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FIGURE 12: Errors when using vr = 0. Errors (computed - true value) for the proper motion
in right ascension (blue) and declination (red) for a perfect reference catalogue in position and
parallax, but with unknown radial velocity, taken as vr = 0 in the processing (and vr 6= 0 to
generate the observations).

FIGURE 13: Errors with parallaxes when using vr = 0. Errors (computed - true value) for
the proper motion in right ascension (blue) and declination (red) as a function of the parallax
for a perfect reference catalogue in position and parallax, but with unknown radial velocity,
taken as vr = 0 in the processing (and vr 6= 0 to generate the observations).
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6.2 Realistic data

Hereafter, the reference catalogue used now for the processing is randomly shifted from the
reference sky using Hipparcos standard deviations as input of the gaussian random generator.
As said earlier, this means that the reference positions at the first epoch are randomly shifted
from the true sky position and that the parallaxes and proper motions used in the processing are
also different from their true values.

6.2.1 Accuracy of the proper motions

The proper motions are computed by using the full inversion model (21) by combining the Gaia
observations with the shifted Hipparcos positions (our best knowledge of the sky) in 1991.25.
Trials with the second or third order models have also been made, with no difference in the
results.

One compares for each star the proper motion obtained from the processing to the true value
used to generate the observations. Therefore this is a true error and not a formal error based
on residuals. The distributions of the errors in µas/yr are shown in Figs. 14 and 15 respectively
for the right ascension and the declination. The two distributions are very regular and almost
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FIGURE 14: Errors in right ascension. Histogram showing the distribution of the errors
(computed - true value) for the proper motion in right ascension. The standard deviation of the
distribution is 65 µas/yr and there are tails slightly larger than a pure normal distribution, as
expected since the accuracy is not constant over the sky.

symmetric with respect to the centre, with no statistically significant bias. The tails are not
visible on this diagram, but they are very small. Outliers are shown and discussed in Sect. 6.2.2.
The standard deviation of the distribution in right ascension is 65 µas/yr, and very stable against
new seed in the random number generator. This is slightly better for declination with 48 µas/yr
and this comes directly from a similar difference in the Hipparcos catalogue.
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FIGURE 15: Errors in declination. Histogram showing the distribution of the errors (com-
puted - true value) for the proper motion in declination. The standard deviation of the distri-
bution is 48 µas/yr, with not significant tails larger than from a pure normal distribution.

The variation of the true errors with magnitude is shown in Fig. 16 as a smoothed representation
of the standard deviations of the errors computed per bin of magnitude. The median of the
catalogue is at H = 8.5, corresponding to an error of 53 and 40 µas/yr respectively in right
ascension and declination.

FIGURE 16: Standard deviations vs. magnitude. Standard deviations of the true error in
the computation of the proper motion averaged over the sky as a function of the Hipparcos
magnitude.
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The last plot of this group gives the histogram of,

δ|µ| = (δµ2
α + δµ2

δ)
1/2 (23)

This is the yearly increase of the distance between the position propagated with the computed
proper motions and the true position. This is not the same as the error in the modulus of the
proper motion, but simply the modulus of the small vector between the true and the computed
yearly motion on the sky. The distribution appears is Fig. 17, and is very close to a Rayleigh
distribution.

FIGURE 17: Error on the annual sky motion. Histogram of the errors in the annual dis-
placement on the sky, measured by the increase of the distance between the true and computed
position after one year.

The true error distribution is very useful to qualify the procedure, but not usable in the real
case when the true values are unknown. It is replaced by some estimate of the uncertainty
based on error propagation, including both random errors in the raw data and approximations or
truncations in the modelling. To validate this estimate it is necessary to compare the true error
to the estimated uncertainty.

The formal errors have been estimated from the first order modelling,

µα t = (αG − αH) cos δH (24a)

µδ t = δG − δH (24b)

with reference to the (H) Hipparcos and (G) Gaia positions. The standard error for the Gaia
position is obtained from the least-squares fit of the observations to the 2-parameter model, us-
ing Hipparcos parallaxes and proper motion to refer the solution to the barycentric position and
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by scaling the unit-weight-variance to the post-fit residuals. The corresponding standard devia-
tions for Hipparcos are directly taken from the Catalogue. In practice the contribution resulting
from the Hipparcos uncertainty at the first epoch is the largest of the two by a factor 3 or 4,
meaning that the precise estimation of the modelling errors (assuming some nice averaging) in
the processing of the Gaia observations is not crucial. Finally one has,

σµα =
√
σ2
αG

+ σ2
αH
/t (25a)

σµδ =
√
σ2
δG

+ σ2
δH
/t (25b)

The histograms of the reduced errors, that is to say the true errors measured in units of the
estimated standard deviations given in (25), are plotted in Fig. 18-19. It is a good surprise to see
that the distributions are nearly gaussian with zero mean and almost unit variance. This indicates
that one will be able to estimate the statistical uncertainty with a simple error propagation model,
despite the non random nature of most of the noise. This is true as long as the first epoch
uncertainty remains the largest contributor, meaning that the correct evaluation of the standard
deviation of the Gaia barycentric position is critical to obtain a fairly good estimate of the
uncertainty of the proper motions. I also found that the standard deviations of the reduced
distributions remain constant when the data is grouped in bins of magnitude.
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FIGURE 18: Reduced errors for PM in right ascension. Distribution of the reduced errors
(error/σ) for the proper motion in right ascension. The standard deviation is 1.16 and the mean
is not significantly different from zero.

6.2.2 Outliers

The next series of plots focusses on the tails of the error distributions. The plots are drawn as
a function of the star ID number, roughly proportional to the right ascension, and are meant
to show the outliers above or below the central part of the distribution. Figs. 20 - 21 display
the true errors in µas/yr for right ascension and declination, while the next two figures, Fig. 22
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FIGURE 19: Reduced errors for PM in declination. Distribution of the reduced errors
(error/σ) for the proper motion in declination. The standard deviation is 1.04 and the mean is
not significantly different from zero.

- 23, provide a similar representation for the reduced errors. There are no real outliers, those
that would be completely out of the distribution, and the largest errors are accounted for by the
parallax uncertainty in the Hipparcos catalogue as shown later in the analysis of Fig. 25. The
absence of outliers is more apparent in the reduced plots which smooth out the heterogeneity
of the standard deviations. The corresponding diagrams are much more compact, with nothing
abnormal outside the 3σ level. One sees also in Fig. 22 a small effect with right ascension
(smaller scatter around α = 180deg) hard to explain.

The last figure of this group (Fig. 24) gives for the declination the error distribution when the
processing is done by using the first order formula to derive the proper motion (the plot for RA
is very similar). This is the same idea as in Fig. 11, but now with a shifted reference catalogue
contributing for most of the noise in the second epoch. Most of the outliers seen in Fig. 11 are
still there but hidden in the statistical noise, and just the largest outliers (the very nearest stars)
emerge on top of it. The difference between Fig. 21 and Fig. 24 is just the order in the inversion
model, complete inversion vs. first order.

The errors in the computation of the proper motions come from the errors in position at the first
and second epochs. For the first epoch, this is given by the Hipparcos accuracy ranging from
0.5 to 4 mas (data have been filtered out above 4 mas). At the second epoch, the main source of
error is the approximate Hipparcos parallax used to find the barycentric position from the early
Gaia apparent directions. The standard deviation of the Hipparcos parallax is about 1.3 that of
the position (here taken as the mean between right ascension and declination). Therefore the
error in the barycentric position at the second epoch, will increase exactly in the same way at
that of the first epoch and if we take, for example, 4 mas for the combined error, this translates
into about 200 µas/yr in the proper motion uncertainty, and for the tail of the distribution at 3σ,
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FIGURE 20: Outliers for PM right ascension. Distribution of the errors (computed - true
value) for the proper motion in right ascension as a function of the star ID number. The central
part of the diagram is saturated and the plot shows primarily the tails of the distribution.
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FIGURE 21: Outliers for PM in declination. Distribution of the errors (computed - true
value) for the proper motion in declination as a function of the star ID number. The central
part of the diagram is saturated and and the plot shows primarily the tails of the distribution.

something like 600 µas/yr. This effect is outstanding in Fig 25 where the absolute values of the
true errors are plotted as a function of the Hipparcos astrometric accuracy. This feature accounts
for the extended tails in the error distribution, not visible in the histograms, because the number
of stars is too small. The estimated errors reproduce this effect and in the exploitation of the
real data one would have the choice to filter out these stars, or to publish the result with the
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FIGURE 22: Outliers for PM in right ascension with normalised errors. Distribution of
the reduced errors (error/σ) for the proper motion in right ascension as a function of the star
ID number. The central part of the diagram is saturated and the plot shows primarily the tails
and the outliers of the distribution.
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FIGURE 23: Outliers for PM in declination with normalised errors. Distribution of the
reduced errors (error/σ) for the proper motion in declination as a function of the star ID num-
ber. The central part of the diagram is saturated and the plot shows primarily the tails and the
outliers of the distribution.

corresponding large standard errors.
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FIGURE 24: Distribution of the errors ((computed - true value)) for the proper motion in
declination as a function of the star ID number. The central part of the diagram is saturated
and and the plot shows primarily the tails of the distribution.

FIGURE 25: Errors in PM vs. Hipparcos accuracy. Scatter diagram showing the distri-
bution of the absolute values of the true errors in proper motion (blue for RA and red for
declination) as a function of the Hipparcos astrometric accuracy. The diagram shows the sen-
sitivity of the accuracy of the proper motion to the quality of the reference catalogue used to
process the Gaia observations.
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Finally I have generated plots for the space distribution of the true errors and that of the esti-
mated standard deviations computed with (25). The true errors are shown in Figs. 26-27, while
the error in the annual displacement given by (23) is plotted in Fig. 28. The estimated errors are
shown in Figs. 29-30 respectively in right ascension and declination. Not surprisingly, the sig-
nature of the scanning law (both from Hipparcos and Gaia) is significant in right ascension and
almost not visible in declination. Due to the limited time coverage in Gaia, there is also a sec-
ondary irregularity as a function of the ecliptic longitude, resulting from the lack of uniformity
of the number of observations.

FIGURE 26: Spatial distribution of the true errors (computed - true value) for the proper
motion component in right ascension. The lower precision around the ecliptic is inherited
from the Hipparcos right ascension.
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FIGURE 27: Spatial distribution of the true errors (computed - true value) for the proper
motion component in declination.

FIGURE 28: Spatial distribution of the error in annual displacement on the sky.
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FIGURE 29: Spatial distribution of the estimated errors for the proper motion component in
right ascension, with the expected ecliptic pattern inherited from Hipparcos.

FIGURE 30: Spatial distribution of the estimated errors for the proper motion component in
declination.

Technical Note OCA 45



CU3
HTPM
GAIA-C3-TN-OCA-FM-040-01

7 Additional issues

There are few more issues not discussed in this note which must be considered, primarily with
the DPAC. They are listed below for further discussion.

• The reference frame Positions at two epochs can be combined to determine a
proper motion, provided they are given in the same reference frame. Hipparcos
has been brought into the ICRF, both in rotation and orientation at the end of the
mission. The Hipparcos system is believed to be aligned with the extragalactic
radio frame to within 0.6 mas at the epoch 1991.25, and non-rotating with respect
to distant extragalactic objects to within 0.25 mas/yr (Kovalevsky et al. (1997)).
Therefore, the early Gaia positions necessary to carry out the HTPM project must
be in the same frame. Actually only the alignment matters, since one uses only
positions and not proper motions. Given the number of sources in the recently
released ICRF-2, each with a submas accuracy, this should not be a problem to
align the Gaia solution to the ICRF with an accuracy of few 0.1 mas with a 6-month
solution.

• Light Propagation The modelling presented in the first part has considered implic-
itly that the light propagates instantaneously. There is no distinction between the
velocity measured by comparing positions at the reception time and the true veloc-
ity determined between two emission times. Since between the two epochs, the star
distance has changed (when vr 6= 0), there is a small effect in vr/c that enters the
definition of the proper motion (Mignard (2003)). The correction is of the order of
10−4, and could be as large as 100µas/yr for the fast moving stars, then very relevant
for this project. But this is more a question of definition of proper motion (some-
thing to propagate catalogue positions or true velocity to investigate the distribution
of matter and the galactic potential) and must be decided on a more general basis
for the whole Gaia catalogue.

• AGIS solution for positions A solution in AGIS with only two astrometric param-
eters per star is foreseen. But this can be done in several ways ending up either
with a direction being the centre of the cluster of apparent directions seen by Gaia,
or with the best estimate of the barycentric position at the middle of the interval
covered by the observations. This depends how the conditions equations are writ-
ten with the best available parallaxes and proper motions. By linearising the model
in the neighbourhood of the best known values, and then keeping only the partial
derivatives with respect to the barycentric coordinates will be sufficient.

• Radial velocities availability For all the nearby stars, say not farther than 30 pc,
one needs relatively good radial velocities to deduce the proper motion at the first
epoch from two independent positions. This is less mandatory for the other stars, but
desirable to avoid small systematic effects that could show up in statistical studies.
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Therefore one must look at the existing databases to see the availability and then to
add the information into the Gaia auxiliary data.

• Equations weighting The Gaia measurements include the very accurate along-scan
coordinate and the less accurate transverse coordinate. When a full astrometric
model is used, the observation equations are weighed in proportion of the inverse
of the variance of either measurements. But when the astrometric models is simpli-
fied, there are modelling errors much larger than the photon noise. If this modelling
errors are somewhat random across the observation equations, they mimic a random
noise that must be used for a proper scaling of the weighting. This has been done
here from trials and errors and remains very crude and lacks a clear statistical justi-
fication. This again must be discussed with data processing experts to optimise the
solution.

• Which Hipparcos Catalogue? I have used consistently the standard Hipparcos
Catalogue for the accuracy assessment of the HTPM project. The new reduction of
the Hipparcos data (van Leeuwen. (2005)), with better positions and better paral-
laxes should also lead to a better determination of the proper motions. This remains
to be checked.
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A Central Projection

The projection and relevant notations are shown in Fig. 31, where m is on the sphere and is
projected on M on the tangent plane to the sphere at O.

m
M

O
x

y

α0

γ

δ0 δ

α
gnomonic or central projection

θ

θtan=OM

FIGURE 31: The general oblique central (or gnomonic) projection. The centre of projection
is O with coordinates α0, δ0, while m is on the sphere with coordinates α, δ and is centrally
projected on the tangent plane at O on M with cartesian coordinates x, y.

If ρ is the length OM in the tangent plane, one has,

ρ = tan θ (26)

Then if α0, δ0 (resp. α, δ) are the spherical coordinates of O (resp. m), the cartesian coordinates
of M in the projection plane are given with basic spherical trigonometry by,

x =
cos δ sin(α− α0)

sin δ0 sin δ + cos δ0 cos δ cos(α− α0)
(27a)

y =
cos δ0 sin δ − sin δ0 cos δ cos(α− α0)

sin δ0 sin δ + cos δ0 cos δ cos(α− α0)
(27b)
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Assuming that

a = ∆α cos δ0 (28a)
d = ∆ δ (28b)

are small quantities, the cartesian coordinates x, y can be expanded in power of a, d. There are
many ways, found in standard astronomical textbooks, to reduce the formulas to facilitate these
expansions, but here I actually relied on computer algebra to find the expansions to the third
order to find,

x = a− tan δ0 a d+
3 cos2 δ0 − 1

6 cos2 δ0
a3 +O(a4, d4) (29a)

y = d+
1

2
tan δ0 a

2 +
2 cos2 δ0 − 1

2 cos2 δ0
a2 d+

1

3
d3 +O(a4, d4) (29b)

and conversely,

∆α cos δ0 = x+ tan δ0 x y + tan2 δ0 x y
2 − 1

3 cos2 δ0
x3 +O(x4, y4) (30a)

∆ δ = y − 1

2
tan δ0 x

2 − 1

2 cos2 δ0
x2 y − y3

3
+O(x4, y4) (30b)

This has allowed to spot a mistake in a similar expression given in the astrometry book of van
de Kamp (van de Kamp. (1967)), where the xy2 term has a wrong sec2 δ instead of sec δ.

It is sometimes interesting to express the projection with δ instead of δ0 in the plate projection
equations (gnomonic projection). The corresponding formulas are as follows,

ā = ∆α cos δ (31a)
d = ∆ δ (31b)

leading for the direction transformation,

x = ā+
3 cos2 δ − 1

6 cos2 δ
ā3 +

1

2
ā d2 +O(ā4, d4) (32a)

y = d+
1

2
tan δ ā2 +

1

3
d3 +O(ā4, d4) (32b)

and conversely,

∆α cos δ = x− 1

2
x y2 − 3 cos2 δ − 1

6 cos2 δ
x3 +O(x4, y4) (33a)

∆ δ = y − 1

2
tan δ x2 − y3

3
+O(x4, y4) (33b)
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with this time a sign error in van de Kamp for the x3 term. One must notice the absence of
second order term in x(ā, d) and ∆α cos δ(x, y), meaning that the equation ∆α cos δ = x
(with δ and not δ0) is correct to second order, but this fortunate circumstance does not apply to
the pair (y,∆ δ).
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B Parallel projection

The projection and relevant notations are shown in Fig. 32, where m is on the sphere and is
projected on M on the tangent plane to the sphere at O.
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δ0 δ

α
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mM // CO
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θ

θsin=OM

FIGURE 32: The general oblique parallel (or orthographic) projection. The centre of pro-
jection is O with coordinates α0, δ0 while m lies on the sphere with coordinates α, δ and is
parallel projected on the tangent plane on M with cartesian coordinates x, y.

If ρ is the length OM in the tangent plane, one has,

ρ = sin θ (34)

Then if α0, δ0 (resp. α, δ) are the spherical coordinates of O (resp. m), the cartesian coordinates
of M in the projection plane are given from simple spherical trigonometry by,

x = cos δ sin(α− α0) (35a)
y = cos δ0 sin δ − sin δ0 cosδ cos(α− α0) (35b)
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Then, as for the central projection, one introduces the notations,

a = ∆α cos δ0 (36a)
d = ∆ δ (36b)

to write the expansions of x, y in power of a, d to the third order as,

x = a− tan δ0 a d−
a3

6 cos2 δ0
− 1

2
a d2 +O(a4, d4) (37a)

y = d+
1

2
tan δ0 a

2 − 1

2
tan2 δ0 a

2 d− 1

6
d3 +O(a4, d4) (37b)

Here one can see the difference with the central projection in the third order terms, both in x
and y. Conversely, again with Maple to solve for a, d by analytical fixed point iterations,

∆α cos δ0 = x+ tan δ0 x y +

(
1

2
+ tan2 δ0

)
x y2 +

1− 3 sin2 δ0
6 cos2 δ0

x3 +O(x4, y4) (38a)

∆ δ = y − 1

2
tan δ0 x

2 − 1

2
tan2 δ0 x

2 y +
y3

6
+O(x4, y4) (38b)
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C Alternate derivation of the propagation model

Consider again the basic kinematical model with a uniform rectilinear motion in the Euclidean
space. It is characterized by the fact that the velocity vector is parallel transported along the
geodesic of the underlying space, i.e along a straight line. There are different ways to obtain the
corresponding components of the coordinate acceleration, however the most direct consists of
expressing that the 3-D acceleration d2r/dt2 = 0 and finding the components of the acceleration
in spherical coordinates. In curvilinear coordinates yi one has for the covariant derivative,

γi =
d2yi

dt2
+ Γijk

dyj

dt

dyk

dt
(39)

where the Christoffel symbols Γijk are computed from the metric of R3 in spherical coordinates,

ds2 = dr2 + r2 cos2 δ dα2 + r2 dδ2 (40)

using y1 = r, y2 = α, y3 = δ, which gives in the local frame (normalised with unit vectors)
er, eα, eδ the non-zero Christoffel symbols,

Γ1
22 = −r cos2 δ (41a)

Γ1
33 = −r (41b)

Γ2
12 = 1/r (41c)

Γ2
23 = − tan δ (41d)

Γ3
13 = 1/r (41e)

Γ3
22 = sin δ cos δ (41f)

Then with γi = 0 for a uniform rectilinear motion one has,

r̈ = r cos2 δ α̇2 + r δ̇2 (42a)

α̈ = −2

r
ṙ α̇ + 2 tan δ α̇δ̇ (42b)

δ̈ = −2

r
ṙδ̇ − sin δ cos δ α̇2 (42c)

Eqs. 42b-42c are the general expressions for the second derivatives of the right ascension and
declination of a star moving on a straight line at constant speed in space. There are supplemen-
tary terms of the same order of magnitude which are different from zero even in the case of a
purely tangential motion.

Now one can write the propagation model as,
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α(t) = α0 + α̇ t+ α̈
t2

2
(43a)

δ(t) = δ0 + δ̇ t+ δ̈
t2

2
(43b)

or with Equations (42) and µα = α̇ cos δ0, µδ = δ̇

∆α cos δ0 = µα t− [µr µα − tan δ0 µα µδ] t
2 (44a)

∆δ = µδ t−
[
µr µδ +

tan δ0
2

µ2
α

]
t2 (44b)

which can be inverted to second order to get µα and µδ as a function of the displacement between
the two epochs. This yields, by using as before

a = ∆α cos δ0 (45)
d = ∆ δ (46)

µα t = a(1 + µr t)− tan δ0 a d (47a)

µδ t = d (1 + µr t) +
1

2
tan δ0 a

2 (47b)

The same can be extended to third order without too much problem. By differentiating Eqs. 42
with respect to time and inserting back the component of the acceleration one obtains the third
time derivative expressed as function of ṙ, α̇ and β̇, or better as a function µr, µα, µδ. One gets,

d3α

dt3
= 6

ṙ2

r2
α̇− 12 tan δ

ṙ

r
α̇δ̇ + 6 tan2 δ α̇δ̇2 − 2α̇3 (48a)

d3δ

dt3
= 6

ṙ2

r2
δ̇ + 3 sin 2δ

ṙ

r
α̇2 − 3 α̇2 δ̇ − 2δ̇3 (48b)

and now with

α(t) = α0 + α̇ t+ α̈
t2

2
+

...
α
t3

6
(49a)

δ(t) = δ0 + δ̇ t+ δ̈
t2

2
+

...
δ
t3

6
(49b)

and with the introduction of the µr, µα, µδ one gets,

Technical Note OCA 54



CU3
HTPM
GAIA-C3-TN-OCA-FM-040-01

∆α cos δ0 = µα t− [µr µα − tan δ0 µα µδ] t
2

+

[
µ2
r µα − 2 tan δ0 µr µα µδ + tan2 δ µα µ

2
δ −

µ3
α

3 cos2 δ0

]
t3

(50)

∆δ = µδ t−
[
µr µδ +

tan δ0
2

µ2
α

]
t2

+

[
µ2
r µδ + tan δ0 µr µ

2
α −

µ2
α µδ

2 cos2 δ0
− µ3

δ

3

]
t3

(51)

Equations (50)-(51) give the propagation model to third order of the proper motions and are
similar in content to equations (17)-(18). Solving now this system for µα and µδ, or equivalently
inverting the series to the same order is much more involved than for the second degree. It can
be achieved with a fixed point iteration repeated twice, starting with µα t = ∆α cos δ0 ≡ a and
µδ t = ∆δ ≡ d. This is tedious with pencil and paper and I actually let Maple do it for me
quickly and reliably. The process leads to the final transformation,

µα t = a(1 + µr t)− tan δ0 a d+
3 cos2 δ0 − 1

6 cos2 δ0
a3 − tan δ0 a d µrt (52a)

µδ t = d (1 + µr t) +
1

2
tan δ0 a

2 +
2 cos2 δ0 − 1

2 cos2 δ0
a2 d+

1

2
tan δ0 a

2 µrt+
d3

3
(52b)

which is exactly the same as equations (15)-(16).

Remark: Using indices algebra, Eqs. (48), could have been directly derived from a straight
differentiation of Eq. (39) with γi = 0. This gives,

d3yi

dt3
=

[
−
∂Γijk
∂yl

+ 2Γimj Γmkl

]
ẏj ẏk ẏl (53)

and with the substitution of (41) one gets the same as (48).
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