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Abstract
This note sets forth the main technical aspects of the HTPM project, to release ac-
curate proper motions of the Hipparcos stars few months after Gaia launch, from the
combination of early Gaia astrometry with Hipparcos positions acquired 21 years be-
fore. The interest of the project in term of science and as a communication tool is
recalled in the general presentation. Accurate expressions to obtain the proper mo-
tions from two positions are derived and shown to meet the accuracy requirements,
even for the most difficult nearby and fast-moving stars. Results based on a realistic
simulation built upon the Hipparcos Catalogue are presented and discussed. One finds
that the proper motion in right-ascension can be ascertained with an accuracy (RMS
of the true error) of 65 µas/yr, while this is as low as 48 µas/yr in declination. A
simple error propagation model allows also to evaluate these uncertainties from only
known quantities during the real exploitation. Provided the radial velocity of the 2000
nearest stars is known to within 1 to 2 km/s, the modelling error can be reduced below
10 µas/yr for these stars. It is shown that the issue is not critical for stars with paral-
laxes below 20 mas and that the required radial velocities are very likely available in
existing databases.
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1 Introduction

All the Hipparcos stars to be observed by Gaia will be extremely bright, with rather constant
astrometric precision of the order of 35 µas for the along scan accuracy of a single observation
(9 CCDs of a FOV transit). Even though the across scan accuracy is lower by a factor around
five JDB-053, this means that a single observation with a moderately accurate attitude could
translate quickly into an astrometric apparent direction with an accuracy as good as one mas.
Therefore after few months of observations it will be possible to have a second epoch position of
most of the Hipparcos stars with an accuracy not much different from the catalogue itself when
it was published, and in any case much better than the propagated position using the 1991.25
Hipparcos proper motions. Combining these two ∼ 1 mas accurate positions will allow us to
derive a new proper motion at either epoch with an accuracy of the order of 1 mas/21 years≈ 50
µas/yr. However this can only be achieved if one can determine the barycentric position of the
Hipparcos stars, instead of the instantaneous apparent direction, from the few Gaia observations
obtained during the first few months. The positions provided very directly by Gaia over a very
short period differ from the barycentric positions essentially by the parallactic effect, since
they are already corrected for the aberration. One can then take the Hipparcos parallaxes to
derive barycentric positions with an accuracy of the order or smaller than the Hipparcos parallax
accuracy, typically 1 mas.

This is the goal of the HTPM (Hundred Thousands Proper Motions) project submitted to the
GST in May 2009. The GST approved the principle of this quick and very specific release,
which must be turned into a DPAC proposal in CU3. This is scientifically valuable provided
the release takes place early in the mission, before Gaia could improve these results with two
years of data, that is to say not before 2.5 years after launch. It will rejuvenate immediately
the Hipparcos Catalogue, since with this update the aging will be much slower. During the
intervening years before the first release of a Gaia-only solutions, new investigations could
be conducted on the galactic rotation using proper motions 20 times better than Hipparcos’.
Also, astrometric reduction using Hipparcos stars for reference with their propagated positions
in 1990 or 2000, could be done anew with much more accurate positions. Publishing such a
result within one year after the launch will be a vivid proof that Gaia is working and could be
easily publicised, given the prestige of Hipparcos in the astronomical community. This would
be a beautiful and symbolic bridge between the two generations of ESA astrometry missions
and a true showcase to display European leadership in this field. Finally given the capabilities
and current schedules of other astrometric missions like NanoJasmine in Japan or J-MAPS in
the US, this is also presented as a major objective of these smaller missions to combine their
astrometric solution in 2012 or 2013 with Hipparcos, in order to get the best proper motions ever
produced. So if the Gaia community can do it quickly with the early observations collected by
the satellite, this must be done. This is an appealing goal demanding little extra effort atop of
the normal data processing.

It is important to notice that producing these proper motions with the early Gaia positions,
should not be mistaken for a Gaia data release: these positions owe very little, if anything,

Technical Note OCA 5



CU3
HTPM
GAIA-C3-TN-OCA-FM-040-01

to Gaia global astrometric solution, and the Gaia accuracy is in no way reflected into these
positions. The main source of noise comes from the Hipparcos parallax uncertainty, used to
refer Gaia apparent positions with a ∼ 40µas accuracy along the scan direction, to barycentric
positions with something between 0.5 to 1 mas accuracy. No Gaia derived parallaxes will be
used in this process. In fact the full Gaia solution, for many more stars, will supersede the
HTPM solution two years later, although comparing proper motions derived over a 5- and 20-
year periods will be very valuable to detect unseen companions.

The GST presentation outlined the overall principles of the combination of Gaia positions with
Hipparcos’ and showed that it could be realised from only six months of data, when every star
have been observed at least one time and many at least at two different epochs. Four month
would be too short a period for this purpose. This note goes deeper into the technicalities of the
project by discussing the determination of proper motions from two statistically independent po-
sitions, accurate to the milliarcsec level and separated by 21 years. This fortunate circumstance
shows up for the first time in the history of astronomy and much care must be exercised in the
modelling to avoid losing accuracy by relying on too approximate algorithms, not appropriate
for nearby stars.

The document is organised into two largely independent parts. In the first part one shows the
need for a precise definition of the proper motion compatible with high astrometric accuracy
at end epochs, leading to the derivation of practical algorithms to compute the proper motion
components from two well separated positions, in particular for nearby and fast moving stars.
In the second part a full simulation is developed to establish the performances expected from
the combination of the Hipparcos catalogue and the Gaia positions measured during the first
few months of the mission, using Hipparcos parallaxes to derive the barycentric positions. The
results are analysed in detail, in particular to test the validity of the algorithms obtained in the
first part when used with problem stars.
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2 Notations

TABLE 1: Various notations used throughout this document

Symbol Meaning Units

α0, δ0 spherical coordinates of a star at epoch t0 radians, degrees
α, δ spherical coordinates of a star at time t radians, degrees
p unit vector in natural frame in the direction of increasing α -
q unit vector in natural frame in the direction of increasing δ -
r distance to the star km, pc
$ stellar parallax mas, µas
V velocity vector of the star km/s
Vr radial velocity of the star km/s
W velocity vector in angular unit (V/r) mas/yr, µas/yr
W |W| mas/yr, µas/yr
Wr radial velocity of the star in angular unit (Vr/r) mas/yr, µas/yr
W⊥ proper motion vector or on-the sky annual motion mas/yr, µas/yr
u(t) unit vector in the direction of a star at time t -
u0 unit vector in the direction of a star at first epoch -
µr same as Wr: proper motion in radial direction mas/yr, µas/yr
µα proper motion component at t0 in α (dα

dt
cos δ)t=t0 mas/yr, µas/yr

µδ proper motion component at t0 in δ (dδ
dt

)t=t0 mas/yr, µas/yr
µ same as W⊥ mas/yr, µas/yr
µ (µ2

α + µ2
δ)

1/2 mas/yr, µas/yr
∆α? (α− α0) cos δ0 = ∆α cos δ0 mas/yr, µas/yr
∆δ δ − δ0 mas/yr, µas/yr
a same as ∆α cos δ0 mas/yr, µas/yr
d same as ∆δ mas/yr, µas/yr
ā ∆α cos δ (δ instead of δ0) mas/yr, µas/yr
x, y tangent plane coordinates (any projection)
Γkij Christoffel symbol of second kind -
RG Distance to galactic centre kpc
MG Mass of the Galaxy solar mass
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Part I

The Mathematical Framework

3 Kinematical model

3.1 General principle

Relating the sky directions of a star at two epochs t0 and t1 is achieved through a propagation
model (also called epoch transformation) that describes the star path between its initial position
at t0 to its final position at t1. For single stars, there has been so far no observation showing
departure from the rectilinear motion in space shown in Fig. 1. The initial direction and the
velocity vector V define the plane in which the motion takes place. The fact that the motion
lies in a plane has an interesting consequence: the intersection of the plane going through the
origin O with the unit sphere centred at O is a great circle, meaning that the projected motion
takes place on a great circle of the sphere, a fact not obvious otherwise.

This simple kinematical model neglects the possible curvature of the motion in space due to the
acceleration caused by the whole Galaxy or the gravitational pull by neighbouring stars. One
can easily assess its validity with orders of magnitude. From the galactic rotation motion, one
has a tidal acceleration (differential acceleration of the star relative to the Sun, since the solar
system is also affected by the galactic potential) roughly equal to

GMG

R2
G

r

RG

where MG is the mass of the galactic matter inside the solar system, RG the distance to the
galactic centre and r the distance to the star. This acceleration is directly proportional to the
star distance, meaning its contribution in angular unit is constant, equal to GMG/R

3
G ∼ 3 ×

10−4µas yr−2. Now the average separation between two stars in the solar vicinity is about 2.5
pc, giving an angular gravitational acceleration by nearby stars of 2GM�/r

3 ∼ 10−4µas yr−2.
Therefore even after 20 years, the interval between Hipparcos and Gaia, the contribution of
these accelerations to the space proper motion is negligibly small, less than 0.01 µas/yr.
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u0
u(t)

M

N

V

O

FIGURE 1: Kinematic model for the motion of a single star. This is a uniform rectilinear
motion in space with velocity vector V.

Remark: It is important to stress that the possibility to ignore the acceleration applies only to
the 3D motion, and not to the projected angular motion, for which terms in t2 are not negligible
and result from the projection on the celestial sphere and not from a true accelerated motion
in space. Expressing the space velocity or acceleration in angular units is not the same as
converting the velocity into the angular proper motion on a great circle. The choice of the
unit is just a convenient rescaling using the distance at the first epoch as unit length, without
changing the nature of the motion in the euclidian space. On the other hand the projection ends
up with a different motion of a fictitious object (the projection of the star) moving on a curved
manifold with only two dimensions. No wonder that the kinematics might be very different.

3.2 The propagation equation

Based on this rectilinear motion we have the very simple propagation model,

ON(t) = OM + V t (1)

relating the initial star position vector at the initial epoch (here t0 = 0) to the position at any
time t. Putting

|OM| = r (2)
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for the distance at the first epoch and using respectively u0 and u for the unit vectors in the
direction of the star at t0 = 0 and t, one has

ON

r
= u0 +

V

r
t (3)

and then with W = V/r, to express the velocity in angular unit,

ON

r
= u0 + W t (4)

and finally with W = |W|,

u(t) =
u0 + W t

|u0 + W t|

= (u0 + W t)
(
1 + 2u0 ·W t+W 2 t2

)−1/2

(5)

Eq. (5) is the exact form of the propagation model giving the unit direction vector at time t
without approximation, beyond the fact that the 3-D motion is uniform on a straight line. One
can see that it depends on the three components of the velocity scaled by the distance, that is to
say on the three components of the angular proper motion, including that in the radial direction.

3.3 Approximate expansions of the model

The small term in (5) is Wt, of the order of the angular displacement over the interval t − t0.
By expanding to third order of the small parameter, one gets

u(t) = u0 +
[
W − (u0 ·W) u0

]
t

+
[(

3(u0 ·W)2 −W 2
)
u0 − 2(u0 ·W) W

] t2
2

+
[(

3(u0 ·W)W 2 − 5(u0 ·W)3
)
u0 +

(
3(u0 ·W)2 −W 2

)
W
]t3

2

(6)

It is convenient to express W with its radial and sky components as,

W = W⊥ +Wr u0 (7)

where Wr = vr/r is the radial proper motion. Then,

u(t) = u0 + W⊥ t

+
[(

3W 2
r −W 2

)
u0 − 2Wr W

] t2
2

+
[(

3WrW
2 − 5W 3

r

)
u0 +

(
3W 2

r −W 2
)
W
]t3

2

(8)
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which can be further simplified by expressing each order with a radial and along-sky compo-
nents as,

u(t) = u0 + W⊥ t

−
[
W 2
⊥u0 + 2Wr W⊥

] t2
2

+
[
2WrW

2
⊥u0 +

(
2W 2

r −W 2
⊥
)
W⊥

]t3
2

(9)

The termWr W⊥ in t2 is the so-called perspective effect with its two components µα vr/r, µδ vr/r.

α

δ

i

j

k

X

Y

Z

p

q r

FIGURE 2: Local triad in the tangent plane associated to a unit direction vector.

Eq. 9 can be projected on the local tangent frame [p,q] (Fig. 2) to relate the components of the
displacement between two epochs to that of the proper motion components at the first epoch.
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This leads to,

(u(t)− u0) · p = µα t− µr µα t2 + (µ2
r − µ2/2)µα t

3 +O(t4) (10a)

(u(t)− u0) · q = µδ t− µr µδ t2 + (µ2
r − µ2/2)µδ t

3 +O(t4) (10b)

where µα = W⊥ ·p = α̇(t=t0) cos δ0, µδ = W⊥ ·q = δ̇(t=t0), µr = Wr = vr/r and µ2 = µ2
α+µ2

δ

(only the tangent plane components).

It is convenient for the following to rewrite Eqs. 10 in a slightly different form as,

(u(t)− u0) · p = (1− µr t)µα t+ (µ2
r − µ2/2)µα t

3 +O(t4) (11a)

(u(t)− u0) · q = (1− µr t)µδ t+ (µ2
r − µ2/2)µδ t

3 +O(t4) (11b)

m
O
z

u0

u1

u1 – u0

x

M

w

FIGURE 3: Relationship between the space motion OM(t) and the apparent motion Om(t)
seen on the unit sphere. While M and m are related by a central projection, m is linked to the
coordinate x by a parallel projection and so are the spherical coordinates of m to the cartesian
coordinates of u(t)− u0.

The left-hand sides of (11) are just the two cartesian coordinates of u(t)−u0 in the local frame
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along p and q (Fig. 2) and this is then rewritten as,

x = (1− µr t)µα t+ (µ2
r − µ2/2)µα t

3 +O(t4) (12a)

y = (1− µr t)µδ t+ (µ2
r − µ2/2)µδ t

3 +O(t4) (12b)

which is the propagation model to third order in the plane of the sky. In this form this is
the direct model yielding the star cartesian coordinates (x, y) in the local frame at t from the
three components of the velocity vector W or, equivalently, that of the space proper motion
µα, µδ, µr. The goal now is to invert this model and to solve for µα, µδ from the observed x, y,
assuming µr to be a known quantity, or at least sufficiently well known for this purpose, given
the uncertainties in x and y.

It happens that the inversion to the third order is straightforward thanks to the factoring of the
second order term with (1− µr t).

µα t =
1

1− µr t

[
x−

(
µ2
rt

2 − x2 + y2

2

)
x

]
(13a)

µδ t =
1

1− µr t

[
y −

(
µ2
rt

2 − x2 + y2

2

)
y

]
(13b)

Then by expanding the first factor in power of µr t one has the good surprise to end up with
very simple expressions as the terms in t2 cancel out,

µα t = x(1 + µr t) +
x2 + y2

2
x (14a)

µδ t = y(1 + µr t) +
x2 + y2

2
y (14b)

3.3.1 Orders of magnitude

One considers a fast moving nearby star, with Vr ∼ V⊥ = 50 km/s and a distance of 2 pc. This
gives W = V/r ∼ 5′′/yr or 25 µrad/yr. The magnitudes of the different orders are given in
Table 2. For the combination of Hipparcos and Gaia preliminary solution, the third order term
is not required. However we will see below that this is not perfectly true for stars in the polar
regions.

3.4 Relation to spherical coordinates

What is missing at this stage is the change of the spherical coordinates α−α0 and δ−δ0 between
the two positions of the star. This is needed to relate the components of the proper motion to
the observable quantities ∆α cos δ0 and ∆δ. In the predictor mode, or explicit mode, the prop-
agation model, allows to compute the position of the star at t once the three components of the
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TABLE 2: Orders of magnitude for the proper motion modelling for a star at 2pc with a velocity
of 50 km/s.

Term in W Amplitude tk Over 20 years

W 5′′/yr t 100 ′′

W 2 125 µas/yr2 t2 50 mas

W 3 3× 10−3 µas/yr3 t3 25 µas

proper motion are known. In the inverse mode, and using only two positions at two epochs, one
can inverse (11) and solve for µα and µδ, provided µr is known. With more observations, and
this is not the purpose of the HTM project, the three components could be retrieved, meaning
the radial velocity could be extracted from astrometric measurements without spectroscopy, or
form other combinations with two independent determinations of proper motions as shown by
Dravins and co-workers (Dravins et al. (1999)). This is clearly a work to be done later with the
complete Gaia solution of the Hipparcos stars.

As said earlier, x, y in (12) are the cartesian coordinates at t in the tangent plane of the star
direction relative to its direction at t = 0. The point of coordinates x, y in that plane is related
to the star direction on the unit sphere by a parallel projection (named orthographic projection
by map makers) from the sphere to the plane. This projection should not be mistaken for the
more usual projection used in photographic plate astronomy which is a central or gnomonic
projection. The two are very similar, identical to second order, but not to higher orders. The
difference is clearly shown in Fig. 4, with the gnomonic projection on the left and the ortho-
graphic projection on the right. The central projection is the imaging realised by an ideal optical
instrument mapping a region of the celestial sphere on a plane, while the parallel projection is
how we see a planetary surface at large distance. For the purpose of comparison, I have derived
the relevant trigonometric formulas to third order of the small displacement for each of the two
projections. The details can be found respectively in Appendix A and B.

Inserting equations (37) in (14) yields the expressions of the proper motion components µα, µδ
as a function of the observed displacement between two epochs and of µr. The algebra is
straightforward and gives,

µα t = ∆α?

+ ∆α? µr t− tan δ0 ∆α? ∆δ

+
3 cos2 δ0 − 1

6 cos2 δ0
(∆α?)3 − tan δ0 ∆α? ∆δ µrt

(15)
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gnomonic or central projection

θtan=OM

m

M

θ

O

orthographic or parallel projection

θsin=OM

m

M

θ

Otangent plane tangent planex

y

x

y

FIGURE 4: Comparison of the central (gnomonic) and parallel (orthographic) projections. The
former corresponds to the standard photographic plate projection used in photographic or CCD
astrometry. The latter is relevant here to deal with the link between the spatial motion in 3-D
and the change of spherical coordinates. The two projections are identical to second order of
|OM| but not to higher orders.

µδ t = ∆δ

+ ∆δ µr t+
1

2
tan δ0 (∆α?)2

+
2 cos2 δ0 − 1

2 cos2 δ0
(∆α?)2 ∆δ +

1

2
tan δ0 (∆α?)2 µrt+

∆δ3

3

(16)

where the first, second and third order terms appear on different lines. In the following section
numerical comparisons are done over the different orders. Equations (15) and (16) are probably
given here for the first time (or better said, I know of no reference for them), since this level of
approximation has never been needed in the past. They are sufficiently important to justify a
second and truly independent derivation which is given in Appendix C, which leads to the same
result and then supports my earlier using of the parallel projection.

Although I have reached now the goal set in the start of this section, one can take advantage of
the formulas obtained in the parallel projection, to write down the predictor model to the third
order of the proper motion. A parametric form is given with the set of equations (12) giving
x, y as a function of the three components of the proper motion (including the radial one) and
then equations (38) giving ∆α cos δ0 and ∆δ as a function of x, y. Numerically, this solves the
problem at this level of approximation. Now combining these equations together allows one to
eliminate the x and y and obtain explicit expressions to compute ∆α cos δ0 and ∆δ at t. This is
just an algebraic substitution which yields up to t3 to,
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∆α cos δ0 = µα t

− [µr µα − tan δ0 µα µδ] t
2

+

[
µ2
r µα − 2 tan δ0 µr µα µδ + tan2 δ µα µ

2
δ −

µ3
α

3 cos2 δ0

]
t3

(17)

∆δ = µδ t

−
[
µr µδ +

tan δ0
2

µ2
α

]
t2

+

[
µ2
r µδ + tan δ0 µr µ

2
α −

µ2
α µδ

2 cos2 δ0
− µ3

δ

3

]
t3

(18)

Again exactly the same expressions are obtained by the alternate derivation given in Appendix
C.

3.5 Inversion of the full model

In the numerical applications I use also the inversion of the full model by numerical methods,
which suits perfectly the needs of the HTPM project, but without the insight provided by the
analytical inversions. Equations (4) or (5) can be seen as explicit expressions like,

α(t) = Fα(α0, δ0, µα, µδ, µr, t) (19a)

δ(t) = Fδ(α0, δ0, µα, µδ, µr, t) (19b)

to compute the right ascension and declination of the star at any time from the kinematical
model. Taken as functions of µα, µδ these are two non-linear equations that can be solved for
these quantities when all the other parameters are known. Numerically the solution can be
obtained with a Newton-Raphson fixed point iteration starting with the initial values,

µα = ∆α cos δ0/t (20a)

µδ = ∆δ/t (20b)

and then solving repeatedly the linear system for (µα)n and (µδ)n,

α(t)− αn−1(t) =
∂Fα
∂µα

[(µα)n − (µα)n−1] +
∂Fα
∂µδ

[(µδ)n − (µδ)n−1] (21a)

δ(t)− δn−1(t) =
∂Fδ
∂µα

[(µα)n − (µα)n−1] +
∂Fδ
∂µδ

[(µδ)n − (µδ)n−1] (21b)
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where n is the iteration number and αn−1(t), δn−1(t) are computed with (19) with (µα)n−1 and
(µδ)n−1, the solution of the inversion at the (n − 1)th iteration. The convergence is quadratic
and only two or three are needed to reach the computer numerical precision. In practice one
works always with (α(t)−α0) cos δ0 and δ(t)− δ0 by changing the definition of Fα and Fδ ac-
cordingly. This has been implemented into a small fortran subroutine and the partial derivatives
are numerically evaluated at each iteration.
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4 Numerical illustrations

A fairly simple simulation has been created to check and illustrate the validity of the different
inversion models in the evaluation of the proper motion components when the positions are
known at two epochs. The goal is (i) to test the errors resulting from the truncation of the
models to first, second or third order, by comparison to the exact solution and (ii) to assess its
sensitivity to an approximate knowledge of the radial proper motion µr. Since this will affect
only nearby stars from which Hipparcos parallaxes are known to one or two percent, the radial
velocity is the most likely source of uncertainty in µr for the HTPM project.

A set of stars is generated at different declinations, with specified values for the proper motion
in α and δ, for the parallax and for the radial velocity, together with a time interval between
the two epochs. As no problems are expected for the distant and slow moving stars, the tests
concentrate only on the the nearby stars, where the model truncation should be the most visible.
A run consists of computing the position at the second epoch with the full kinematical model
given in equation (5), and then solve for the proper motion with the different models, using the
true ∆α cos δ0 and ∆δ as input. In the first set of tests, the µr value used for the processing is
the same as the one used for the simulation, while an offset is applied in other runs, to simulate a
poor knowledge. Results are presented in a series of table with similar layout, but the units used
in the columns may change from table to table to adjust to the magnitude of the numbers. Units
are always given in the columns headers. The caption of each table describes the content of the
simulation and the goal of the test. The columns labelled first, second and third order refer to
equations (15)-(16) and to the truncation level. The full inversion is the exact solution of the
propagation equations of Sec. 3.5. Computations have been done in quadruple precision (128
bits for the reals) to avoid accuracy loss from differences between nearly identical numbers.

TABLE 3: Grid of simulations

n t $ µα µδ Vr Noise
yr mas mas/yr mas/yr km/s N or km/s

1 100 500 2000 2000 50 N

2 20 500 2000 2000 50 N

3 20 50 100 100 50 N

4 20 500 2000 2000 50 5 km/s

5 20 500 2000 2000 50 1 km/s

6 20 500 2000 2000 20 2 km/s

7 20 50 100 100 50 5 km/s
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TABLE 4: Determination of the proper motion components at the first epoch from positions
at the first and second epochs, with a 100-year interval. The columns give the error between
the computed and the true annual proper motion for each component. Reference parameters :
$ = 500mas, µα = µδ = 2000mas/yr, vr = 50km/s.

1st order 2nd order 3rd order full inversion
δ mas/yr µas/yr 0.001µas/yr 0.001µas/yr
◦ µα µδ µα µδ µα µδ µα µδ

85.0 17.1 -16.3 97.7 94.0 -333.0 435.4 0.00 0.00

75.0 2.1 -8.7 22.2 2.3 1.7 35.4 0.00 0.00

60.0 -1.8 -6.8 8.9 -3.0 2.9 4.5 0.00 0.00

45.0 -3.2 -6.1 4.6 -3.1 1.0 -1.0 0.00 0.00

30.0 -4.0 -5.7 2.3 -2.7 -0.2 -2.9 0.00 0.00

15.0 -4.6 -5.4 0.7 -2.2 -1.0 -3.7 0.00 0.00

0.0 -5.1 -5.1 -0.6 -1.6 -1.6 -4.0 0.00 0.00

-15.0 -5.6 -4.8 -1.9 -0.8 -2.1 -3.9 0.00 0.00

-30.0 -6.2 -4.5 -3.4 0.2 -2.5 -3.5 0.00 0.00

-45.0 -7.0 -4.1 -5.2 1.8 -2.6 -2.2 0.00 0.00

-60.0 -8.4 -3.4 -8.2 5.5 -1.3 1.9 0.00 0.00

-75.0 -12.3 -1.5 -14.7 20.5 17.1 23.2 0.00 0.00

-85.0 -27.0 5.8 -16.9 146.1 513.0 187.7 0.00 0.00

The most extreme case (not to be met in practice), with nearby and high-velocity stars with a
100-year timespan. One shows clearly the importance of the second order terms in the propa-
gation modelling, the near exact solution with third order terms, with the exception of the polar
zones. The exact numerical solution converges everywhere.
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TABLE 5: Determination of the proper motion components at the first epoch from positions
at the first and second epochs, with a 20-year interval. The columns give the error between
the computed and the true annual proper motion for each component. Reference parameters :
$ = 500mas, µα = µδ = 2000mas/yr, vr = 50km/s.

1st order 2nd order 3rd order full inversion
δ mas/yr µas/yr 0.001µas/yr 0.001µas/yr
◦ µα µδ µα µδ µα µδ µα µδ

85.0 3.4 -3.2 3.9 3.7 -2.6 3.4 0.00 0.00

75.0 0.4 -1.7 0.9 0.1 0.0 0.3 0.00 0.00

60.0 -0.4 -1.4 0.4 -0.1 0.0 0.0 0.00 0.00

45.0 -0.6 -1.2 0.2 -0.1 0.0 0.0 0.00 0.00

30.0 -0.8 -1.1 0.1 -0.1 0.0 0.0 0.00 0.00

15.0 -0.9 -1.1 0.0 -0.1 0.0 0.0 0.00 0.00

0.0 -1.0 -1.0 0.0 -0.1 0.0 0.0 0.00 0.00

-15.0 -1.1 -1.0 -0.1 0.0 0.0 0.0 0.00 0.00

-30.0 -1.2 -0.9 -0.1 0.0 0.0 0.0 0.00 0.00

-45.0 -1.4 -0.8 -0.2 0.1 0.0 0.0 0.00 0.00

-60.0 -1.7 -0.7 -0.3 0.2 0.0 0.0 0.00 0.00

-75.0 -2.5 -0.3 -0.6 0.8 0.1 0.2 0.00 0.00

-85.0 -5.4 1.2 -0.7 6.0 4.2 1.5 0.00 0.00

Very nearby and high-velocity stars with a 20-year timespan, corresponding to the Hipparcos-
Gaia case. One sees clearly the importance of the second order terms in the modelling, which
meets the needs of the HTPM project everywhere. In practice the exact numerical solution is
the method one should apply, given its performance and its fast convergence.
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TABLE 6: Determination of the proper motion components at the first epoch from positions at
the first and second epochs, with a 20-year interval. The columns give the error between the
computed and the true annual proper motion for each component. Reference parameters are
less extreme than in the previous tables : $ = 50mas, µα = µδ = 100mas/yr, vr = 50km/s.
Warning: first order column now in µas/yr instead of mas/yr and second in 0.001µas/yr.

1st order 2nd order 3rd order full inversion
δ µas/yr 0.001µas/yr 0.001µas/yr 0.001µas/yr
◦ µα µδ µα µδ µα µδ µα µδ

85.0 6.0 -10.7 0.8 0.3 0.0 0.0 0.00 0.00

75.0 -1.5 -6.9 0.2 0.0 0.0 0.0 0.00 0.00

60.0 -3.4 -6.0 0.1 0.0 0.0 0.0 0.00 0.00

45.0 -4.1 -5.6 0.0 0.0 0.0 0.0 0.00 0.00

30.0 -4.6 -5.4 0.0 0.0 0.0 0.0 0.00 0.00

15.0 -4.9 -5.2 0.0 0.0 0.0 0.0 0.00 0.00

0.0 -5.1 -5.1 0.0 0.0 0.0 0.0 0.00 0.00

-15.0 -5.4 -5.0 0.0 0.0 0.0 0.0 0.00 0.00

-30.0 -5.7 -4.8 0.0 0.0 0.0 0.0 0.00 0.00

-45.0 -6.1 -4.6 -0.1 0.0 0.0 0.0 0.00 0.00

-60.0 -6.8 -4.3 -0.1 0.1 0.0 0.0 0.00 0.00

-75.0 -8.7 -3.3 -0.2 0.1 0.0 0.0 0.00 0.00

-85.0 -16.2 0.4 -0.4 0.9 0.0 0.0 0.00 0.00

A representative intermediate Hipparcos star with a 20-year timespan, corresponding to the
Hipparcos-Gaia case. Second order terms are needed to retrieve the proper motion without
modelling error. In practice the exact numerical solution is the method one should apply.
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TABLE 7: Determination of the proper motion components at the first epoch from positions
at the first and second epochs, with a 20-year interval when the radial velocity used in the
processing is wrong by 5km/s. The columns give the error between the computed and the
true annual proper motion for each component. Reference parameters for the simulation :
$ = 500mas, µα = µδ = 2000mas/yr, vr = 50km/s, but vr = 55km/s used in the analysis.
Warning: all columns now in mas/yr

1st order 2nd order 3rd order full inversion
δ mas/yr mas/yr mas/yr mas/yr
◦ µα µδ µα µδ µα µδ µα µδ

85.0 3.4 -3.2 0.1 0.1 0.1 0.1 0.10 0.10

75.0 0.4 -1.7 0.1 0.1 0.1 0.1 0.10 0.10

60.0 -0.4 -1.4 0.1 0.1 0.1 0.1 0.10 0.10

45.0 -0.6 -1.2 0.1 0.1 0.1 0.1 0.10 0.10

30.0 -0.8 -1.1 0.1 0.1 0.1 0.1 0.10 0.10

15.0 -0.9 -1.1 0.1 0.1 0.1 0.1 0.10 0.10

0.0 -1.0 -1.0 0.1 0.1 0.1 0.1 0.10 0.10

-15.0 -1.1 -1.0 0.1 0.1 0.1 0.1 0.10 0.10

-30.0 -1.2 -0.9 0.1 0.1 0.1 0.1 0.10 0.10

-45.0 -1.4 -0.8 0.1 0.1 0.1 0.1 0.10 0.10

-60.0 -1.7 -0.7 0.1 0.1 0.1 0.1 0.10 0.10

-75.0 -2.5 -0.3 0.1 0.1 0.1 0.1 0.10 0.10

-85.0 -5.4 1.2 0.1 0.1 0.1 0.1 0.10 0.10

Very nearby and high-velocity stars with a 20-year timespan, corresponding to the Hipparcos-
Gaia case. In this case a noise is added to account for the approximate knowledge of the radial
velocity. There is a 10% error, amounting here to 5 km/s. The first order model error is larger
than the error resulting from the radial velocity and is similar to 2nd simulation above. Then
in all other cases, the final error is about 100 µas/yr in the proper motion. For these rather
extreme stars, the error in vr could be the major source of uncertainty in the determination of
the Hipparcos proper motions using Gaia positions.
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TABLE 8: Determination of the proper motion components at the first epoch from positions
at the first and second epochs, with a 20-year interval when the radial velocity used in the
processing is wrong by 1km/s. The columns give the error between the computed and the
true annual proper motion for each component. Reference parameters for the simulation :
$ = 500mas, µα = µδ = 2000mas/yr, vr = 50km/s, but vr = 51km/s used in the analysis.
Warning: first column in mas/yr, others in µas/yr.

1st order 2nd order 3rd order full inversion
δ mas/yr µas/yr µas/yr µas/yr
◦ µα µδ µα µδ µα µδ µα µδ

85.0 3.4 -3.2 24.4 24.1 20.4 20.4 20.44 20.44

75.0 0.4 -1.7 21.3 20.5 20.4 20.4 20.44 20.44

60.0 -0.4 -1.4 20.8 20.3 20.4 20.4 20.44 20.44

45.0 -0.6 -1.2 20.6 20.3 20.4 20.4 20.44 20.44

30.0 -0.8 -1.1 20.5 20.3 20.4 20.4 20.44 20.44

15.0 -0.9 -1.1 20.5 20.4 20.4 20.4 20.44 20.44

0.0 -1.0 -1.0 20.4 20.4 20.4 20.4 20.44 20.44

-15.0 -1.1 -1.0 20.4 20.4 20.4 20.4 20.44 20.44

-30.0 -1.2 -0.9 20.3 20.5 20.4 20.4 20.44 20.44

-45.0 -1.4 -0.8 20.2 20.5 20.4 20.4 20.44 20.44

-60.0 -1.7 -0.7 20.1 20.7 20.4 20.4 20.44 20.44

-75.0 -2.5 -0.3 19.8 21.3 20.4 20.4 20.44 20.44

-85.0 -5.4 1.2 19.7 26.4 20.4 20.4 20.44 20.44

Very nearby and high-velocity stars with a 20-year timespan, corresponding to the Hipparcos-
Gaia case. In this case a noise is added to account for the approximate knowledge of the radial
velocity. There is a 2% error, amounting here to 1 km/s. The first order model error is larger
than the error resulting from the radial velocity and is similar to 2nd simulation above. Then in
all other cases, the final error is about 20 µas/yr in the proper motion, and scales linearly with
the error in vr.
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TABLE 9: Determination of the proper motion components at the first epoch from positions
at the first and second epochs, with a 20-year interval when the radial velocity used in the
processing is wrong by 1km/s. The columns give the error between the computed and the
true annual proper motion for each component. Reference parameters for the simulation :
$ = 500mas, µα = µδ = 2000mas/yr, vr = 20km/s, but vr = 22km/s used in the analysis.
Warning: first column in mas/yr, others in µas/yr.

1st order 2nd order 3rd order full inversion
δ mas/yr µas/yr µas/yr µas/yr
◦ µα µδ µα µδ µα µδ µα µδ

85.0 4.0 -2.6 43.5 45.3 40.9 40.9 40.90 40.90

75.0 1.0 -1.1 41.4 41.2 40.9 40.9 40.90 40.90

60.0 0.3 -0.7 41.1 40.9 40.9 40.9 40.90 40.90

45.0 0.0 -0.6 41.0 40.8 40.9 40.9 40.90 40.90

30.0 -0.2 -0.5 40.9 40.8 40.9 40.9 40.90 40.90

15.0 -0.3 -0.5 40.9 40.8 40.9 40.9 40.90 40.90

0.0 -0.4 -0.4 40.9 40.8 40.9 40.9 40.90 40.90

-15.0 -0.5 -0.4 40.9 40.9 40.9 40.9 40.90 40.90

-30.0 -0.6 -0.3 40.8 40.9 40.9 40.9 40.90 40.90

-45.0 -0.8 -0.2 40.8 40.9 40.9 40.9 40.90 40.90

-60.0 -1.1 -0.1 40.8 41.0 40.9 40.9 40.90 40.90

-75.0 -1.9 0.3 40.7 41.5 40.9 40.9 40.90 40.90

-85.0 -4.8 1.8 41.5 46.2 40.9 40.9 40.90 40.90

Very nearby and high-velocity stars with a 20-year timespan, corresponding to the Hipparcos-
Gaia case, but with vr = 20km/s instead of 50 km/s in the preceding simulation. In this case a
noise is added to account for the approximate knowledge of the radial velocity. There is an error
of 2km/s. The first order model error is larger than the error resulting from the radial velocity
and of the order of 1mas/yr. Then in all other cases, the final error is about 40 µas/yr in the
proper motion, and scales linearly with vr.
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TABLE 10: Determination of the proper motion components at the first epoch from positions
at the first and second epochs, with a 20-year interval when the radial velocity used in the
processing is wrong by 5km/s. The columns give the error between the computed and the
true annual proper motion for each component. Reference parameters for the simulation :
$ = 50mas, µα = µδ = 100mas/yr, vr = 50km/s, but vr = 55km/s used in the analysis.
Warning: all columns now in µas/yr

1st order 2nd order 3rd order full inversion
δ µas/yr µas/yr µas/yr µas/yr
◦ µα µδ µα µδ µα µδ µα µδ

85.0 6.0 -10.7 0.5 0.5 0.5 0.5 0.51 0.51

75.0 -1.5 -6.9 0.5 0.5 0.5 0.5 0.51 0.51

60.0 -3.4 -6.0 0.5 0.5 0.5 0.5 0.51 0.51

45.0 -4.1 -5.6 0.5 0.5 0.5 0.5 0.51 0.51

30.0 -4.6 -5.4 0.5 0.5 0.5 0.5 0.51 0.51

15.0 -4.9 -5.2 0.5 0.5 0.5 0.5 0.51 0.51

0.0 -5.1 -5.1 0.5 0.5 0.5 0.5 0.51 0.51

-15.0 -5.4 -5.0 0.5 0.5 0.5 0.5 0.51 0.51

-30.0 -5.7 -4.8 0.5 0.5 0.5 0.5 0.51 0.51

-45.0 -6.1 -4.6 0.5 0.5 0.5 0.5 0.51 0.51

-60.0 -6.8 -4.3 0.5 0.5 0.5 0.5 0.51 0.51

-75.0 -8.7 -3.3 0.5 0.5 0.5 0.5 0.51 0.51

-85.0 -16.2 0.4 0.5 0.5 0.5 0.5 0.51 0.51

Representative Hipparcos stars, not too nearby and with moderate proper motion, with a 20-year
timespan, corresponding to the Hipparcos-Gaia case. In this case a noise is added to account
for the approximate knowledge of the radial velocity. There is a 10% error, amounting here to
5 km/s. The first order model error is larger than the error resulting from the radial velocity and
is similar to 3nd simulation above and remains below the 10µas/yr almost everywhere. Then
in all other cases, the final error is about 0.5 µas/yr in the proper motion, meaning the precise
knowledge of radial velocity won’t be a source of concern for most of the Hipparcos stars.
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Part II

Application to the HTPM project

5 Introduction to Part II

In this part I apply the propagation model and its inversion to the determination of the proper
motions for Hipparcos stars, using the Hipparcos position in 1991.25 and an early determina-
tion of position with Gaia around 2012.25. The goal is to confirm with an extensive simulation
the quick insight regarding the achievable performances, which should be of the order of 1− 2
mas/20 yr∼ 50− 100 µas/yr. The Hipparcos positions at the first epoch have a typical∼ 1 mas
accuracy, and the determination of the Gaia barycentric position with only six month of data
will have its uncertainty primarily determined by the Hipparcos parallax accuracy. With obser-
vations at two Gaia epochs or more, this should be below 1 mas, but not much below this value.
This is the purpose of the simulation to have a realistic sampling of the observations and to solve
for the barycentric position with a 2-parameter solution (α, δ), using the Hipparcos parallaxes
and proper motions in the observation modelling. From this solution for each Hipparcos star
observable by Gaia (> 6 mag) the new proper motion is computed as explained in the first part
of this note and compared to the true value used to generate the observations. Various plots are
produced to show the statistical error distribution, its pattern as a function of the position and
the impact of the inversion model on the number of outliers.

5.1 The simulation

The simulation generates Gaia observations of the Hipparcos stars over a duration of six months,
using the nominal scanning law and a star catalogue built from Hipparcos. The main features
of this simulation are shown in Fig. 5.

• There is one branch for the generation of noise-free observations from a perfect
sky realised by propagating Hipparcos positions to the Gaia epoch using Hipparcos
proper motion and then the parallax to generate the observations recorded by Gaia.
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Given the importance of the radial velocity in this analysis, all Hipparcos stars have
been given a radial velocity from a uniform distribution in [−30,+30] km/s). They
are used in the propagation model.

• A second branch produces the computed values based on a reference catalogue
simulating the approximate sky known for the data processing. This catalogue is
generated by adding random errors to the Hipparcos astrometric parameters and to
the radial velocity as well. For the position and parallax I have used the standard
errors of the Hipparcos catalogue to generate the errors, while a constant σµ =
2µas/yr have been used for each component of the proper motion. For the radial
velocity most of the runs have been made with a random error in the radial velocity
of standard deviation 2km/s.

noise
~ 50 µas 
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FIGURE 5: Flow chart of the simulation, with the observation branch on the left and the
computed branch on the right. The scan reference frame is shown in the inset.

At the end of the computed branch one also evaluates the partial derivatives of the computed
field coordinates with respect to each of the five astrometric parameters. Although I am only
concerned with the positions for the HTPM project, tests have been run to solve for the five
parameters over 5 years, in order to check the implementation with noiseless and noisy data.
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The expressions noisy or noiseless do not refer to the observation noise used to create Gaia-like
observations, which is very small for bright stars compared to the uncertainty in the Hipparcos
positions, but to the offset between the reference catalogue and the simulated sky used to solve
for the Gaia barycentric positions. This reference catalogue is the source of the reference paral-
laxes and proper motions used to correct the accurate apparent directions observed by Gaia for
the parallactic shift and to bring all observations collected during the first six months to a single
epoch, namely 2012.25.

In the presentation of the results below, the first set of plots deals with noiseless data, meaning
processing the observations with a perfect knowledge of parallax and proper motions, and the
accuracy is just limited by the Gaia observational noise of about 35-40µas along-scan for each
field transit, and 5 times larger across scan (JDB-053).

FIGURE 6: Distribution of the number of field transits for the Hipparcos stars over a period of
six months.

There are in the Hipparcos Catalogue ∼ 113, 500 stars fainter than H = 6 (meaning 4500
brighter than this limit on the sky). Figs. 6 and 7 give respectively the histograms of the number
of FOV transits and epochs over 6 months for the simulation catalogue of 113, 500 stars. A new
epoch starts when the interval between two successive observations is larger than 2 days. In fact,
when this happens, the interval is in general much larger, between 3 to 6 weeks. Observations
at two well separated epochs (two different scan directions) are needed to solve for the star
position using primarily the along-scan information. While the Gaia astrometric accuracy at
the transit level is not very important for the HTPM project, the distribution of the scanning
directions matters and this is directly connected to the number of epochs.
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FIGURE 7: Distribution of the number of epochs at which the Hipparcos stars are observed
during a period of six months.

During the processing, some stars were removed when the observation equations were found
ill-conditioned, leading to too strong correlations between α and δ or singular values when
solving for the position. To avoid lengthy discussions on limiting cases, I have removed all
stars with less than 4 transits or less than two epochs, although many of them might have ended
up with acceptable solution. Likewise the stars with poor astrometric accuracy (σ$ > 4mas)
in the Hipparcos Catalogue have not been included in the simulation, as not suitable to derive
accurate proper motions. This left 103,500 stars in the final exploitation and in the solutions
discussed in the following sections.
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6 Results of the processing

6.1 Perfect reference catalogue

The Hipparcos catalogue of 1991.25 is propagated to 2012 to generate Gaia observations and
the parallaxes and proper motions of the same catalogue are used to process the data, as if one
had an exact knowledge of these two quantities. The tests are meant to check bias or modelling
errors and are not relevant to determine the accuracy expected from a more realistic situation
with an error on the parallax and annual proper motion of the order of 1 mas and 1mas/yr.
The noise comes just from the Gaia photon noise on the along-scan and across-scan direc-
tions. Observations equations are weighed according to this noise, meaning AC observations
are downweighed by a factor 25 relative to the AL observations. A different weighting scheme
is adopted in Sect. 6.2 when the post-fit residuals originate essentially from the offset reference
catalogue rather than photon noise.

The histograms of the errors in proper motion components are shown in Fig. 8 for µα and Fig. 9
for µδ. The typical error is about 1µas/yr, corresponding roughly to σal/

√
(n)/τ , with the

number of transits over six months n ' 8, the timespan between the two epochs τ = 21 years
and σal = 40µas. A small (between 1 and 2) multiplying geometric factor must be applied to
account for the orientation of the scan relative to the local frame.

The next two plots are designed to show the outliers in the distributions for the same ideal
conditions with a perfect reference catalogue. Fig. 10 shows for each star the error (computed
- true value) for the proper motion in RA (blue) and declination (red) in µas/yr. There are very
very few outliers, if any, among the 103, 000 data points, and the most extreme deviations can
just result from a couple of truly exceptional values of noise produced by the random generator.
I have not attempted to trace them back in detail.

The plot in Fig. 11 is one of the most interesting of the series. The conditions are the same
as for Fig. 10, with the exception that the proper motion is computed from the two end-point
observations with the first order model given by the first lines of equations (15)-(16). This is
similar to the evaluation of the derivative of a function from its first differences. The scale of the
plot has been extended to 100 µas/yr to show the number of outliers and the magnitude of the
modelling errors on the nearest stars, when the inversion model is too crude. This can generate
errors larger than 100µas/yr, much larger than those expected in the HTPM project when using
a more realistic reference catalogue.

In this run a test is done on the radial velocity to assess the resulting error in the proper motion
when no prior information is available on the stellar vr. A value of vr has been used to simulate
the observations, while vr = 0 has been used in the processing. This will be the case for a
good fraction of the Hipparcos entries, hopefully not the nearby stars. Fig. 12 gives the error
(computed - true) in the proper motion components. Most of the 100,000 stars fall in the central
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FIGURE 8: Errors in right ascension. Histogram showing the distribution of the errors (com-
puted - true value) for the proper motion in right ascension for a perfect reference catalogue.
The only noise comes from Gaia random photon noise at the level of 40 µas per transit on the
along-scan direction. The exact inversion model is used to compute the proper motion from
the positions at the two end epochs. The standard deviation of the distribution is ∼ 1µas/yr as
expected for ∼ 10 observations and a 21-year timespan between the two epochs.

region with very small errors (perfect position catalogue used as reference), with few hundreds
large outliers.

This can be accounted by the restriction of (15)-(16) to second order,

µα t = ∆α? + ∆α? µr t− tan δ0 ∆α? ∆δ (22a)

µδ t = ∆δ + ∆δ µr t+
1

2
tan δ0 (∆α?)2 (22b)

By taking vr = 0 there is a modelling error in the processing of ∆α? µr in µα and ∆δ µr in µδ.
This is directly proportional to the parallax, and the nearest stars are the most affected. This
is outstanding in Fig. 13 when the errors are plotted as a function of the parallax. The effect
starts being visible for $ > 30 mas and becomes really significant at 50 mas. This implies that
for all these stars, it won’t be possible to achieve the best accuracy permitted by the astrometric
measurements if radial velocities are not available.

Among the Hipparcos stars, there are (rounded numbers),

• 200 with $ > 100 mas,
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FIGURE 9: Errors in declination. Histogram showing the distribution of the errors (computed
- true value) for the proper motion in declination for a perfect reference catalogue. The only
noise comes from Gaia random photon noise at the level of 40 µas per transit on the along-scan
direction. The exact inversion model is used to compute the proper motion from the positions
at the two end epochs. The standard deviation of the distribution is ∼ 1µas/yr as expected for
∼ 10 observations and a 21-year timespan between the two epochs.

• 900 with $ > 50 mas,

• 1500 with $ > 40 mas,

• 3000 with $ > 30 mas.

I have not checked yet in detail how many vr are currently missing, but the Pulkovo Compilation
of radial velocities contains this information for 35495 Hipparcos stars (Gontcharov (2006)),
and one may expect that the nearest stars are all there. From visual inspection of the stars with
parallaxes around 100 mas, this is almost the case. Since the error produced by this second
order term, can be estimated as a function of the radial velocity, a factor can be published to
update the HTPM proper motions when vr becomes known, or to correct them when better vr
are known. This means that both the reference vr and $ used in the model must be published
with the proper motion list.
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FIGURE 10: Outliers in RA and dec. Errors (computed - true value) for the proper motion
in right ascension (blue) and declination (red) for a perfect reference catalogue. The only
noise comes from Gaia random photon noise at the level of 40 µas per transit on the along-
scan direction and the exact inversion model is used to compute the proper motion from the
positions at the two end epochs.

FIGURE 11: Outliers from truncated model. Errors (computed - true value) for the proper
motion in right ascension (blue) and declination (red) for a perfect reference catalogue. The
only statistical noise comes from Gaia random photon noise at the level of 40 µas per transit
on the along-scan direction. A first order inversion model has been applied to evaluate the
proper motion components from the positions at the two end epochs. The numerous outliers
result from modelling errors and not from statistical noise and concern only the nearest stars.
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FIGURE 12: Errors when using vr = 0. Errors (computed - true value) for the proper motion
in right ascension (blue) and declination (red) for a perfect reference catalogue in position and
parallax, but with unknown radial velocity, taken as vr = 0 in the processing (and vr 6= 0 to
generate the observations).

FIGURE 13: Errors with parallaxes when using vr = 0. Errors (computed - true value) for
the proper motion in right ascension (blue) and declination (red) as a function of the parallax
for a perfect reference catalogue in position and parallax, but with unknown radial velocity,
taken as vr = 0 in the processing (and vr 6= 0 to generate the observations).
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6.2 Realistic data

Hereafter, the reference catalogue used now for the processing is randomly shifted from the
reference sky using Hipparcos standard deviations as input of the gaussian random generator.
As said earlier, this means that the reference positions at the first epoch are randomly shifted
from the true sky position and that the parallaxes and proper motions used in the processing are
also different from their true values.

6.2.1 Accuracy of the proper motions

The proper motions are computed by using the full inversion model (21) by combining the Gaia
observations with the shifted Hipparcos positions (our best knowledge of the sky) in 1991.25.
Trials with the second or third order models have also been made, with no difference in the
results.

One compares for each star the proper motion obtained from the processing to the true value
used to generate the observations. Therefore this is a true error and not a formal error based
on residuals. The distributions of the errors in µas/yr are shown in Figs. 14 and 15 respectively
for the right ascension and the declination. The two distributions are very regular and almost
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FIGURE 14: Errors in right ascension. Histogram showing the distribution of the errors
(computed - true value) for the proper motion in right ascension. The standard deviation of the
distribution is 65 µas/yr and there are tails slightly larger than a pure normal distribution, as
expected since the accuracy is not constant over the sky.

symmetric with respect to the centre, with no statistically significant bias. The tails are not
visible on this diagram, but they are very small. Outliers are shown and discussed in Sect. 6.2.2.
The standard deviation of the distribution in right ascension is 65 µas/yr, and very stable against
new seed in the random number generator. This is slightly better for declination with 48 µas/yr
and this comes directly from a similar difference in the Hipparcos catalogue.
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FIGURE 15: Errors in declination. Histogram showing the distribution of the errors (com-
puted - true value) for the proper motion in declination. The standard deviation of the distri-
bution is 48 µas/yr, with not significant tails larger than from a pure normal distribution.

The variation of the true errors with magnitude is shown in Fig. 16 as a smoothed representation
of the standard deviations of the errors computed per bin of magnitude. The median of the
catalogue is at H = 8.5, corresponding to an error of 53 and 40 µas/yr respectively in right
ascension and declination.

FIGURE 16: Standard deviations vs. magnitude. Standard deviations of the true error in
the computation of the proper motion averaged over the sky as a function of the Hipparcos
magnitude.
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The last plot of this group gives the histogram of,

δ|µ| = (δµ2
α + δµ2

δ)
1/2 (23)

This is the yearly increase of the distance between the position propagated with the computed
proper motions and the true position. This is not the same as the error in the modulus of the
proper motion, but simply the modulus of the small vector between the true and the computed
yearly motion on the sky. The distribution appears is Fig. 17, and is very close to a Rayleigh
distribution.

FIGURE 17: Error on the annual sky motion. Histogram of the errors in the annual dis-
placement on the sky, measured by the increase of the distance between the true and computed
position after one year.

The true error distribution is very useful to qualify the procedure, but not usable in the real
case when the true values are unknown. It is replaced by some estimate of the uncertainty
based on error propagation, including both random errors in the raw data and approximations or
truncations in the modelling. To validate this estimate it is necessary to compare the true error
to the estimated uncertainty.

The formal errors have been estimated from the first order modelling,

µα t = (αG − αH) cos δH (24a)

µδ t = δG − δH (24b)

with reference to the (H) Hipparcos and (G) Gaia positions. The standard error for the Gaia
position is obtained from the least-squares fit of the observations to the 2-parameter model, us-
ing Hipparcos parallaxes and proper motion to refer the solution to the barycentric position and
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by scaling the unit-weight-variance to the post-fit residuals. The corresponding standard devia-
tions for Hipparcos are directly taken from the Catalogue. In practice the contribution resulting
from the Hipparcos uncertainty at the first epoch is the largest of the two by a factor 3 or 4,
meaning that the precise estimation of the modelling errors (assuming some nice averaging) in
the processing of the Gaia observations is not crucial. Finally one has,

σµα =
√
σ2
αG

+ σ2
αH
/t (25a)

σµδ =
√
σ2
δG

+ σ2
δH
/t (25b)

The histograms of the reduced errors, that is to say the true errors measured in units of the
estimated standard deviations given in (25), are plotted in Fig. 18-19. It is a good surprise to see
that the distributions are nearly gaussian with zero mean and almost unit variance. This indicates
that one will be able to estimate the statistical uncertainty with a simple error propagation model,
despite the non random nature of most of the noise. This is true as long as the first epoch
uncertainty remains the largest contributor, meaning that the correct evaluation of the standard
deviation of the Gaia barycentric position is critical to obtain a fairly good estimate of the
uncertainty of the proper motions. I also found that the standard deviations of the reduced
distributions remain constant when the data is grouped in bins of magnitude.
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FIGURE 18: Reduced errors for PM in right ascension. Distribution of the reduced errors
(error/σ) for the proper motion in right ascension. The standard deviation is 1.16 and the mean
is not significantly different from zero.

6.2.2 Outliers

The next series of plots focusses on the tails of the error distributions. The plots are drawn as
a function of the star ID number, roughly proportional to the right ascension, and are meant
to show the outliers above or below the central part of the distribution. Figs. 20 - 21 display
the true errors in µas/yr for right ascension and declination, while the next two figures, Fig. 22
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FIGURE 19: Reduced errors for PM in declination. Distribution of the reduced errors
(error/σ) for the proper motion in declination. The standard deviation is 1.04 and the mean is
not significantly different from zero.

- 23, provide a similar representation for the reduced errors. There are no real outliers, those
that would be completely out of the distribution, and the largest errors are accounted for by the
parallax uncertainty in the Hipparcos catalogue as shown later in the analysis of Fig. 25. The
absence of outliers is more apparent in the reduced plots which smooth out the heterogeneity
of the standard deviations. The corresponding diagrams are much more compact, with nothing
abnormal outside the 3σ level. One sees also in Fig. 22 a small effect with right ascension
(smaller scatter around α = 180deg) hard to explain.

The last figure of this group (Fig. 24) gives for the declination the error distribution when the
processing is done by using the first order formula to derive the proper motion (the plot for RA
is very similar). This is the same idea as in Fig. 11, but now with a shifted reference catalogue
contributing for most of the noise in the second epoch. Most of the outliers seen in Fig. 11 are
still there but hidden in the statistical noise, and just the largest outliers (the very nearest stars)
emerge on top of it. The difference between Fig. 21 and Fig. 24 is just the order in the inversion
model, complete inversion vs. first order.

The errors in the computation of the proper motions come from the errors in position at the first
and second epochs. For the first epoch, this is given by the Hipparcos accuracy ranging from
0.5 to 4 mas (data have been filtered out above 4 mas). At the second epoch, the main source of
error is the approximate Hipparcos parallax used to find the barycentric position from the early
Gaia apparent directions. The standard deviation of the Hipparcos parallax is about 1.3 that of
the position (here taken as the mean between right ascension and declination). Therefore the
error in the barycentric position at the second epoch, will increase exactly in the same way at
that of the first epoch and if we take, for example, 4 mas for the combined error, this translates
into about 200 µas/yr in the proper motion uncertainty, and for the tail of the distribution at 3σ,
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FIGURE 20: Outliers for PM right ascension. Distribution of the errors (computed - true
value) for the proper motion in right ascension as a function of the star ID number. The central
part of the diagram is saturated and the plot shows primarily the tails of the distribution.
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FIGURE 21: Outliers for PM in declination. Distribution of the errors (computed - true
value) for the proper motion in declination as a function of the star ID number. The central
part of the diagram is saturated and and the plot shows primarily the tails of the distribution.

something like 600 µas/yr. This effect is outstanding in Fig 25 where the absolute values of the
true errors are plotted as a function of the Hipparcos astrometric accuracy. This feature accounts
for the extended tails in the error distribution, not visible in the histograms, because the number
of stars is too small. The estimated errors reproduce this effect and in the exploitation of the
real data one would have the choice to filter out these stars, or to publish the result with the
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FIGURE 22: Outliers for PM in right ascension with normalised errors. Distribution of
the reduced errors (error/σ) for the proper motion in right ascension as a function of the star
ID number. The central part of the diagram is saturated and the plot shows primarily the tails
and the outliers of the distribution.
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FIGURE 23: Outliers for PM in declination with normalised errors. Distribution of the
reduced errors (error/σ) for the proper motion in declination as a function of the star ID num-
ber. The central part of the diagram is saturated and the plot shows primarily the tails and the
outliers of the distribution.

corresponding large standard errors.
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FIGURE 24: Distribution of the errors ((computed - true value)) for the proper motion in
declination as a function of the star ID number. The central part of the diagram is saturated
and and the plot shows primarily the tails of the distribution.

FIGURE 25: Errors in PM vs. Hipparcos accuracy. Scatter diagram showing the distri-
bution of the absolute values of the true errors in proper motion (blue for RA and red for
declination) as a function of the Hipparcos astrometric accuracy. The diagram shows the sen-
sitivity of the accuracy of the proper motion to the quality of the reference catalogue used to
process the Gaia observations.
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Finally I have generated plots for the space distribution of the true errors and that of the esti-
mated standard deviations computed with (25). The true errors are shown in Figs. 26-27, while
the error in the annual displacement given by (23) is plotted in Fig. 28. The estimated errors are
shown in Figs. 29-30 respectively in right ascension and declination. Not surprisingly, the sig-
nature of the scanning law (both from Hipparcos and Gaia) is significant in right ascension and
almost not visible in declination. Due to the limited time coverage in Gaia, there is also a sec-
ondary irregularity as a function of the ecliptic longitude, resulting from the lack of uniformity
of the number of observations.

FIGURE 26: Spatial distribution of the true errors (computed - true value) for the proper
motion component in right ascension. The lower precision around the ecliptic is inherited
from the Hipparcos right ascension.
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FIGURE 27: Spatial distribution of the true errors (computed - true value) for the proper
motion component in declination.

FIGURE 28: Spatial distribution of the error in annual displacement on the sky.
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FIGURE 29: Spatial distribution of the estimated errors for the proper motion component in
right ascension, with the expected ecliptic pattern inherited from Hipparcos.

FIGURE 30: Spatial distribution of the estimated errors for the proper motion component in
declination.
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7 Additional issues

There are few more issues not discussed in this note which must be considered, primarily with
the DPAC. They are listed below for further discussion.

• The reference frame Positions at two epochs can be combined to determine a
proper motion, provided they are given in the same reference frame. Hipparcos
has been brought into the ICRF, both in rotation and orientation at the end of the
mission. The Hipparcos system is believed to be aligned with the extragalactic
radio frame to within 0.6 mas at the epoch 1991.25, and non-rotating with respect
to distant extragalactic objects to within 0.25 mas/yr (Kovalevsky et al. (1997)).
Therefore, the early Gaia positions necessary to carry out the HTPM project must
be in the same frame. Actually only the alignment matters, since one uses only
positions and not proper motions. Given the number of sources in the recently
released ICRF-2, each with a submas accuracy, this should not be a problem to
align the Gaia solution to the ICRF with an accuracy of few 0.1 mas with a 6-month
solution.

• Light Propagation The modelling presented in the first part has considered implic-
itly that the light propagates instantaneously. There is no distinction between the
velocity measured by comparing positions at the reception time and the true veloc-
ity determined between two emission times. Since between the two epochs, the star
distance has changed (when vr 6= 0), there is a small effect in vr/c that enters the
definition of the proper motion (Mignard (2003)). The correction is of the order of
10−4, and could be as large as 100µas/yr for the fast moving stars, then very relevant
for this project. But this is more a question of definition of proper motion (some-
thing to propagate catalogue positions or true velocity to investigate the distribution
of matter and the galactic potential) and must be decided on a more general basis
for the whole Gaia catalogue.

• AGIS solution for positions A solution in AGIS with only two astrometric param-
eters per star is foreseen. But this can be done in several ways ending up either
with a direction being the centre of the cluster of apparent directions seen by Gaia,
or with the best estimate of the barycentric position at the middle of the interval
covered by the observations. This depends how the conditions equations are writ-
ten with the best available parallaxes and proper motions. By linearising the model
in the neighbourhood of the best known values, and then keeping only the partial
derivatives with respect to the barycentric coordinates will be sufficient.

• Radial velocities availability For all the nearby stars, say not farther than 30 pc,
one needs relatively good radial velocities to deduce the proper motion at the first
epoch from two independent positions. This is less mandatory for the other stars, but
desirable to avoid small systematic effects that could show up in statistical studies.
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Therefore one must look at the existing databases to see the availability and then to
add the information into the Gaia auxiliary data.

• Equations weighting The Gaia measurements include the very accurate along-scan
coordinate and the less accurate transverse coordinate. When a full astrometric
model is used, the observation equations are weighed in proportion of the inverse
of the variance of either measurements. But when the astrometric models is simpli-
fied, there are modelling errors much larger than the photon noise. If this modelling
errors are somewhat random across the observation equations, they mimic a random
noise that must be used for a proper scaling of the weighting. This has been done
here from trials and errors and remains very crude and lacks a clear statistical justi-
fication. This again must be discussed with data processing experts to optimise the
solution.

• Which Hipparcos Catalogue? I have used consistently the standard Hipparcos
Catalogue for the accuracy assessment of the HTPM project. The new reduction of
the Hipparcos data (van Leeuwen. (2005)), with better positions and better paral-
laxes should also lead to a better determination of the proper motions. This remains
to be checked.
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A Central Projection

The projection and relevant notations are shown in Fig. 31, where m is on the sphere and is
projected on M on the tangent plane to the sphere at O.

m
M

O
x

y

α0

γ

δ0 δ

α
gnomonic or central projection

θ

θtan=OM

FIGURE 31: The general oblique central (or gnomonic) projection. The centre of projection
is O with coordinates α0, δ0, while m is on the sphere with coordinates α, δ and is centrally
projected on the tangent plane at O on M with cartesian coordinates x, y.

If ρ is the length OM in the tangent plane, one has,

ρ = tan θ (26)

Then if α0, δ0 (resp. α, δ) are the spherical coordinates of O (resp. m), the cartesian coordinates
of M in the projection plane are given with basic spherical trigonometry by,

x =
cos δ sin(α− α0)

sin δ0 sin δ + cos δ0 cos δ cos(α− α0)
(27a)

y =
cos δ0 sin δ − sin δ0 cos δ cos(α− α0)

sin δ0 sin δ + cos δ0 cos δ cos(α− α0)
(27b)
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Assuming that

a = ∆α cos δ0 (28a)
d = ∆ δ (28b)

are small quantities, the cartesian coordinates x, y can be expanded in power of a, d. There are
many ways, found in standard astronomical textbooks, to reduce the formulas to facilitate these
expansions, but here I actually relied on computer algebra to find the expansions to the third
order to find,

x = a− tan δ0 a d+
3 cos2 δ0 − 1

6 cos2 δ0
a3 +O(a4, d4) (29a)

y = d+
1

2
tan δ0 a

2 +
2 cos2 δ0 − 1

2 cos2 δ0
a2 d+

1

3
d3 +O(a4, d4) (29b)

and conversely,

∆α cos δ0 = x+ tan δ0 x y + tan2 δ0 x y
2 − 1

3 cos2 δ0
x3 +O(x4, y4) (30a)

∆ δ = y − 1

2
tan δ0 x

2 − 1

2 cos2 δ0
x2 y − y3

3
+O(x4, y4) (30b)

This has allowed to spot a mistake in a similar expression given in the astrometry book of van
de Kamp (van de Kamp. (1967)), where the xy2 term has a wrong sec2 δ instead of sec δ.

It is sometimes interesting to express the projection with δ instead of δ0 in the plate projection
equations (gnomonic projection). The corresponding formulas are as follows,

ā = ∆α cos δ (31a)
d = ∆ δ (31b)

leading for the direction transformation,

x = ā+
3 cos2 δ − 1

6 cos2 δ
ā3 +

1

2
ā d2 +O(ā4, d4) (32a)

y = d+
1

2
tan δ ā2 +

1

3
d3 +O(ā4, d4) (32b)

and conversely,

∆α cos δ = x− 1

2
x y2 − 3 cos2 δ − 1

6 cos2 δ
x3 +O(x4, y4) (33a)

∆ δ = y − 1

2
tan δ x2 − y3

3
+O(x4, y4) (33b)
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with this time a sign error in van de Kamp for the x3 term. One must notice the absence of
second order term in x(ā, d) and ∆α cos δ(x, y), meaning that the equation ∆α cos δ = x
(with δ and not δ0) is correct to second order, but this fortunate circumstance does not apply to
the pair (y,∆ δ).
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B Parallel projection

The projection and relevant notations are shown in Fig. 32, where m is on the sphere and is
projected on M on the tangent plane to the sphere at O.
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FIGURE 32: The general oblique parallel (or orthographic) projection. The centre of pro-
jection is O with coordinates α0, δ0 while m lies on the sphere with coordinates α, δ and is
parallel projected on the tangent plane on M with cartesian coordinates x, y.

If ρ is the length OM in the tangent plane, one has,

ρ = sin θ (34)

Then if α0, δ0 (resp. α, δ) are the spherical coordinates of O (resp. m), the cartesian coordinates
of M in the projection plane are given from simple spherical trigonometry by,

x = cos δ sin(α− α0) (35a)
y = cos δ0 sin δ − sin δ0 cosδ cos(α− α0) (35b)
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Then, as for the central projection, one introduces the notations,

a = ∆α cos δ0 (36a)
d = ∆ δ (36b)

to write the expansions of x, y in power of a, d to the third order as,

x = a− tan δ0 a d−
a3

6 cos2 δ0
− 1

2
a d2 +O(a4, d4) (37a)

y = d+
1

2
tan δ0 a

2 − 1

2
tan2 δ0 a

2 d− 1

6
d3 +O(a4, d4) (37b)

Here one can see the difference with the central projection in the third order terms, both in x
and y. Conversely, again with Maple to solve for a, d by analytical fixed point iterations,

∆α cos δ0 = x+ tan δ0 x y +

(
1

2
+ tan2 δ0

)
x y2 +

1− 3 sin2 δ0
6 cos2 δ0

x3 +O(x4, y4) (38a)

∆ δ = y − 1

2
tan δ0 x

2 − 1

2
tan2 δ0 x

2 y +
y3

6
+O(x4, y4) (38b)
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C Alternate derivation of the propagation model

Consider again the basic kinematical model with a uniform rectilinear motion in the Euclidean
space. It is characterized by the fact that the velocity vector is parallel transported along the
geodesic of the underlying space, i.e along a straight line. There are different ways to obtain the
corresponding components of the coordinate acceleration, however the most direct consists of
expressing that the 3-D acceleration d2r/dt2 = 0 and finding the components of the acceleration
in spherical coordinates. In curvilinear coordinates yi one has for the covariant derivative,

γi =
d2yi

dt2
+ Γijk

dyj

dt

dyk

dt
(39)

where the Christoffel symbols Γijk are computed from the metric of R3 in spherical coordinates,

ds2 = dr2 + r2 cos2 δ dα2 + r2 dδ2 (40)

using y1 = r, y2 = α, y3 = δ, which gives in the local frame (normalised with unit vectors)
er, eα, eδ the non-zero Christoffel symbols,

Γ1
22 = −r cos2 δ (41a)

Γ1
33 = −r (41b)

Γ2
12 = 1/r (41c)

Γ2
23 = − tan δ (41d)

Γ3
13 = 1/r (41e)

Γ3
22 = sin δ cos δ (41f)

Then with γi = 0 for a uniform rectilinear motion one has,

r̈ = r cos2 δ α̇2 + r δ̇2 (42a)

α̈ = −2

r
ṙ α̇ + 2 tan δ α̇δ̇ (42b)

δ̈ = −2

r
ṙδ̇ − sin δ cos δ α̇2 (42c)

Eqs. 42b-42c are the general expressions for the second derivatives of the right ascension and
declination of a star moving on a straight line at constant speed in space. There are supplemen-
tary terms of the same order of magnitude which are different from zero even in the case of a
purely tangential motion.

Now one can write the propagation model as,
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α(t) = α0 + α̇ t+ α̈
t2

2
(43a)

δ(t) = δ0 + δ̇ t+ δ̈
t2

2
(43b)

or with Equations (42) and µα = α̇ cos δ0, µδ = δ̇

∆α cos δ0 = µα t− [µr µα − tan δ0 µα µδ] t
2 (44a)

∆δ = µδ t−
[
µr µδ +

tan δ0
2

µ2
α

]
t2 (44b)

which can be inverted to second order to get µα and µδ as a function of the displacement between
the two epochs. This yields, by using as before

a = ∆α cos δ0 (45)
d = ∆ δ (46)

µα t = a(1 + µr t)− tan δ0 a d (47a)

µδ t = d (1 + µr t) +
1

2
tan δ0 a

2 (47b)

The same can be extended to third order without too much problem. By differentiating Eqs. 42
with respect to time and inserting back the component of the acceleration one obtains the third
time derivative expressed as function of ṙ, α̇ and β̇, or better as a function µr, µα, µδ. One gets,

d3α

dt3
= 6

ṙ2

r2
α̇− 12 tan δ

ṙ

r
α̇δ̇ + 6 tan2 δ α̇δ̇2 − 2α̇3 (48a)

d3δ

dt3
= 6

ṙ2

r2
δ̇ + 3 sin 2δ

ṙ

r
α̇2 − 3 α̇2 δ̇ − 2δ̇3 (48b)

and now with

α(t) = α0 + α̇ t+ α̈
t2

2
+

...
α
t3

6
(49a)

δ(t) = δ0 + δ̇ t+ δ̈
t2

2
+

...
δ
t3

6
(49b)

and with the introduction of the µr, µα, µδ one gets,

Technical Note OCA 54



CU3
HTPM
GAIA-C3-TN-OCA-FM-040-01

∆α cos δ0 = µα t− [µr µα − tan δ0 µα µδ] t
2

+

[
µ2
r µα − 2 tan δ0 µr µα µδ + tan2 δ µα µ

2
δ −

µ3
α

3 cos2 δ0

]
t3

(50)

∆δ = µδ t−
[
µr µδ +

tan δ0
2

µ2
α

]
t2

+

[
µ2
r µδ + tan δ0 µr µ

2
α −

µ2
α µδ

2 cos2 δ0
− µ3

δ

3

]
t3

(51)

Equations (50)-(51) give the propagation model to third order of the proper motions and are
similar in content to equations (17)-(18). Solving now this system for µα and µδ, or equivalently
inverting the series to the same order is much more involved than for the second degree. It can
be achieved with a fixed point iteration repeated twice, starting with µα t = ∆α cos δ0 ≡ a and
µδ t = ∆δ ≡ d. This is tedious with pencil and paper and I actually let Maple do it for me
quickly and reliably. The process leads to the final transformation,

µα t = a(1 + µr t)− tan δ0 a d+
3 cos2 δ0 − 1

6 cos2 δ0
a3 − tan δ0 a d µrt (52a)

µδ t = d (1 + µr t) +
1

2
tan δ0 a

2 +
2 cos2 δ0 − 1

2 cos2 δ0
a2 d+

1

2
tan δ0 a

2 µrt+
d3

3
(52b)

which is exactly the same as equations (15)-(16).

Remark: Using indices algebra, Eqs. (48), could have been directly derived from a straight
differentiation of Eq. (39) with γi = 0. This gives,

d3yi

dt3
=

[
−
∂Γijk
∂yl

+ 2Γimj Γmkl

]
ẏj ẏk ẏl (53)

and with the substitution of (41) one gets the same as (48).
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