannot simply insert (22) at the appropriate place of the CG algorithm.

However, this problem can be overcome by carrying the idea of the trial solution one step
further. Suppose that instead of (24) we calculate

w̃k−1 = K−1r̃k−1 (35)

From (32) and (34) we have

rk = rk−1 − αkqk = rk−1 − αk(rk−1 − r̃k) = (1− αk)rk−1 + αkr̃k (36)

Symbolically pre-multiplying with K−1 gives a recursion formula for wk

wk = (1− αk)wk−1 + αkw̃k (37)

With this artifact, we can now re-write the CG algorithm as follows:

initial guess x0

r0 = n−Nx0 (38)

w0 = K−1r0 (39)
ρ0 = r′0w0 (40)
p1 = w0 (41)
for k = 1, 2, . . .

r̃k = n−N(xk−1 + pk) (42)

w̃k = K−1r̃k (43)
qk = rk−1 − r̃k (44)
αk = ρk−1/(p′kqk) (45)
xk = xk−1 + αkpk (46)
if xk accurate enough then quit
rk = rk−1 − αkqk (47)
wk = (1− αk)wk−1 + αkw̃k (48)
ρk = r′kwk (49)
βk = ρk/ρk−1 (50)
pk+1 = wk + βkpk (51)

next k

We see that (38)–(39) and (42)–(43) now have exactly the same form as the kernel process-
ing (22) and are therefore amenable for implementation in the AGIS framework.
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5 Calculation of the normals and the full right-hand side

A remaining issue for the implementation of the CG algorithm is the calculation of the
full right-hand side r in (22), which normally would not be obtained in AGIS but which is
needed several times in (38)–(51). In order to find out how this can be done it is necessary
to analyze the kernel algorithm (22) in greater detail.

Following on to the development in Sects. 1–2, let i and j be the source and attitude
interval applicable to observation ` and si, aj the corresponding updates to the source
and attitude parameter vectors (both are sub-vectors of x). The normalized observation
equation is

F `isi + G`jaj = h` (52)

where F `i = −(∂R`/∂s′i)/σ̃`, G`j = −(∂R`/∂a′j)/σ̃`, and h` = R`/σ̃`.

The matrix S in (7) consists of 5× 5 symmetric matrices Si along the main diagonal:

Si =
∑
`∈Li

F ′
`iF `i (53)

where Li is the set of observations concerned with source i. Similarly, the matrix A
consists of symmetric matrices Aj along the main diagonal:

Aj =
∑
`∈Lj

G′
`jG`j (54)

where Lj is the set of observations in attitude interval j. The link matrix U consists of
sub-matrices

U ij =
∑

`∈Li∩Lj

F ′
`iG`j (55)

The right-hand side for source i is

ri =
∑
`∈Li

F ′
`ih` (56)

and the right-hand side for attitude interval j is

rj =
∑
`∈Lj

G′
`jh` (57)

In the following we denote by r̂j the modified right-hand side appearing in the second
equation of (11). In terms of the source updates wi = S−1

i ri it is

r̂j = rj −
∑

i

U ′
ijwi (58)
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The calculation of w in (22) can now be organized in the following way:

for each attitude interval j

[Aj r̂j ] = 0 (59)
next j

for each source i

[Si ri] = 0 (60)
for ` ∈ Li

calculate F `i, G`j , h` (61)
[Si ri] += F ′

`i[F `i h`] (62)
next `

solve [Si ri] ⇒ wi = S−1
i ri (63)

for ` ∈ Li

ĥ` = h` − F `iwi (64)

[Aj r̂j ] += G′
`j [G`j ĥ`] (65)

next `

next i

for each attitude intervalj

solve [Aj r̂j ] ⇒ wj = A−1
j r̂j (66)

next j

Here and in the following, [M m1 m2 . . . ] stands for a system of linear equations with
matrix M and right-hand sides m1, m2, etc.

This is probably not exactly how AGIS is currently organized. In particular, the modified
residuals ĥ` in (64) may be recomputed directly from the observations and updated source
parameters, rather than by means of F `i; also, G`j may not be computed until it is needed
in (65). It would however appear expedient to compute F `i, G`j and h` at the same time,
as in (61) above, since they could share a lot of the calculations, and to avoid recomputing
the residuals for the attitude update. In either case, it is seen that the required attitude
right-hand sides rj can be obtained by a modest addition to the above scheme:
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for each attitude interval j

[Aj r̂j rj ] = 0 (67)
next j

for each source i

[Si ri] = 0 (68)
for ` ∈ Li

calculate F `i, G`j , h` (69)
[Si ri] += F ′

`i[F `i h`] (70)
next `

solve [Si ri] ⇒ wi = S−1
i ri (71)

for ` ∈ Li

ĥ` = h` − F `iwi (72)

[Aj r̂j rj ] += G′
`j [G`j ĥ` h`] (73)

next `

next i

for each attitude intervalj

(partially) solve [Aj r̂j rj ] ⇒ wj = A−1
j r̂j (74)

next j

6 Conclusions

It appears that the Conjugate Gradient method can be incorporated in the AGIS frame-
work as described by (38)–(51), where the kernel process, formally described by (22), could
be implemented as in (67)–(74).

It is proposed that the algorithm is first tested by means of AGISLab.
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