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The goal of this note is to summarize the relativistic time scales and the transfor-

mations between them relevant for Gaia and to give efficient algorithms to calculate

them. The note describes the theoretical framework used in the Java implementation

for Gaia.

Issue 3 corrects several misprints and adds a discussion of the additional features

of the Java code appeared after the integration into the GaiaTools.

Issue 4 corrects a few misprints in the text.

Issue 5 includes the values of the relevant constants used in Gaia as well as updates

the text to the actual development state of the corresponding software.

I. TIME SCALES RELEVANT FOR GAIA

Let us first list the time scales that are relevant for Gaia and summarize their properties
and the intended use in Gaia:

– On-board Time (OBT) is the reading of the physical clock on board of Gaia. The
physical clock of Gaia is a free running oscillator with no apriori relation to any times
scales like TCB or others.

Use in Gaia: OBT is used in the time tags (labels) of raw data.

– On-board Modified Time (OBMT) is OBT corrected for possible clock resets (switching
the Gaia clock off and then on, as it can happen during safe modes of the satellite,
resets the clock counter). The details of the definition of OBMT and the relation between
OBT and OBMT is described in [2]. The relation between OBMT and other time scales is
the subject of the Gaia clock calibration: Low-Accuracy Time Transformation (LATT)
and High-Accuracy Time Transformation (HATT). These calibrations are computed
using special clock synchronization observations (the so-called time packets) and are
not part of this note. Some details of the Gaia clock calibrations can be found in
[9, 10]. An exhaustive description will be published elsewhere.

Use in Gaia: OBMT is used as an intermediate step in the process of reparametrizing
of the Gaia data from OBT to TCB (see, [2] for further discussion).

– Gaia Time (TG) is the ideal proper time of Gaia: TG is the reading of a hypothetical
ideal clock moving together with the center of mass of Gaia. The relation of TG and
TCB is discussed in Section III below.

Use in Gaia: TG is an intermediate step in the process of reparametrizing of the Gaia
data from OBT to TCB. It can be used also to improve the dynamical model of rotational
motion of the Gaia satellite.
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– Barycentric Coordinate Time (TCB) is the coordinate time of Barycentric Celestial
Reference System (BCRS) of the International Astronomical Union (IAU). A detailed
discussion of the BCRS can be found in [16].

Use in Gaia: TCB is the main time scale in the Gaia data processing. The final Gaia
astrometric catalog represents a materialization of the BCRS in the sense that all
coordinates, velocities and distances in the Gaia catalog are defined in the BCRS, and
all moments of time are given in TCB.

– Barycentric Dynamical Time (TDB) is a conventional linear function of TCB:

TDB = TCB− LB × (JDTCB − T0)× 86400 + TDB0 (1)

with T0 = 2443144.5003725, LB = 1.550519768 × 10−8, TDB0 = −6.55 × 10−5 s. This
transformation is given by a Resolution of the IAU 2006. TDB is the time scale used by
e.g., the JPL ephemerides and the INPOP version used by the flight dynamics group
at ESOC (an export version of the INPOP is used by the ESOC). The values of T0,
LB are chosen in order to effectively eliminate the linear drift between TDB and TT at
the geocenter when the transformation is computed using the JPL ephemeris DE405.
The constant term TDB0 is chosen to provide reasonable consistency with the widely
used TDB− TT formula of Fairhead and Bretagnon [6].

Use in Gaia: TDB is used as a conventional substitute of TCB in some DPAC-external
data sets. Currently, examples of the use of TDB are: (1) the ESOC orbit of Gaia will
be initially parametrized by TDB, (2) the transformation between TCB and TCG at the
geocenter is computed via the transformation between TDB and TT at the geocenter
delivered by the INPOP team. The data sets parametrized by TDB will be converted
to TCB for further use in the Gaia data processing chain.

– Geocentric Coordinate Time (TCG) is the coordinate time of Geocentric Celestial Ref-
erence System (GCRS) of the International Astronomical Union (IAU). The relation
between TCG and TCB will be discussed in Section II below.

Use in Gaia: TCG is used as an intermediate step to compute TCB moments of reception
of a time packet originally labelled by UTC (or GPS time). It is only used as intermediate
step for the OBMT calibration.

– TT is a conventional linear function of TCG:

TT = TCG− LG × (JDTCG − T0)× 86400 (2)

with T0 = 2443144.5003725, LG = 6.969290134× 10−10. The coefficients of the linear
function are chosen is such a way that TT is as close as possible to proper time of an
observer situated on the rotating geoid. This definition is given by the IAU 2000 [16].

Use in Gaia: TT is used as an intermediate step to compute TCB moments of reception
of a time packet originally labelled by UTC (or GPS time). It is only used as intermediate
step for the OBMTcalibration.

– International atomic time (TAI) is a high-precision atomic coordinate time standard
representing a practical realization of TT. TAI is related to TT as
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TT = TAI + 32.184s. (3)

Use in Gaia: TAI is used as an intermediate step to compute TCB moments of reception
of time packets originally labelled by UTC (or GPS time). It is only used as intermediate
step for the OBMTcalibration.

– Coordinated Universal Time (UTC) is a time standard based on International Atomic
Time (TAI). UTC differs from TAI by an integer number of leap seconds, so that UT1−
UTC stays smaller than 0.9 s in absolute value, UT1 being the rotation angle about the
Earth pole (UT1 can be regarded as a time determined by the rotation of the Earth).
UTC and TAI are related as

TAI = UTC + dAT (UTC), (4)

where dAT is the number of leap seconds up to given moment of UTC. The leap seconds
are announced in the IERS Bulletins C (http://www.iers.org). The whole history
of function dAT (UTC) can be found, e.g., in http://hpiers.obspm.fr/eoppc/bul/

bulc/UTC-TAI.history. These values are also included in Gaia Parameter Database
as GaiaParam.Nature.TAIMINUTC_CONSTANT.

Use in Gaia: UTC is used to label (time stamp) time packets. It is only used in the
raw time packets and as intermediate step for the OBT calibration.

– GPS time is the atomic time scale implemented by the atomic clocks in the GPS
ground control stations and the GPS satellites themselves. GPS time was zero at 0h
6-Jan-1980 and since it is not perturbed by leap seconds. GPS time is now ahead of
UTC by the corresponding number of leap seconds. The relation to TAI is fixed:

TAI = GPS + 19 s. (5)

Use in Gaia: GPS time is not used in the Gaia data processing and described here
for completeness. It could appear in the Gaia data processing chain, e.g., in the time
labels of the time packets (instead of UTC), but the ESA ground stations use UTC. One
more possible application of GPS time was the data processing for Nano-JASMINE [11]
(but this project was eventually abandoned).

II. TRANSFORMATION BETWEEN TCB AND TCG

The transformation between t = TCB and T = TCG is a part of the standard transformation
between BCRS and GCRS coordinates as defined by the IAU (see IAU 2000 Resolutions at
http://www.iau.org/administration/resolutions/general_assemblies/ and [16]):

T = t− 1
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where

d

dt
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∂xj
wext(xE) +

1

2
δijẇext(xE), (11)

C(t,x) =− 1

10
r2E(ȧiEr

i
E). (12)

Here xiE, viE, and aiE are the barycentric position, velocity and acceleration vectors of the
Earth, the dot stands for the total derivative with respect to t, and

Qa = δai

[
∂

∂xi
wext(xE)− aiE

]
. (13)

The external potentials, wext and wi
ext, are given by

wext =
∑
A 6=E

wA,

wi
ext =

∑
A 6=E

wi
A , (14)

where A enumerates solar system bodies and E stands for the Earth. For the purposes of
time transformations for Gaia it is sufficient to consider solar system as a system of N mass
monopoles (bodies characterized by their masses only; no further structure of gravitational
field, e.g. quadrupole, is taken into account). In this case one has

wA(x) =
GMA

|x− xA|
+O(c−2),

wi
A(x) =wA(x) viA , (15)

where MA is the mass of body A, xA and vA are the position and velocity of body A.

A. Transformation between TCB and TCG at a given spatial point

For Gaia it is sufficient to consider the transformation between TCB and TCG only within
a geocentric sphere with radius |rE| < 2× 109 m (this sphere contains the Gaia satellite at
any moment of time). On the other hand, one can expect that typically the transformations
will be applied at the locations of ground stations so that |rE| < 6.4 × 106 m. Let us give
the estimates of the maximal values of the position-dependent terms in (6) for these two
cases. Since the time resolution of Gaia is worse than 1 ns, it is clear from the values in
Table I that it is sufficient to take into account only position-dependent terms of order c−2

and neglect terms proportional to Bi, Bij and C.
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term\region |rE | < 6.4× 106 m |rE | < 2× 109 m

− 1
c2
viEr

i
E 2.2× 10−6 s 6.8× 10−4 s

+ 1
c4
Bi(t)riE 5.4× 10−14 s 1.7× 10−11 s

+ 1
c4
Bij(t)riEr

j
E 1.5× 10−18 s 1.4× 10−13 s

+ 1
c4
C(t,x) 4.6× 10−24 s 1.4× 10−16 s

TABLE I: Estimations of location-dependent terms in the TCB-TCG transformation.

On the other hand, transformation (6) can be split into the transformation at the geo-
center (with rE = 0) and the position-dependent term:

T = Tgeocenter(t)−
1

c2
viEr

i
E . (16)

Computation of Tgeocenter(t) is discussed in the Section II B.

B. Transformation between TCB and TCG at the geocenter

The well-known differential relation between T = TCG and t = TCB at the geocenter reads

dTgeocenter
dt

= 1 + F (t), (17)

F (t) =− 1

c2
Ȧ(t) +

1

c4
Ḃ(t) +O(c−5). (18)

This is the part of (6) for riE = 0. Here Ȧ(t) and Ḃ(t) are defined by Eqs. (8)–(9). Again
for the solar system considered as a system of N mass monopoles, one has
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1
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∑
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∑
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∑
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2(1 + γ)viAv
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E −

(
γ +

1

2

)
v2E − (1 + γ)v2A +

1
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i
EA

+
1

2
(viAr

i
EA/rEA)2

)
, (20)

where capital Latin subscripts A, B and C enumerate massive bodies, E corresponds to the
Earth, MA is the mass of body A, rEA = xE − xA, rEA = |rEA|, vA = ẋA, aA = v̇A, a
dot signifies time derivative with respect to t = TCB, and xA is the BCRS position of body
A. The PPN parameters β and γ (both equal to 1 in general relativity) is given here for
completeness, and normally should be put to 1 for practical calculations.
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Standard way to calculate the relation (17) between TCB and TCG at the geocenter is to
compute the integral defining this relation numerically. This way was used, for example, in
[3] to compute the “time ephemeris” (see, Eqs. (2) and (24) of [3] or Eq. (3) of [5]). The
integration is usually done using some advanced adaptive algorithm like Newton-Cotes one.
The same way has been used in [13] in the similar situation to relate the proper time of
Gaia with TCB.

In this note a different way (first suggested in [7]) is described. Namely, the differential
equation relating TCB and TCG at the geocenter can be integrated numerically using any
reasonable integrator for ordinary differential equations. The advantage of this approach is
(1) a better control of numerical errors (any standard way to check the numerical accuracy,
e.g. forth and back integration, can be used here), and (2) a simple exact way to invert the
function (e.g., to compute not only TCG(TCB), but also TCB(TCG) at the geocenter).

Let us now define two functions ∆t(t) and ∆T (T ) such that

Tgeocenter = t+ ∆t(t), (21)

t=Tgeocenter −∆T (Tgeocenter). (22)

Omitting subscript ’geocenter’, one has two ordinary differential equations for ∆t(t) and
∆T (T ):

d∆t

dt
=F (t), (23)

d∆T

dT
=

F (T −∆T (T ))

1 + F (T −∆T (T ))
. (24)

These relations are exact, while expression (18) for F is approximate. Initial conditions
for these two differential equations are given by the IAU definitions of TCB and TCG: TCB =
TCG = 32.184 s on 1977, January 1, 0h 0m 0s TAI at the geocenter. In terms of Julian Dates
JDTCB and JDTCG in TCB and TCG, respectively one has:

∆t(JDTCB = 2443144.5003725) = 0, (25)

∆T (JDTCG = 2443144.5003725) = 0. (26)

Any reasonable integrator for ordinary differential equations can be used to integrate the
differential equations (23)–(24) with given initial conditions (25)–(26). The accuracy of
numerical integrations can be automatically checked, e.g., by integrating forth and back and
comparing the results. The consistency of two independent integrations (one for ∆t(t) and
another one for ∆T (T )) can be cross-checked using identities ∆t(t) ≡ ∆T (t + ∆t(t)) and
∆T (T ) ≡ ∆t(T −∆T (T )).

C. Transformation between TDB and TT at the geocenter

Eqs. (17) and, correspondingly, (23)–(24) can be modified in an obvious way to relate
any pair of the time scales TT and TDB at the geocenter. An efficient algorithm for that is
described in [8]. Indeed, similarly to (21)–(22) one has

TTgeocenter = TDB + ∆TDB(TDB), (27)

TDB= TTgeocenter −∆TT(TTgeocenter). (28)
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Omitting the subscript ’geocenter’ one has

d∆TDB

dTDB
=ATDB +BTDB

d∆t

dt
, (29)

ATDB =
LB − LG

1− LB

, (30)

BTDB =
1− LG

1− LB

= 1 + ATDB, (31)

d∆TT

dTT
=ATT +BTT

d∆T

dT
, (32)

ATT =
LB − LG

1− LG

, (33)

BTT =
1− LB

1− LG

= 1− ATT, (34)

where the derivatives d∆t/dt and d∆T/dT are defined by (23)–(24) and must be expressed
as functions of TDB and TT, respectively, when used in (29) and (32). For TT the initial
condition is the same as for TCG and TCB, while for TDB it is given by TDB = −6.55× 10−5 s
for the same event. The initial conditions for ∆TDB and ∆TT are chosen according to
the IAU 2006 Resolution defining TDB (see the definition of TDB in Section I above): for
JDTT = 2443144.5003725 one has JDTDB = 2443144.5003725 − 6.55 × 10−5/86400 and vice
versa. Therefore, one has

∆TDB(JDTDB = 2443144.5003725− 6.55× 10−5/86400) = +6.55× 10−5 s. (35)

∆TT(JDTT = 2443144.5003725) = +6.55× 10−5 s, (36)

Again (29) and (32) with initial conditions (35) and (36), respectively, can be numerically
integrated.

Note that from (27)–(28) one gets the following identities that can be used to cross-check
the results: ∆TT(TT) ≡ ∆TDB(TT−∆TT(TT)) and ∆TDB(TDB) ≡ ∆TT(TDB + ∆TDB(TDB)).

III. TRANSFORMATION BETWEEN TG AND TCB

The relation between the proper time of Gaia τ = TG and t = TCB is given by the basic
relation of metric gravity theories:

dτ

dt
= 1 + f(t), (37)

f =
1

c2
α(t) +

1

c4
β(t) +O(c−5), (38)
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where α(t) and β(t) are defined by the metric tensor of the BCRS :

α=−1

2
v2o −

∑
A

GMA

roA
, (39)

β=−1

8
v4o +

(
β − 1

2

) (∑
A

GMA

roA

)2

+ (2β − 1)
∑
A

(
GMA

roA

∑
B 6=A

GMB

rAB

)

+
∑
A

GMA

roA

(
2(1 + γ)viAv

i
o −

(
γ +

1

2

)
v2o − (1 + γ)v2A +

1

2
aiAr

i
oA

+
1

2
(viAr

i
oA/roA)2

)
. (40)

Here roA = xo − xA, and xo and vo are the BCRS position and velocity of Gaia. Similar to
(21)–(22) we introduce functions δt(t) and δτ(τ) as

τ = t+ δt(t), (41)

t= τ − δτ(τ). (42)

Substituting these definitions in (37) one gets

dδt

dt
= f(t), (43)

dδτ

dτ
=

f(τ − δτ(τ))

1 + f(τ − δτ(τ))
. (44)

These are exact relations. The expression for f(t) given above is approximate. The initial
conditions for these differential equations come from the condition that τ = TG is numerically
equal to t = TCB at some moment t = t0: τ(t0) = τ0 = t0. This condition is equivalent to

δt(t0) = 0, (45)

δτ(τ0) = 0. (46)

The initial condition for TG is discussed in Section 3.5.1 of [1]. The actual value of t0
was fixed after the launch (since the Gaia ephemeris should be available at this mo-
ment). The value of t0 is available as Julian Date of TCB in Gaia Parameter Database as
GaiaParam.Mission.GAIAPROPERTIME_ZEROPOINT_TCB and is equal to JD2457023.5 TCB.

IV. REPRESENTATION OF FUNCTIONS BY CHEBYSHEV POLYNOMIALS

A time ephemeris y(t) (this can be any of the functions ∆t(t), ∆T (T ), ∆TDB(TDB),
∆TT (TT ), δt(t) or δτ(τ) or any other function of one argument) results from numerical
integrations of the corresponding ordinary differential equations, t being the argument of
the time ephemeris under consideration (not necessarily TCB). For time transformations one
needs to evaluate y(t) for any t within the validity interval tbeg ≤ t ≤ tend. Depending on the
used integrator one gets either values of y(t) for fixed moments ti or a sort of interpolating
polynomials that can be evaluated for any t. One convenient method to construct a compact
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representation of y(t) that can evaluate y(t) for any t in the validity interval is to divide the
whole validity interval into granules [tk, tk+1] and represent y(t) on each of the granules as a
Chebyshev approximation polynomial:

y(x) ≈ ỹ(x) =
n∑

i=0

ai Ti(x), (47)

where Ti(x) are the Chebyshev polynomials of first kind, ai are numerical coefficients, n is
the order of the approximating polynomial, and −1 ≤ x ≤ 1 is a scaled independent variable
(e.g. for interpolating between tr and tr+1 one has x = 2 (t− tr)/(tr+1− tr)− 1). In general,
the size of the granule ∆tr = tr+1− tr and the order n can be vary from granule to granule,
but for our purposes it is sufficient to consider that ∆tr = ∆t = const and n is fixed. The
Chebyshev polynomials Ti(x) can be computed using the recurrence formula

T0(x) = 1, (48)

T1(x) =x, (49)

Ti(x) = 2xTi−1(x)− Ti−2(x), i ≥ 2. (50)

In the following, a single granule will be discussed. The construction of the approximating
function should be done subsequently for all the granules.

The optimal values of coefficients ai can be found in a number of well-known ways starting
from a series of values of function y(x) to be approximated. A convenient way to calculate
ai is described in [14]. The main difference to [14] is that we consider the approximating
functions only for function y(x) itself and not for its derivative. Although this is a technical
detail, it is preferable to summarize all the formulas we need in the form that is directly
used for Gaia time ephemerides.

Let us consider m points equally spaced in the granule

xk = −1 + 2
k − 1

m− 1
, k = 1, . . . ,m (51)

and assume that values yk = y(xk) are known. Note that x1 = −1 and xm = 1 for any m.
Then we have m equations with n+ 1 unknowns ai:

n∑
i=0

Ti(xk) ai = yk. (52)
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This can be written in a matrix form

Aa=y, (53)

A=


T0(x1) T1(x1) . . . Tn(x1)

T0(x2) T1(x2) . . . Tn(x2)

. . .

T0(xm)T1(xm) . . . Tn(xm)

 , (54)

a=


a0
a1
. . .

an

 , (55)

y=


y1
y2
. . .

ym

 . (56)

In general, the more points (xk, yk) one has and the larger n one chooses, the better is the
resulting approximation. Clearly, for m > n + 1 the system of equations should be solved
in the sense of least squares:

a =
(
AT A

)−1
AT y, (57)

where AT is the transpose of A. Note that the matrix A consists only of the values of
Chebyshev polynomials Ti(xk), i = 0, 1, . . . , n at points xk, k = 1, . . . ,m. Therefore, the

matrix
(
AT A

)−1
AT can be precomputed for any given n and m.

An important point is the behavior of the approximating function at the boundaries of
the granules. If no additional conditions are added to (52) the approximating function is not
continuous at the boundaries. This means that the polynomial (47) valid for tk−1 ≤ t ≤ tk
and that valid for tk ≤ t ≤ tk+1 do not have the same value for t = tk (this is true for any
k). This discontinuity can be eliminated if one requires than the approximating functions
have exactly the values of y(x) at the boundaries of the granules. Mathematically, this can
be formulated as two constraints

n∑
i=0

Ti(x1) ai = y1, (58)

n∑
i=0

Ti(xm) ai = ym, (59)

that should be satisfied exactly. These constraints effectively eliminate two degrees of free-
dom of the approximating function (fix two coefficients among ai). It is convenient to achieve
this using Lagrange multipliers. The following system of equations should be solved (this
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system contains the system of normal equations for (53)):

Bp=Cy, (60)

B=


AT A

T0(x1) T0(xm)

T1(x1) T1(xm)
...

...

Tn(x1)Tn(xm)

T0(x1) T1(x1) . . . Tn(x1) 0 0

T0(xm)T1(xm) . . . Tn(xm) 0 0


, (61)

C=


AT

1 0 0 . . . 0 0 0

0 0 0 . . . 0 0 1

 , (62)

p=



a0
a1
. . .

an

λ1
λ2


, (63)

where λi are the Lagrange multipliers, the values of which are of no interest in the context
of this note. The coefficients ai can be computed from the first n+ 1 rows of matrix B−1C:

p = B−1Cy. (64)

Again this can be computed independently of yk and the granule size ∆t.
In principle, an approximation to the derivative dy(x)/dx can be easily computed from

(47) using the fact that
d

dx
Ti(x) = i Ui−1(x), (65)

where Ui(x) are the Chebyshev polynomials of the second kind

U0(x) = 1, (66)

U1(x) = 2 x, (67)

Ui(x) = 2 xUi−1(x)− Ui−2(x), i ≥ 2. (68)

Note that using constraints (58)–(59) one gets the approximating function that is continuous,
but not differentiable at the boundaries: the derivative of (47) is not necessary continuous
at the boundaries of the granules. If the exact values of the derivatives y′(x1) = y′1 and
y′(xm) = y′m at the boundaries are available, they can be used to formulate two more
constraints for the approximating function

n∑
i=1

i Ui−1(x1) ai = y′1, (69)

n∑
i=1

i Ui−1(xm) ai = y′m, (70)
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FIG. 1: The values of the condition number s of B as function of the order of approximating

function n and the number of points m. The condition number is computed using singular value

decomposition (SVD) as ratio of the largest and smallest singular values. All values greater or

equal to 1010 are shown red.

that can also be implemented using Lagrange multipliers. One could add further constraints
to get also higher derivatives continuous at the boundaries, but we will not consider this
explicitly. In case of time ephemerides it is not expected that they will be used to compute
the derivatives. Therefore, it seems to be sufficient to include only two constraints (58)–(59)
(this guarantees that the approximating function is continuous, not necessarily differentiable
at the boundaries of the granules).

The coefficients ai can be computed a linear combination of a set of m values of yk:

ai =
m∑
k=1

αi
k yk, i = 0, . . . n, (71)

where αi
k are the corresponding elements of matrix B−1C (or matrix

(
AT A

)−1
AT if no con-

straints are considered) as given by (64) (or (57) without constraints). Note that coefficients
αi
k depend on n and m, but not on the size of the granules ∆t.

In order to compute αi
k one has to invert matrix B (or AT A). Figure 1 shows the

condition number of matrix B. It is clear that for larger n (n > 20) and m only slightly
larger than n + 1 the matrix is (very) close to degeneracy (for example, for n = 64 and
m = n + 1 = 65 the condition number of B is 1.13 × 1033). However, if m is chosen
sufficiently large the condition number remains moderate even for large n. Interestingly, one
can find that the minimal condition number for given n is reached for m = mmin, where
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mmin ≈
[

0.71 (1 + n) + 0.075n2
]

+ 1, (72)

[x] being the integer part of x. With m = mmin, the condition number of matrix B remains
below 103 for n ≤ 100. Moreover, Figure 1 shows that the condition number grows only
moderately with m for m > mmin. Direct numerical computations show that the condition
number of AT A does not exceed that of B for 4 ≤ n ≤ 64 and n+ 1 ≤ m ≤ 100.

In order to avoid numerical stability problems the computation of αi
k has been first

implemented using arbitrary-precision arithmetic using Mathematica. A library of the values
αi
k for 4 ≤ n ≤ 32 and n+1 ≤ m ≤ 120 with the constraints (58)–(59) has been pre-computed

using arbitrary-precision arithmetic and can be used directly in (71). This Mathematica
software to calculate αi

k for arbitrary n and m and for various sets of constraints at the
boundaries is available from the author. On the other side, using m ≥ mmin it is safe
to compute αi

k directly in the [Java-]code using standard 64-bit arithmetic. Precomputed
values of αi

k make the conversion to Chebyshev representation (47) very fast as soon as n,
m, and the granule size ∆t are fixed.

Choice of n, m and the size of granules ∆t is a non-trivial procedure which requires
direct trials. Reducing the granule size ∆t and increasing n both lead to more accurate
approximating functions. Smaller size of the granules lead to larger data volume necessary
to represent y(t) for the whole validity interval tbeg ≤ t ≤ tend. Generally speaking, the
faster y(x) is changing, the larger n and/or the smaller granule size ∆t are required to
approximate it with a given accuracy. For a given y(x) higher values of n require more
arithmetic operations to compute the approximating function. For a given approximation
accuracy the choice of n, m and ∆t is, therefore, a typical optimization problem between
computational efforts and data volume. For the time transformations in Gaia it seems
reasonable to keep the evaluation effort as low as possible while the amount of data seem to
play a secondary role. Our numerical experiments with time ephemerides show that in order
to attain the accuracy of 0.01 ns for the granule size of 1 day it is sufficient to have n = 4.
This means that the time ephemerides can be evaluated at a cost of a few multiplications
and additions.

Once the approximating function is computed it is easy to check its accuracy by comparing
its values with y(x) at some test values xj which do not necessary coincide with the points
used in (53) to construct the approximating function. If the accuracy check shows deviations
to y(x) larger than some desired level, the parameters of the approximating function should
be changed and the process iterated. The simple strategy chosen for Gaia time ephemerides
is described below in Section V C.

The most efficient way to evaluate a linear combination of Chebyshev polynomials is
given by the Clenshaw algorithm described, e.g., by Eq. (5.8.11) of [15]. The Clenshaw
algorithm for (47) can be written as:

z = 2x

dn+1 = dn+2 = 0

for k = n, n− 1, . . . , 1

dk = z dk+1 − dk+2 + ak

next k

f(x) = x d1 − d2 + a0
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The Clenshaw algorithm is numerically stable and superior to the straightforward recurrent
computation of the values of the Chebyshev polynomials themselves. Note that this algo-
rithm with a slight modification can also be used to compute the derivative of (47) using
(65)–(68).

V. JAVA IMPLEMENTATION

A. User-oriented time transformations: class BasicTimeTransformations

The GaiaTools package gaia.cu1.tools.time contains most of the functionality required
by the end users in Gaia DPAC. So,me parts of the code described below is intended for
internal use in gaia.cu1.tools.time and by the software that creates the transformations
between OBMT and TG (this software and the algorithms used by that software are not part
of this document).

The time transformations described above are all implemented in class
BasicTimeTransformations. The time transformations can be split into three groups:
(1) location-independent, (2) with assumed location (Gaia or the geocenter), (3) location-
dependent. The time transformation methods of the first two kinds have the signature

long XXX2YYYccc(long ns, double refEpoch)

These methods implement time transformation from time scale XXX to scale YYY. The in-
put time moment is given by two input parameters: ns gives the offset in nanoseconds
from refEpoch, that represents a Julian date in the input time scale JDXXX = refEpoch.
The output time moment is given by the return value of the function being the offset in
nanoseconds from the epoch JDYYY = refEpoch. Note that refEpoch is used as value of
the epoch in both XXX and YYY. The last part ccc of the name is empty in case of location-
independent transformations and indicates the location if a location was assumed (it could
be AtGeocenter or AtGaia). The location-dependent transformations have one additional
parameter:

long XXX2YYY(long ns, double refEpoch, GVector3d p)

where p is the vector representing the coordinate position of the event, at which the time
transformation should be evaluated. Depending on the transformation it can be vector
rE = x − xE (the difference of the BCRS position x, at which the transformation should
be computed, and the BCRS position xE of the Earth) or the GCRS coordinates X of the
event. Exact meaning of p is always described in the comments of the corresponding method
(Javadoc).

The implemented transformations are:

– between UTC and TAI (location-independent): UTC2TAI, TAI2UTC

– between TT and TAI (location-independent): TT2TAI, TAI2TT

– between GPS and TAI (location-independent): GPS2TAI, TAI2GPS

– between TT and TCG (location-independent): TT2TCG, TCG2TT
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– between TDB and TCB (location-independent): TDB2TCB, TCB2TDB

– between TDB and TT at the geocenter (assumed location): TDB2TTAtGeocenter,
TT2TDBAtGeocenter

– three version of the transformations between TCB and TCG:

- at the geocenter (assumed location): TCB2TCGAtGeocenter,
TCG2TCBAtGeocenter

- at the location of Gaia (assumed location): TCB2TCGAtGaia, TCG2TCBGAtGaia

- at a given spatial location (location-dependent): TCB2TCG, TCG2TCB

– between TG and TCB (location-independent): TG2TCB, TCB2TG

All these time transformation methods are static and can be used without instantia-
tion of BasicTimeTransformations. All necessary initializations (internal constants, time
ephemerides, Earth and Gaia ephemerides, etc.) are done in a static block executed while
loading the class by the Java machine (JVM).

B. Evaluating pre-computed time ephemerides: class TimeEphemeris

The use of time ephemerides consists of two steps: (1) the creation (computation) of time
ephemeris and (2) evaluation of the time ephemerides. The creation of time ephemerides is
discussed in Section V C. The evaluation of pre-computed time ephemerides is implemented
in class TimeEphemeris. The class can deal with the following types of time ephemerides
(as defined by the enumeration TimeEphemerisType):

– TCGminusTCBparametrizedByTCB:
represents ∆TCB(TCB) from TCG = TCB + ∆TCB(TCB) at the geocenter (δt(t) in (21),
where t = TCB and T = TCG);

– TCBminusTCGparametrizedByTCG:
represents ∆TCG(TCG) from TCB = TCG−∆TCG(TCG) at the geocenter (∆T (T ) in (22),
where t = TCB and T = TCG);

– TTminusTDBparametrizedByTDB:
represents ∆TDB(TDB) from TT = TDB + ∆TDB(TDB) at the geocenter (∆TDB(TDB) in
(27));

– TDBminusTTparametrizedByTT:
represents ∆TT(TT) from TDB = TT−∆TT(TT) at the geocenter (∆TT(TT) in (28));

– TGminusTCBparametrizedByTCB:
represents δTCB(TCB) from TG = TCB + δTCB(TCB) (δt(t) in (41), where t = TCB and
τ = TG);

– TCBminusTGparametrizedByTG:
represents δTG(TG) from TCB = TG−δTG(TG) (δτ(τ) in (42), where t = TCB and τ = TG).
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Two representations of time ephemerides are supported (as defined by the enumeration
TimeEphemerisRepresentation):

– CHEBYSHEV: piecewise Chebyshev polynomials (see Section IV);

– SPLINE: cubic splines with uniformly distributed knots (splines are fully implemented,
but not used in the normal work and not described here).

We note here that for the Gaia data processing only piecewise Chebyshev polynomials
are used. Class TimeEphemeris has two constructors. The first one is intended for the user.
The only parameter of this constructor of TimeEphemeris is the type of the time ephemeris
(again as defined by the enumeration TimeEphemerisType). The constructor loads the
requested time ephemeris and prepares the efficient evaluation. The other constructor allows
to create an instance of TimeEphemeris specifying all the internal data of a time ephemeris
as parameters. This constructor is used in package createTimeEphemerides (Section V C)
to check the validity of newly created time ephemerides.

The object of class TimeEphemeris can be interrogated for various constants concerning
the time ephemeris: its type, its validity interval, its representation, and further details of
representation. Finally, method

double getValue(long ns, double refEpoch)

allows one to evaluate the time ephemeris for a given moment of the input time scale.
The format of the input moment has the same form as described in Section V A: off-
set ns in nanoseconds from a reference epoch refEpoch in Julian days. We note that
the default value of refEpoch is given in the Gaia Parameter Database as Julian Date
GaiaParam.Nature.JULIANDATE_J2010 and is equal to 2455197.5. As it is already men-
tioned above, these value is used for Julian Dates in different time scales for different time
ephemerides and thus don’t correspond to the same physical moment of time. The output
value is the value of the corresponding time ephemeris in seconds.

We note that we have four more time ephemeris types in TimeEphemerisType:

TGminusOBMTparametrizedByOBMT,

OBMTminusTGparametrizedByTG,

TCBminusOBMTparametrizedByOBMT,

OBMTminusTCBparametrizedByTCB.

These types of the time ephemerides are used by HATT [9, 10] to relate the Gaia clock
readings OBMT with TG and directly with TCB. The semantics of these ephemerides is clear
from the names and the analogous time ephemerides discussed above.

C. Creation of the time ephemerides: package createTimeEphemerides

The formulas given in Sections II B and II C can be directly used to calculate the relations
between TCB and TCG or TDB and TT at the geocenter for any given ephemeris providing the
masses of gravitating bodies, their position, velocities and accelerations. The authors of
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the solar system ephemerides can compute these relations with better accuracy during the
process of construction of the ephemeris (compared to the accuracy that can be achieved
when constructing the time ephemeris a posteriori with an export version of solar system
ephemeris). The accuracy is better since the authors of solar system ephemerides have
information on the additional bodies (asteroids, etc.) used in the dynamical model and not
included into the export versions of the ephemerides. One more advantage of integrating the
relations between TCB and TCG at the geocenter during the construction of ephemerides is
that the export version of solar system ephemerides are less accurate by themselves compared
to the raw numerical integrations, although this second argument plays only a secondary
role.

For practical purposes one needs only one pair of transformation: either between TCB

and TCG or between TDB and TT. The other transformation can be computed from the imple-
mented one using the definition of TDB as function of TCB and that of TT as function of TCG
(see Section I above). In the standard implementation the relation between TCB and TCG

is computed via the relation between TDB and TT at the geocenter. Both transformations
from TCB to TCG and from TDB to TT are parts of the export versions of INPOP ephemerides.
The export format of INPOP is converted into internal format suitable for the DPAC Java
environment by class InpopTimeEphemerisImporter.

Since the solar system ephemeris in GaiaTools does not normally cover JD =
2443144.5003725 (1 January 1977), it is not possible to use the correct initial conditions
(35)–(36). This means that within the Gaia Java environment it is normally not possible to
compute the relations between TCB (or TDB) and TCG (or TT) at the geocenter. As clarified
above, this is also not required since the time ephemeris between TT and TDB (and between
TCG and TCB) is included in the INPOP export ephemerides and can be used directly.

The code used for the transformation between TG and TCB (see Section III) is almost
identical to the code that can compute the relations between TCB (or TDB) and TCG (or TT)
at the geocenter. As a consistency check of the code, the used computational method, and
the INPOP time ephemeris, the relation between TT and TDB at the geocenter is computed by
class TtTdbIntegrator. The numerical integration for (29)–(32) is performed using artificial
initial conditions

∆TDB(JDTDB = JD0) = 0. (73)

∆TT(JDTT = JD0) = 0, (74)

where JD0 is an artificially chosen moment of time lying within the validity period of the
solar system ephemeris in GaiaTools. As a result one gets functions ∆TDB and ∆TT that
differ from the correct ones by an additive constant. Then the difference between ∆TDB

from the INPOP and our numerical integration is computed and the constant part of the
difference is subtracted. The resulting difference can be analyzed as usual. Our calculations
have demonstrated that the INPOP time ephemeris is restored by our direct numerical
computation to about 10−17 in rate and 50 ps for quasi-periodic terms. This accuracy is
fully sufficient for Gaia. Nevertheless, the reasons of this difference are also clear. First,
the INPOP time ephemeris is computed using asteroids in (19)–(20); the asteroids are not
used in our integration since they are not included into the export version of the INPOP
ephemerides. Second, we use the export version of the INPOP ephemeris while the INPOP
time ephemeris is computed with slightly different version of INPOP coming directly from
numerical integrations. Other reasons may exist [12].

Class TtTdbIntegrator with flag testOnly set to true, computes functions ∆TDB and



18

∆TT with initial conditions (73)–(74), checks the consistency of numerical integrations and
interpolations, and compares the results for ∆TDB with the INPOP time ephemeris. If
flag testOnly is set to false, class TtTdbIntegrator computes functions ∆TDB and ∆TT,
checks the consistency of numerical integrations and interpolations, represents the resulting
function in terms of cubic splines or Chebyshev polynomials (see Section IV) and stores the
resulting representations in a form which can be used by the class TimeEphemeris to evaluate
the time ephemerides for any suitable value of argument. In this case the corresponding time
transformation can be computed without the INPOP time ephemeris. This possibility is not
supposed to be used in normal case.

Class TcgTcbIntegrator computes functions ∆t and ∆T defined in (21)–(22), checks the
consistency of numerical integrations and interpolations, represents the resulting function
in terms of cubic splines or Chebyshev polynomials (see Section IV) and stores the result-
ing representations in a form which can be used by the class TimeEphemeris to evaluate
the functions for any suitable value of argument. Using this class the corresponding time
transformation (that between TCB and TCG at the geocenter) can be computed without the
INPOP time ephemeris. This possibility is not supposed to be used in normal case since the
transformation between TCB and TCG at the geocenter is computed from that between TDB

and TT at the geocenter, and the latter is taken from the INPOP ephemeris.
Class TgTcbIntegrator computes functions δt and δT defined in (41)–(42), checks the

consistency of numerical integrations and interpolations, represents the resulting function in
terms of cubic splines or Chebyshev polynomials (see Section IV) and stores the resulting
representations in a form which can be used by the class TimeEphemeris to evaluate the
functions for any suitable moment of time. This class represents the normal source of the
relation between TG and TCB and is intended to be used each time new version of the Gaia
ephemeris is delivered to DPAC.

Numerical integrations are performed using the ODEX (Gragg-Bulirsch-Stoer) integra-
tor as implemented in apache.common.math. For each integration the resulting numerical
accuracy is automatically checked by integrating forth and back. The consistency of each
pair of functions

(
∆t(t),∆T (T )

)
,
(
∆TDB(TDB),∆TT(TT)

)
, and

(
δt(t), δτ(τ)

)
) is automati-

cally checked using the identities like ∆t(t) = ∆T (t+ ∆t(t)) and ∆t(T −∆T (T )) = ∆T (T )
(see above). Class NumericalIntegration is a convenient driver for ODEX. It implements
integrations forth and back for the accuracy check, provides access to the statistics, etc.
Class TimeDerivative implements all six functions on the right-hand sides of the differen-
tial equations for the time ephemerides.

Class CoefficientsCreator contains one static method GenerateCoefficients that
allows one to compute the coefficients αi

k needed to compute Chebyshev approximating
functions. Coefficients αi

k can be computed for any n and m and in two versions: uncon-
strained and constrained in such a way that the approximating function is continuous at the
edges of the granules (see Section IV).

Class Util contains a number of static methods. Many of the methods are only used for
internal purposes and will not be mentioned here. Method createChebyshev allows one to
create the Chebyshev representation of a function. Section IV discusses this process. For
Gaia time ephemeris a simple procedure to choose order of polynomials n, number of points
per granule m and the size of granule ∆t is adopted. Two parameters are fixed: ∆t = 1 day,
m = 49. First, coefficients αi

k are calculated for n = 4 and m = 49 (the condition number
of the corresponding matrix is 168.8). Second, the approximating function is constructed
with these αi

k and ∆t = 1 day. Third, the accuracy of the approximating function is
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checked on a grid with the time step of 30 sec. If the error exceeds 0.01 ns the coefficients
αi
k for n = 5, 6, . . . , 21 and m = 49 (the condition number is always less than 168.8) are

subsequently calculated and used to construct the approximating function with ∆t = 1
day. If the accuracy of 0.01 ns could not be reached even with n = 21, the code gives up
suggesting to check the situation manually. In this case, the function to be approximated
has some unusual peculiarities (e.g., discontinuities, etc.). Our tests show that normally
n = 4 is fully sufficient to achieve the accuracy of 0.01 ns. This makes the calculation of
time ephemerides rather cheap.

Method createSpline creates, for a given function, a cubic spline with evenly distributed
knots. In principle, this is an alternative for the Chebyshev representation. It is also fully
implemented and can be used for all time ephemerides. However, detailed tests have shown
that the splines is worse than the Chebyshev polynomials not only in the number of required
coefficients (this is obvious and was expected), but also in the time needed to evaluate them.
Therefore, the splines are not normally used.

Method createFits creates a fits file (see Section V D) with binary table fully defining
a time ephemeris. These tables can be read by the standard constructor of TimeEphemeris.

Method createTimeEphemeris is a convenient driver creating the requested time
ephemeris (e.g., as fits file) from a continuous representation of the function resulted from
numerical integration. The method creates a standard representation of the time ephemeris
(spline or Chebyshev polynomials), checks the accuracy of the time ephemeris and creates
corresponding fits file. This method uses CoefficientsCreator.GenerateCoefficients,
createChebyshev or createSpline, and createFits.

D. Integration into GaiaTools

Two classes BasicTimeTransformations and TimeEphemeris described above
have been integrated into GaiaTools by Uwe Lammers and are in package
gaia.cu1.tools.time. Package createTimeEphemerides remains outside of GaiaTools as
gaia.cu3.remat.time.createTimeEphemerides. The main change of the code concerns
one more format for the time ephemerides: in addition to the fits files one can create and
use gbin files (a database format used in GaiaTools). To this end, both TimeEphemeris and
classes of createTimeEphemerides have got additional methods which are used internally.
The details of the configuration needed to use the functionality of the Gaia time ephemerides
is described in the corresponding technical documentation.
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