SPI IMAGING

- MASK 127 Elements HURA
- Detector 19 detectors 56mm flat to flat
- Fully coded F.O.V =16 $^{\circ}$
- Angular pixel size ~ 2°

SPI DITHER PATTERN

- The mask approach
 - Only 19 detectors
 - Dithering increases the detection plane size and "creates" virtual detectors.
 - Dithering increases the number of "independent" sky positions.
 - Dithering reduces the PSF sidelobes
 - 5x5 produces 19x25 sky pixels assuming a stable sky and a known and stable background......
 - VALID IF STEP SIZE ~ 2°

SPI DITHER PATTERN

- The Flux reconstruction approach
 - Data = ARF*Sky + B to be solved
 - Data (19, 25x(cycles))
 - Sky (Nsources, time intervals?)
 - B (shape(max 19), time intervals?)
 - Easy to have more unknowns than independent equations

SPI DITHER PATTERN

- Sky modulation approach
 - Point sources: best modulation step is 2°
 - Diffuse emission, obviously depends on the extension. 5x5 is +/- 4 °: it is a quite small compared to the scale of the structures
 - 5x5 (2° step) is the "minimal" modulation for diffuse emission.

SPI DITHER PATTERN

- Hexagonal pattern usage:
 - Single source in the FOV
 - No diffuse emission
 - Hex usage for complex FOV (G.C.) is incompatible with SPI
- 5x5 is the nominal SPI observation mode
- Patterns with steps < 2° do not help
- Patterns with steps > 2° can help for the diffuse emission