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Abstract
This note expands the minimum-dimension LSF modelling (GAIA–C3–TN–LU–LL–
084–01) with a few more useful ideas: (1) that the LSF model is formulated such
that the area normalization is implicit; (2) that the non-negativity of the LSF can be
guaranteed by simple constraints on the parameters; and (3) that the model should
work also with very few parameters, even without any parameters at all.
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1 Introduction

A previous technical note (GAIA–C3–TN–LU–LL–084–01: Minimum-dimension LSF mod-
elling (Lindegren, LL-084)) described how the Line Spread Function (LSF) can be expanded
in basis functions that were derived by Principal Component Analysis (PCA) of a large en-
semble of randomly generated, but physically plausible LSFs. Sorting the basis functions by
importance (as measured by the singular values of the dispersion matrix) allows to define the
smallest set of basis functions that are able to represent typical LSFs to a given precision. The
LSF is written as a linear combination of the basis functions, and the coefficients are the model
parameters. The note also suggested a way to represent the basis functions by means of a spline
function with analytical tails.

A few important questions were left open in Lindegren (LL-084). Any LSF model L(u) should
satisfy two constraints: non-negativity (L(u) ≥ 0 for all u), and unit area (

∫ +∞
−∞ L(u) du = 1).

The representation in Lindegren (LL-084) does not guarantee non-negativity, and unit area is
introduced as an explicit constraint on the model parameters (Eq. 3 in Lindegren (LL-084)).
Moreover, the actual choice of model parameters was rather vague, partly because of the nor-
malization problem.

In this note I propose a very simple extension of the model which eliminates the normalization
constraint, gives some handle on the non-negativity issue, and provides a clear proposal for
the choice of model parameters. The resulting model is quite general and not restricted to the
particular numerical/analytical representation described in Lindegren (LL-084).

2 Expansion of the LSF in basis functions

This section recalls the formulation in Lindegren (LL-084). Based on Eq. (5) of that note, but
omitting the tilde on L and redefining the meaning of N , the LSF model can written in terms of
the basis functions Bn(u) as

L(u) =
N−1∑
n=0

cnBn(u− δu) , (1)

where the shift δu is a model parameter defining the origin of the LSF (Lindegren, LL-080). It
should be noted that none of the basis functions corresponds to a (small) shift of the profile, so
δu is an independent model parameter; it is also necessary for representing, e.g., chromaticity.
This model has N + 1 parameters (δu, c0, c1, . . . , cN−1). However, there are only N free
parameters, since the coefficients must satisfy the unit area constraint

N−1∑
n=0

bncn = 1 , (2)
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where

bn =

∫ +∞

−∞
Bn(u) du . (3)

An example of the first 13 basis functions B0(u) through B12(u) was shown in Figs. 4–6 of
Lindegren (LL-084). B0(u) is special, because it is simply the ensemble mean LSF; it is also
strictly positive everywhere, but not accurately normalized as derived in Lindegren (LL-084),
i.e., b0 6= 1 in general.

3 Normalization of the basis functions

Let us define an equivalent set of ‘normalized’ basis functions Hn(u) by the following process:

H0(u) =
1

b0
B0(u) , (4)

B̄n(u) = Bn(u)− bnH0(u)

Hn(u) =
B̄n(u)

max
−∞<x<+∞

∣∣B̄n(x)/H0(x)
∣∣
 n = 1, 2, . . . , N − 1 . (5)

Equation (4) ensures that H0(u) is normalized to unit area. The first line of Eq. (5) ensures that
the integral of any of the functions B̄n(u), n > 0, is exactly zero. The second line of Eq. (5)
ensures that |Hn(u)| ≤ H0(u) for all values of u. The intermediate functions B̄n(u) are not
further used. The new basis functions Hn(u), n = 0, 1, . . . , N − 1 have the following useful
properties:

• since they are linearly independent by construction, they span the same linear space
as the original basis functions;

• the integral of any linear combination
∑N−1

n=0 hnHn(u) is equal to h0;

• for any u we have the inequality∣∣∣∣∣
N−1∑
n=1

hnHn(u)

∣∣∣∣∣ ≤ H0(u)
N−1∑
n=1

|hn| . (6)

The first property means that any LSF that can be represented by the original basis functions
can also be represented by the normalized set, i.e., in the form

L(u) =
N−1∑
n=0

hnHn(u− δu) . (7)
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The second property means that unit area can be ensured simply by fixing h0 = 1, thus elimi-
nating one model parameter and one constraint. The third property means that non-negativity
of the LSF is guaranteed if

N−1∑
n=1

|hn| ≤ 1 . (8)

A simpler but more restrictive condition for non-negativity is obviously

|hn| ≤
1

N − 1
, n = 1, 2, . . . , N − 1 . (9)

In practice, non-negativity can almost be ensured even if these limits are exceeded, especially
if N is greater than a few.

However, it is not expected that any of these constraints is actually implemented in the LSF
calibration, as they may be too restrictive in any particular case. It is probably better to check
the non-negativity of the estimated LSF, and correct if necessary (perhaps by adjusting the
‘guilty’ coefficient).

The normalization in Eq. (5) is nevertheless useful, as it provides some absolute meaning to the
sizes of the coefficients: a coefficient whose absolute value is of the order of 1 [or (N − 1)−1,
or perhaps (N − 1)−0.5] could be considered as ‘large’.

4 Choice of model parameters

Since h0 = 1 is no longer a free parameter, we can use h0 to denote the shift of origin (instead
of δu). The complete model, with N free parameters hn, n = 0, . . . , N − 1, is then:

L(u) = H0(u− h0) +
N−1∑
n=1

hnHn(u− h0) . (10)

In the case of N = 0 model parameters (or if all the parameters are zero) it reduces to the
default (a priori) model L(u) = H0(u). Non-negativity of L(u) is strictly guaranteed if

N−1∑
n=1

|hn| ≤ 1 , (11)

although in practice the constraint can probably be somewhat relaxed if N > 2.

Although we arrived at the model in Eq. (10) via the particular basis functions derived in Linde-
gren (LL-084), the resulting model is more general: it can be applied to many other analytical
and numerical expansions of the LSF where the first component (H0) has unit area, and all
subsequent components have zero area, provided that none of the components corresponds to
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a small shift of the LSF (effectively this means that H ′0(u) cannot be represented in this ba-
sis). For some of them the normalization in the second line of Eq. (5) can be used to define
non-negativity conditions similar to the present model.
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