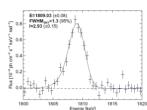
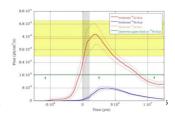
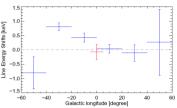
Status of the 'Nucleosynthesis' Field

by Roland Diehl
MPE Garching

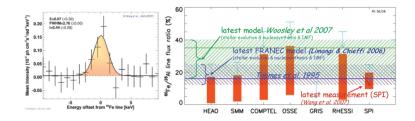

Contents

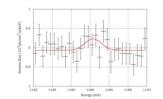

- Recent Science Results and Discussion Status
- INTEGRAL Observations & Outcomes/Papers

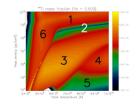

Status of the Nucleosynthesis Field - Overview

☆ ²⁶Al in the Galaxy

- Spatially-Resolved Spectra
- *Line Width Constraint
- © Galactic ²⁶Al versus Models
- © Cygnus-Region ²⁶Al versus Models




☆ 60Fe in the Galaxy


- © Clear Detection
- ** 60Fe/26Al Ratio: New Models & Theory
- ⁶⁰Fe Lifetime Re-Determined/Revised

☆ 44Ti from Supernovae

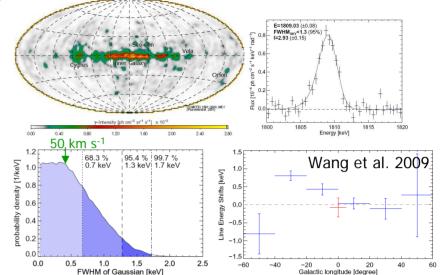
- © Cas A Constraints from all 3 44Ti Lines
- PNew Models for cc-SNe

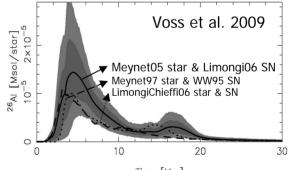
☆ Positrons in the Galaxy

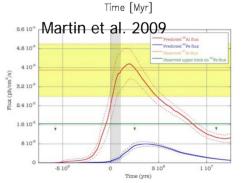
- Spatially-Resolved Spectra
- FLine Shape Constraints
- **Bulge/Disk Ratio: New Models & Theory

Status of the Nucleosynthesis Field - 26Al

☆ ²⁶Al Observation Results


- Spatially-Resolved Spectra
- *Line Width Constraint
- [™] Galactic ²⁶ Al versus Models
 - Wang et al., A&A (2009)
- © Cygnus-Region ²⁶Al versus Models
 - Martin et al., submitted to A&A


★ ²⁶Al Nucleosynthesis Models

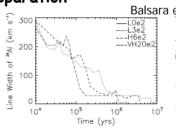

- Stellar Evolution from MS through Collapse
 - Limongi & Chieffi, A&A (2006)
- ** Stellar Evolution Including Effects of Stellar Rotation
 - Palacios et al., A&A (2005)
- Updates of WW95 Model with new Nuclear Physics
 - Woosley & Heger, PhysRep (2007)

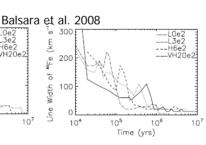
☆ ²⁶Al in Massive-Star Regions: Predictions

- Population Synthesis for Massive-Star Groups
 - Voss et al., submitted to A&A
- **Massive-Star Groups in the Cygnus Region
 - Martin et al., submitted to A&A

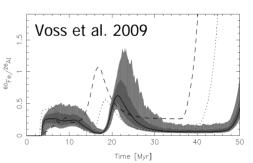
Status of the Nucleosynthesis Field

☆ ⁶⁰Fe in the Galaxy

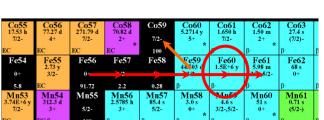

- Clear Detection
 - Wang et al., A&A 2007; Lang et al., in prep.
- Limits for Cygnus, Vela
 - Wang et al., A&A 2007; Martin et al., submitted to A&A

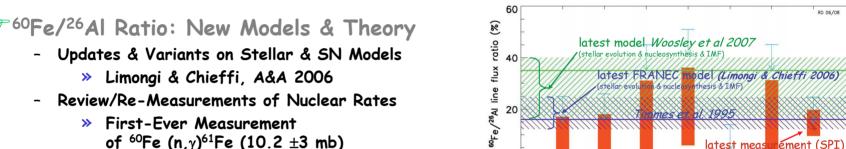


COMPTEL OSSE


**60Fe/26Al Ratio: New Models & Theory

- » First-Ever Measurement (Reifarth et al. 2009)
- » First Measurements of ⁵⁹Fe $(n,\gamma)^{60}$ Fe in preparation
- Simulations for ISM-Massive-Star Groups
 - » Balsara et al 2008
 - » Voss et al. 2009

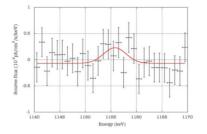

HEAO



GRIS

⁶⁰Fe Lifetime Re-Determined/Revised

- » 'old' value: τ =(2.15 ±0.3) My (Kutschera et al 1984)
- 'new' value: τ =(3.78 ±0.06) My (Rugel et al 2009) based on ⁶⁰Fe from PSI beam dump and AMS
- > Implications for Young Regions (not 'steady-state')

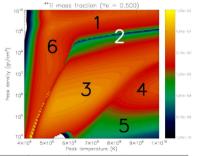




Status of the Nucleosynthesis Field - 44Ti

☆ 44Ti from Supernovae

- © Cas A Constraints from 3 Lines
 - IBIS provided best total-flux measurement (2.5 \pm 0.3) 10^{-5} ph cm⁻² s⁻¹ (Renaud+ 2006)
 - Compatible Velocities >500 km/s
 (SPI 1157 keV line limit); Martin+ 2009


New Radioactivity Constraints for SNe

- © Cas A Echo Spectrum, Krause+ 2008
- © Cas A ⁵⁶Ni Yield from Reddening, Ericson+ 2008
- *New SNR G1.9+0.3 with ~100 yrs age
 - Reynolds+ 2008
 - No Hint for 44Ti Emission found in SPI nor IBIS

um of pertonal perton

* New Model Yields & their Variabilities

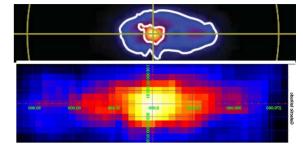
- First 2.x-dimensional Parametrized Simulations
 - Strong Y, Dependency; Fryer+ 2008, Magkotsios+ 2008
- **Re-Measurements of Key Nuclear Reaction Rates
 - $^{40}Ca(\alpha,\gamma)^{44}Ti$ being measured; $^{44}Ti(\alpha,p)^{47}V$ to be done (RIB); others?
- Nuclear-Network Studies
 - e.g. NARF, Parikh+ in prep.

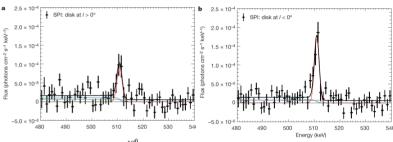
Model Name	Model C	haract.	Yields						
and	E_{exp}	$M_{\rm rem}$	²⁸ Si	⁴⁵ Sc	⁴⁴ Ti	⁶⁰ Co	⁵⁶ Ni		
citation	10 ⁵¹ erg	M_{\odot}	M _☉	$10^{-5}\mathrm{M}_\odot$	$10^{-5}\mathrm{M}_\odot$	$10^{-5}\mathrm{M}_\odot$	M_{\odot}		
WW-S22A[8]	1.47	2.02	0.356	1.20	6.15	2.43	0.205		
WW-S25A[8]	1.18	2.07	0.315	0.228	3.04	5.36	0.129		
23e-1.5[7]	3.2	1.5	0.303	0.082	0.513	1.03	0.0013		
23e-2.0[7]	2.6	2.0	0.461	0.080	6.95	1.04	0.283		
d0.2-1.5[7]	2.6	1.5	0.463	0.081	2.62	0.99	0.240		
d0.7-1.5[7]	2.3	1.5	0.482	0.091	10.0	1.01	0.216		
23p-1.2[7]	3.2	1.2	0.362	0.080	0.655	0.992	0.0066		
23p-1.6[7]	2.4	1.6	0.439	0.079	23.5	0.996	0.613		
CL-20[9]	1.6	-	0.156	0.542	4.03	1.13	0.10		
CL-25[9]	1.8	-	0.245	1.26	2.19	2.44	0.10		

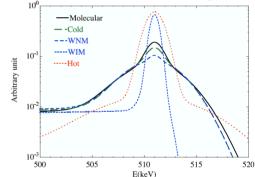
Status of the Nucleosynthesis Field: e+ Annihilation

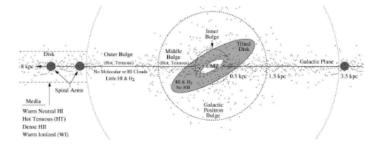
☆ Positrons in the Galaxy

Filmaging Studies -> Asymmetry


- Weidenspointner et al., Nat 2008
- Bouchet et al., ApJ 2008
- Skinner et al., PoS 2009 -> 1.60 +0.49 -0.16


Spatially-Resolved Spectra


- Weidenspointner et al., Nat 2009


* Models and Simulations

- Prantzos et al., in prep for RevModPhys (from 2007/2008 ISSI workshops)
- Studies & Discussion on Cosmic-Ray Propagation, on Positron Production by Different Sources, on Positron Annihilation Physics, on Dark Matter
- Annihilation Physics and Site
 - Guessoum et al., A&A 2006
- Sources: SgrA; Pulsars; Binaries; DM; ...
 - Cheng; Wang; Guessoum, Skinner; Boehm, Hooper;...
- Positron Propagation in ISM
 - Gillard et al., ESA-SP 2007
- Bulge/Disk Ratio:
 New Models & Theory
 - Higdon et al.; Lingenfelter, submitted to ApJ

Nucleosynthesis Science Meetings

- since last IUG Meeting
- a subjective list of conferences with "nucleosynthesis" as a main/major theme
- ☆ Gas & Stars in Galaxies, Jun 2008, Garching/Germany
- ☆ Cosmic Odysee of Elements, Jul 2008, Crete/Greece
- ☆ Astrophysics with ⁶⁰Fe, Jul 2008, Garching/Germany
- ☆ Chemical Evolution of Dwarf Galaxies, Jul 2008, Garching/Germany
- ☆ High-Energy Gamma-Ray Symposium, Jul 2008, Heidelberg/Germany
- Nuclei in the Cosmos X, Aug 2008, Michigan/USA invited INTEGRAL nucleosynthesis-result talk
- ☆ INTEGRAL Science Workshop, Sep 2008, Copenhagen/Denmark

 invited INTEGRAL nucleosynthesis-result talk

 or invited INTEGRAL nucleosynthesis-result talk

 result

 invited INTEGRAL nucleosynthesis-result

 invited INTEGRAL nucleosynthesis-r
- ☆ Origin of Elements Heavier than Iron, Sep 2008, Torino/Italy
 invited INTEGRAL nucleosynthesis-result talk
- ☆ Simbol-X Workshop, Dec 2008, Paris/France
- ☆ Astrophysics with ⁴⁴Ti, Jan 2009, Garching/Germany
- ☆ VISTARS Workshop, Mar 2009, Russbach/Austria
 - invited INTEGRAL nucleosynthesis-result talk

and upcoming:

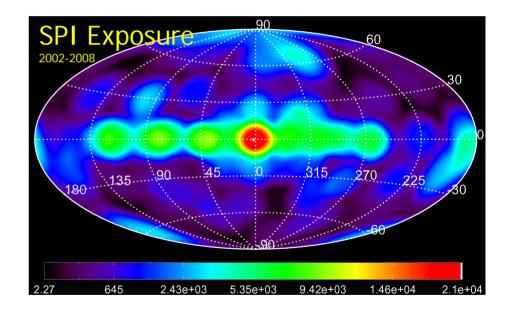
- Nucleosynthesis Making the Elements in the Universe, Jun 2009, Bad Honnef/Germany
- Nuclear Physics in Astrophysics IV, Jul 2009, Gran Sasso/Italy
- 🔯 Chemical Abundances IAU265, Aug 2009, Rio de Janeiro/Brazil
- Light Elements in the Universe, Nov 2009, Geneva/Switzerland
- ↑ Nuclei in the Cosmos XI, Jul 2010, Heidelberg/Germany

Science Quality Monitoring by IUG

- ☆ Tracking of Advances in INTEGRAL's Science Areas
 - Monitor Papers & Plans per Science Area
- ☆ Tracking of Success and Science Impacts for
 - Observing Time, and Proposals with respect to
 - » resources invested, results obtained
 - » science appreciation, contribution to science advance
 - Action for one/two IUG Members per Area? Rotating?
- *Report & Discussion at IUG Mtgs
 - » TAC Guidelines Developped from there?
- ☆ Prerequisite: (and Side-Effects)
 - Define quality criteria for INTEGRAL proposals and observing time
 - » stated goals were (xx%) achieved
 - » xx scientists with xx personmonths were involved
 - » result received xx credits among experts, and xx credits among adjacent / broader community
 - Define relative merits of science areas of INTEGRAL
 - Guide future proposal evaluations, and observation scheduling
 - FIUG (rather than external bodies & committees) defines quality criteria

'Nucleosynthesis' with INTEGRAL: Targets

☆ Core Program


Galactic Plane

- Diffuse Radioactivities (26Al, 60Fe), Positron Annihilation, 44Ti Sources
- Vela Region (26Al, 60Fe, Positron Annihilation)
- Cygnus Region (26Al, 60Fe, Positron Annihilation)

☆ Open Program in the AO Cycles

Specific Source Regions

- SN1987A/LMC
- Cas A
- Tycho
- SN1006
- Cygnus
- Carina
- Vela
- Orion
- Perseus
- Galactic Bulge
- Galactic Ridge
- Scutum Spiral Arm Region

☆ Key Programs

- Galactic Plane (511 keV; 26Al, 60Fe; 44Ti)
- "High-Latitude Region (511 keV reference)
- Special Pointing Strategies (511 keV)

Remarks: Judging the "Nucleosynthesis" Field

* Progress and Status Measurements are Difficult and Subjective

- **Choices of Objects and their Units
 - observation seconds / numbers of proposals / numbers of scientists & time / ???
 - publications / citations / invited talks / N&V / ???

© Choices of Normalizations / References

- all absolute numbers merely measure the size of a community
- compare to peer groups: other missions (CGRO / ASCA, XMM... / UVES-VLT / ???)
- compare to other INTEGRAL science objectives (uuuuuuhhhh...)
- compare different epochs / times / AO's

☆ My Choices

Questions Asked

- how do different nucleosynthesis projects compare?
- how did the return on investment evolve over the INTEGRAL mission?
- how does nucleosynthesis compare to other INTEGRAL science objectives?

FINTEGRAL Investments

- observing time per AO and nucleosynthesis proposals

Science Return

- refereed-journal publications
- refereed-paper citations

* Annotations and Caveat's

- This addresses Core Program only Indirectly (-> Proposals on same targets)
- **Others may take a different (and maybe better) approach

Accepted Nucleosynthesis Proposals

Prop_ID	PI	Title	ksec	Cat	
120125		To the bottom of the explosion forming Cas A: observing 44Ti and the hard X-ray emission	1500	Α	
	Knoedlseder	Probing core collapse: 44Ti and 60Co nucleosynthesis in SN 1987A	1500	Α	
120154	Knoedlseder	Identification and study of nucleosynthesis sources in the Carina region	1000	В	
120158	Hartmann	Mapping Galactic 60Fe synthesis in Centaurus-Circinus	2000	В	
220021	Knoedlseder	Identification and study of nucleosynthesis sources in the Carina	2000 2000	A A	
220027	Knoedlseder	A deep exposure of the Cygnus X region			
220030		Positron annihilation in the galactic disk	2000	Α	
220142	Vink	Ti-44 and hard X-ray continuum diagnostics of Cas A:	1500	Α	
220023	Kienlin	Deep exposure on GRO J0852-4642 "Vela Junior"	2000	В	
220103	Ballet	Hidden supernovae in the Carina arm	2000	В	
220112	Bykov	Observations of IC 443 with INTEGRAL: a Supernova Remnant	400	В	
220116	Diehl	Massive Stars of Orion OB1 and the ISM	3000	В	
220122	Kretschmer	Locating 26Al Sources in the Galaxy	2000	В	
220126	Decourchelle	Gamma-ray observations of Cas A and Tycho supernova	1500	В	
220150	Schanne	Deep survey of the Vela region for nucleosynthesis studies	2000	В	
320004	Schanne	Deep survey of the Vela region for nucleosynthesis studies	2000	Α	
320011	Weidenspointner	Low-mass X-ray binaries as sources of 511 keV line emission:	1500	Α	
320013	Weidenspointner	Galactic positron annihilation radiation: discriminating bulge, halo,	2000	Α	
320056		Probing the nature of Cas A's and Tycho's supernova explosions	2500	Α	
320062	Milne	Detecting Positron Annihilation Radiation and Hard X-ray Emission from Type Ia Supernova Remnan	2500	Α	
430000	Winkler	GC Region Key Program	2000	K	
420008	Diehl	Massive Stars of Orion OB1 and the ISM	2500	Α	
420021	Weidenspointner	Galactic positron annihilation radiation: proving the existence of	1500	Α	
420073	Sunyaev	Dissecting the Milky Way: Stellar Ridge, Cosmic Rays, Annihilation	4000	Α	
430012	Weidenspointner	Key project proposal: positron annihilation radiation from the Galactic center region		KA	
430045	Diehl	Nucleosynthesis Lines from the Inner Galaxy : 26AI,60Fe & 44Ti lines		KA	
532000	Knoedlseder	Nucleosynthesis and Annihilation Emission from Cygnus X		K	
520026	Weidenspointner	Determining the Galactic distribution of positron annihilation radiation by mid-latitude	2000	Α	
520064		X-ray and gamma-ray counterpart of the observed spallation activity in the Per OB2	1500	Α	
520071	Sunyaev	Dissecting the Milky Way II: Stellar Ridge, Cosmic Rays, Annihilation Radiation,	2000	Α	
520008	lyudin	Gamma-Ray Line Emission from the Superbubble	2000	В	
520067	Kienlin	A possible 44Ti excess in the Perseus OB 2 association?	1500	В	
530018	Weidenspointner	Key programme proposal: positron annihilation radiation from the	0	KA	
530042	Renaud	Search for young supernova remnants with INTEGRAL in the Galactic Centre regions	0	KA	
531003	Weidenspointner	Key programme proposal: positron annihilation radiation from	0	KA	
600000	Weidenspointner	Confirming the assymmetry of the positron annihilation emission from the inner disk of the Galaxy	2000	K	
632000	Knoedlseder	Nucleosynthesis and Annihilation Emission from Cygnus X	2000	K	
620059	Sunyaev	Dissecting the Milky Way III: Stellar Ridge, Cosmic Rays, Annihilation Radiation, Nucleosynthesis	2000	Α	
630010	Weidenspointner	Positron annihilation radiation from the Galactic bulge region	0	KA	
630036	Renaud	Search for young supernova remnants with INTEGRAL in the Galactic Center region	0	KA	
630046	Terrier	G1.9+0.3: constraining particle acceleration and nucleosynthesis in the youngest known Galactic S	0	KA	
631002	Weidenspointner	Positron annihilation radiation from the North Ecliptic Pole region	0	KA	
632022	Renaud	Search for young supernova remnants with INTEGRAL in the Cygnus X region	0	KA	
633035	Renaud	Search for young supernova remnants with INTEGRAL in the inner Galactic disk			
635004	Weidenspointner				

Nucleosynthesis Proposals: The Outcome

* Accumulated Observing Time

☆ Papers on Proposal's Science with PI as Co-Author, Refereed

					ksec	Papers			Ref1:		Ргор:
Prop_ID	PI	Title	ksec	Cat		specific		Ref1: Author		Year	Year
120125		To the bottom of the explosion forming Cas A: observing 44Ti and the hard X-ray emission	1500	Α	1500.40	1			NAR	2008	2002
	Knoedlseder	Probing core collapse: 44Ti and 60Co nucleosynthesis in SN 1987A	1500	Α	1500.40	0	0				2002
	Knoedlseder	Identification and study of nucleosynthesis sources in the Carina region	1000	В	0.00	0	0				2002
	Hartmann	Mapping Galactic 60Fe synthesis in Centaurus-Circinus	2000	В	509.65	0	0				2002
	Knoedlseder	Identification and study of nucleosynthesis sources in the Carina	2000	Α	2000.46	0	0				2003
	Knoedlseder	A deep exposure of the Cygnus X region	2000	Α	2000.13	1			A&A	2009	2003
220030		Positron annihilation in the galactic disk	2000	Α	1981.30	2			A&A	2006	2003
220142		Ti-44 and hard X-ray continuum diagnostics of Cas A:	1500	Α	1500.06	3			ApJ	2006	2003
	Kienlin	Deep exposure on GRO J0852-4642 "Vela Junior"	2000	В	0.00	0	0				2003
220103	Ballet	Hidden supernovae in the Carina arm	2000	В	2000.46	0	0				2003
220112	Bykov	Observations of IC 443 with INTEGRAL: a Supernova Remnant	400	В	691.00	0	2	Bykov	ApJ	2005	2003
220116	Diehl	Massive Stars of Orion OB1 and the ISM	3000	В	0.00	0	0				2003
220122	Kretschmer	Locating 26Al Sources in the Galaxy	2000	В	2576.60	1	8	Kretschmer	AdvSpRes	2006	2003
220126	Decourchelle	Gamma-ray observations of Cas A and Tycho supernova	1500	В	1500.06	2	2	Renaud	ApJ	2006	2003
220150	Schanne	Deep survey of the Vela region for nucleosynthesis studies	2000	В	0.00	0	0				2003
320004	Schanne	Deep survey of the Vela region for nucleosynthesis studies	2000	Α	2936.96	0	0				2004
320011	Weidenspointner	Low-mass X-ray binaries as sources of 511 keV line emission:	1500	Α	2374.70	1	6	Knödlseder	A&A	2005	2004
320013	Weidenspointner	Galactic positron annihilation radiation: discriminating bulge, halo,	2000	Α	1729.06	1	6	Knödlseder	A&A	2005	2004
320056	Vink	Probing the nature of Cas A's and Tycho's supernova explosions	2500	Α	2161.06	3	10	Renaud	ApJ	2006	2004
320062	Milne	Detecting Positron Annihilation Radiation and Hard X-ray Emission from Type Ia Supernova Remnan	2500	Α	2374.70	1	3	Kalemci	ApJ	2006	2004
430000	Winkler	GC Region Key Program	2000	K	2005.58	0	0	(several)			2005
420008	Diehl	Massive Stars of Orion OB1 and the ISM	2500	Α	2500.26	0	8	Diehl	NAR	2004	2005
420021	Weidenspointner	Galactic positron annihilation radiation: proving the existence of	1500	Α	1500.25	1	6	Knödlseder	A&A	2005	2005
420073	Sunyaev	Dissecting the Milky Way: Stellar Ridge, Cosmic Rays, Annihilation	4000	Α	3991.84	12	4	Sazonov	ExpAst	2005	2005
430012	Weidenspointner	Key project proposal: positron annihilation radiation from the Galactic center region	0	KA	0.00	0	6	Knödlseder	A&A	2005	2005
430045	Diehl	Nucleosynthesis Lines from the Inner Galaxy : 26AI,60Fe & 44Ti lines	0	KA	0.00	4	12	Diehl	Nat	2006	2005
532000	Knoedlseder	Nucleosynthesis and Annihilation Emission from Cygnus X	2000	K	1698.00	1	1	Martin	A&A	2009	2006
520026	Weidenspointner	Determining the Galactic distribution of positron annihilation radiation by mid-latitude	2000	Α	1782.64	0	6	Knödlseder	A&A	2005	2006
520064	Terrier	X-ray and gamma-ray counterpart of the observed spallation activity in the Per OB2	1500	Α	1306.10	0	0				2006
520071	Sunyaev	Dissecting the Milky Way II: Stellar Ridge, Cosmic Rays, Annihilation Radiation,	2000	Α	1372.41	0	12				2006
520008	lyudin	Gamma-Ray Line Emission from the Superbubble	2000	В	1983.03	0	0				2006
520067		A possible 44Ti excess in the Perseus OB 2 association?	1500	В	1306.10	0	0				2006
530018	Weidenspointner	Key programme proposal: positron annihilation radiation from the	0	KA	0.00	0	0	Knödlseder	A&A	2005	2006
	Renaud	Search for young supernova remnants with INTEGRAL in the Galactic Centre regions	0	KA	0.00	0	3	Renaud	ApJ	2006	2006
531003	Weidenspointner	Key programme proposal: positron annihilation radiation from	0	KA	0.00	1		Weidenspoint		2008	2006

"up to AO-5 (which is complete); Status Apr'09, Obs up to Rev 778 / Feb'09

Nucleosynthesis ToO's: No Luck yet

- [☞] SN2004dj
- **SN20085**
- (M. Leising)

Summary							Мрс	
	Date	Exposure	Target	Туре	Host	ref	Distance	Peculiarities
	Aug.03	300048	SN 2003gs type la	la-p	NGC 936	IAU 8171	16.6	Si lines weak, 11000 km/s; subluminous
	Aug.04	200032	SN 2004dj	II-P	NGC 2403	IAU 8377	3.1	
	Feb.08	552000	SN 2008S	II-n?	NGC 6946	CBET 1234	5.6	

INTEGRAL/SPI Science Contributions

☆ "Nucleosynthesis and Gamma-Ray Line Spectroscopy"
is a Major Science Field where SPI Results Contribute

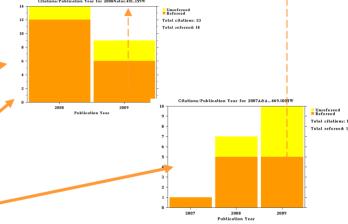
© Citation Status Snapshot for SPI Publications

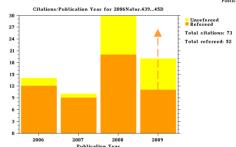
(ADS Paper Database)

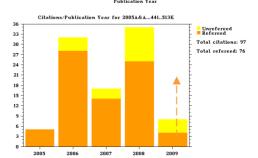
- Weekly Status Update, Fri Apr 17 05:11:22 2009

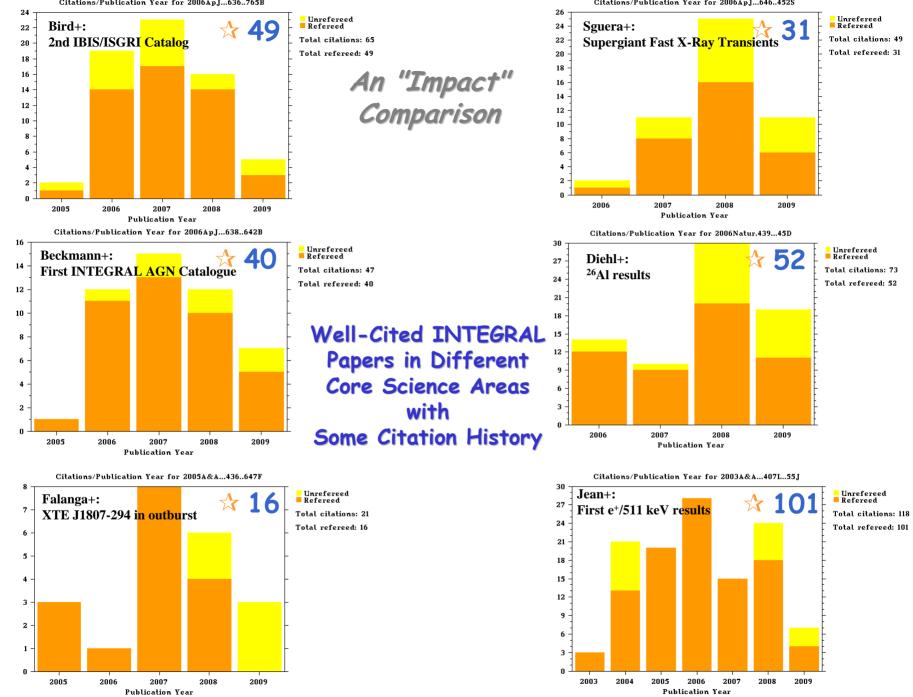
Complete Citation History till Apr'09

+SPL INTEGRAL - Most Cited

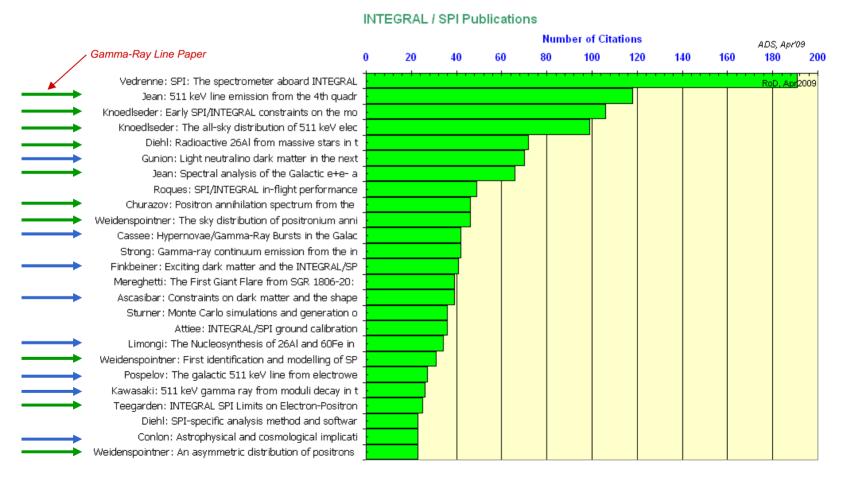

<u>2008Natur.451..159W</u>: Weidenspointner,+: An asymmetric distribution of positrons in the Galactic disk revealed by gamma-rays


2007A&A...469.1005W: Wang,+: SPI observations of the diffuse ⁶⁰Fe emission' in the Galaxy


2006ApJ...647..483L: Limongi,+: The Nucleosynthesis of ²⁶Al and ⁶⁰Fe in Solar Metallicity Stars Extending in Mass from 11 to 120 M_{solar}: The Hydrostatic and Explosive Contributions


2006Natur.439...45D: Diehl,+: Radioactive ²⁶Al from massive stars in the Galaxy

2005A&A...441..513K: Knödlseder,+: The all-sky distribution of 511 keV electron-positron annihilation emission



INTEGRAL/SPI Science Contributions

☆ "Nucleosynthesis and Gamma-Ray Line Spectroscopy"
is a Major Science Field where SPI Results Contribute

© Citation Status
for SPI Publications

(ADS Paper Database; Apr 2009)

Status of Nucleosynthesis with INTEGRAL

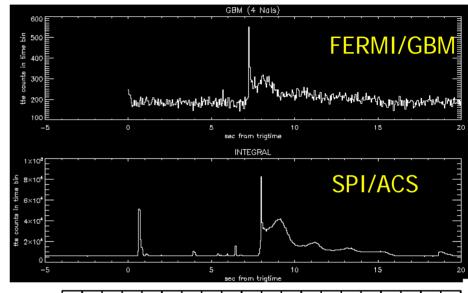
- Nucleosynthesis is a Key Science Turf for INTEGRAL
 - Unique Observations and Data
 - Diversity of Objects & Objectives
- * INTEGRAL's Nucleosynthesis Results Have Major Impact
 - Fewer Papers than other INTEGRAL Science Areas
 - Among the Most-Cited INTEGRAL Papers
 - *External Community Attention Obtained after ~3 years
- ☆ Large Observing Investments Appear Justified
 - Several Hallmark Publications, Nucleosynthesis-Line Legacy Results
 - Broad Interests
- ☆ Typical Results Appear after ~3 Years or More
 - Major Discoveries Have Been Reported
 - Refinement Studies Will Address More Subtle Astrophysics Issues
 - Spatially-Resolved Spectroscopy for Diffuse Emissions
- -> Line Astronomy...

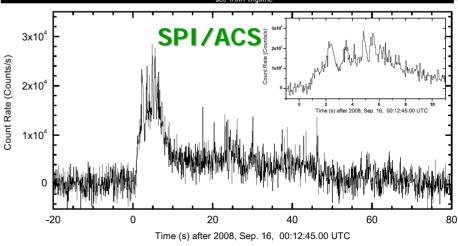
- Upper Limits for Key/Candidate Sources/Regions

-> Constrain Model Space...

- Expect Future Papers to Address Expert-Community
- Some Observations Have Not Yet Been Summed Up (and Should)

other Recent Science from SPI's AntiCoincidence


Most-sensitive ~MeV gamma-ray detector for all-sky monitoring


☆ AXP 1E1547.0-5408

- GCN 8841, Mereghetti+ Jan 22 2009
- **ACS recorded two bright and long bursts on from the recently reactivated AXP 1E1547.0-5408.
- Pulsations at NS period (2.1 s) are clearly visible

☆ GRB 080916C

- Abdo+ Science 2009; Greiner+ A&A 2009
- Brightest-Ever GRB (~4 10^{52} erg in gamma-rays) at z=4.35, with GeV Emission
- *ACS recorded time variability at <100ms time scale
 - -> Lorentz Factor Γ >1000 (in conflict with afterglow-derived Γ ~80-200)

