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1 Introduction

The concept of a Line Spread Function (LSF) is fundamental for the astrometric and photo-
metric processing of (one-dimensional) Gaia data. The importance of the concept derives from
two circumstances. First, when dealing with unresolved point sources, LSF fitting is the most
accurate way to estimate the location and flux, and the maximum accuracy is obtained when the
correct LSF is used. Secondly, when dealing with more complex sources, in particular double
and multiple stars, their disentanglement, if at all possible, necessarily relies on the linear su-
perposition of the component LSFs. In both cases, LSF fitting allows to recognize bad samples,
e.g., as caused by cosmic rays or saturation, which is not possible without an accurate LSF to
compare with. The Point Spread Function (PSF) has the corresponding role for two-dimensional
images.

The complete modelling of the CCD signal in terms of the astronomical stimulus contains many
other elements besides the LSF, including the geometric and photometric properties of the in-
strument, and various non-linear properties of the detector (saturation, CTI effects, noise, ...)
that cannot be accounted for in the LSF. This is illustrated in Fig. 1, where the LSF model (or
PSF, in the case of two-dimensional CCD data) occupies the middle box. It is preceded by
the geometric and photometric instrument models, which predict the location and flux1 of the
image in the CCD data stream, and followed by the Charge Distortion Model (CDM) and other
model components representing the response of the CCD and output electronics to the expected
photon counts. The important point to emphasize here is that the exact boundaries between the
three middle boxes in Fig. 1 are, to some extent, arbitrary and must be fixed by convention.
As the boxes typically represent distinct tasks in the processing chain, the adopted conventions
partially determine where in the processing chain the different effects are taken into account.
The boundaries need not be the same at all stages of the processing, as long as they are explicit
and well-defined; for example, they could differ between the IDT, FL and IDU tasks.

The aim of this note is to summarize, as completely and consistently as possible, current think-
ing about the role of the LSF model in the various processes, with special regard to the defini-
tion of boundaries. When necessary, a clarification of the relevant conventions is proposed. For
completeness, some basic definitions and relations concerning the LSFs and PSFs have been
gathered in Sect. 2.

Many of the concepts discussed here have developed and changed quite a lot over a number
of years. As a consequence, some previously introduced (and sometimes adopted) conventions
may have become obsolete or superseded.

1‘Flux’ is here taken to mean the total number of detected photons in a CCD observation of a source.
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FIGURE 1: Schematic illustration of the various elements that fold into the CCD data model of
an astronomical source. The exact boundaries between the middle three boxes must be fixed
by convention.

2 Some basic definitions and conventions

A number of technical notes have discussed the relevant definitions, terminology and conven-
tions related to the LSF/PSF, but since they are scattered among different documents and some
of them have changed over time, it may be convenient to summarize the most important ones
here.

2.1 Optical and effective LSF/PSF

An important first thing to note is that the LSF and PSF used in the Gaia data processing are
always the effective LSF and PSF,2 in the sense introduced by Anderson & King (2000). That is,
the LSF and PSF take into account the pixellated nature of the image, as well as the additional
image smearing caused by the TDI operation, speed mismatch during integration, and some
other effects including the charge diffusion (electronic MTF). The important consequence of
this convention is that the expected number of photons detected in sample k, from a single star
located at κ, is proportional to L(k − κ), if L(u) is the (effective) LSF (cf. Fig. 2). Thus the
integration over the nominal pixel width (10 µm) is implicitly included in the LSF.

2Sometimes (but not here) abbreviated eLSF and ePSF.
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Similar considerations apply to the (effective) PSF, which thus includes the integration over the
nominal pixel area (10 × 30 µm2) and the AC charge diffusion, in addition to the AL effects
already included in the LSF. The PSF is a function of u and the corresponding AC offset v =
m − µ, where m is the across-scan pixel coordinate of the pixel (an integer) and µ the across-
scan pixel coordinate of the image. However, since the across-scan motion of the image during
the CCD integration is highly variable and may be very significant (up to 4.5 pixels) we must in
practice regard the effective PSF also as a function of the AC motion s (see Sect. 4 for details)
which we write P (u, v|s). Thus, the expected number of photons detected in pixel (k,m) from
a single star located at (κ, µ) is proportional to P (k − κ,m− µ|s), where s is the (known) AC
motion of the image during the integration (in pixels).

By contrast, the optical LSF LO(u) and PSF PO(u, v) describe the instantaneous one- and two-
dimensional intensity distributions in the image falling on the CCD. The theoretical relation
between the optical and effective spread functions is a convolution, which includes a rectangular
boxcar function Π of unit width (since u and v are expressed in pixels):

L = LO ∗ Π1 ∗ S1 and P = PO ∗ Π2 ∗ S2 , (1)

where ∗ is the convolution operator,

Π1(u) =

{
1 if |u| < 1

2

0 otherwise
and Π2(u, v) = Π1(u)Π1(v) (2)

account for the pixelization, and S1(u), S2(u, v) account for the additional smearing effects
mentioned above.

2.2 Normalization and sum-invariance of the LSF and PSF

Both the LSF and the PSF are by definition normalized to unit area and volume, respectively:∫ +∞

−∞
L(u) du = 1 and

∫∫ +∞

−∞
P (u, v|s) du dv = 1 (3)

for any s. Since the boxcar functions in Eq. (2) have unit area/volume, it follows that also
LS = LO ∗S1 and PS = PO ∗S2 are similarly normalized. An important consequence of Eq. (1)
is then that (effective) LSF and PSF functions should obey the sum-invariance rule,

∀κ, µ :
∑
k

L(k − κ) = 1 and
∑
k

∑
m

P (k − κ,m− µ|s) = 1 , (4)

where the sums are taken over all integers k and m.

For the LSF, the sum-invariance is shown as follows: The convolution operator being associative
and commutative, we have L = Π1 ∗ LS . Then, for arbitrary κ,∑

k

L(k − κ) =
∑
k

(Π1 ∗ LS)(k − κ) =
∑
k

∫ k−κ+ 1
2

k−κ− 1
2

LS(u) du =

∫ +∞

−∞
LS(u) du = 1 , (5)
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since LS is normalized. The sum-invariance of the PSF is shown in an analogous way.

In physical terms, the sum-invariance means that the total expected number of detected photons
in a stellar image is invariant with respect to the sub-pixel position of the image, if the counts are
summed over a sufficiently large window. This is a good approximation for back-illuminated
CCDs, where the microscopic quantum efficiency is practically independent of sub-pixel posi-
tion. It is important that the LSF/PSF model is also sum-invariant, in order to avoid introducing
artificial biases, as function of sub-pixel position, in the fitting process.

2.3 Relation between the LSF and PSF

In standard (non-Gaia) image science, the LSF is defined simply as the marginal density of the
PSF:L(u) =

∫ +∞
−∞ P (u, v) dv. For Gaia, the corresponding relation readsL(u) =

∫ +∞
−∞ P (u, v|s) dv,

valid for any s. A practical difficulty with this definition is that for the vast majority of observa-
tions, only a finite range in the AC coordinate (v) is observed, usually a window ofM = 12 pix-
els. A convention has therefore been adopted, namely that the LSF is obtained by considering
only the central part of the PSF in the AC direction, corresponding to the most commonly used
AC window. More precisely, the following convention is proposed here:

L(u) = C(0|0)
M−1∑
m=0

P
(
u,m− M−1

2
|0
)
, (6)

where C(0|0) is the normalization factor (slightly larger than 1) required by Eq. (3a):

C(0|0) =

[∫ +∞

−∞

M−1∑
m=0

P
(
u,m− M−1

2
|0
)

du

]−1
. (7)

Note that the relation between the LSF and PSF must be defined in terms of a sum over the M
AC pixels, rather than an integral over the continuous AC coordinate, −M/2 < v < M/2, and
that we have chosen to use the PSF with s = 0 for this convention. Introducing the AC LSF

LAC(v|s) =

∫ +∞

−∞
P (u, v|s) du (8)

we could more generally define

C(v|s) =

[
M−1∑
m=0

LAC
(
v +m− M−1

2
|s
)]−1

(9)

as the correction required when the PSF is offset by v pixels in the AC direction from the centre
of the window and has the AC smearing s. The (slight) variation of the LSF shape with v and s
is here ignored.
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FIGURE 2: Definition of centroid, origin and location: the top diagram shows a schematic
LSF with the origin (u = 0) and centroid (u = u0) indicated. The bottom diagram shows the
location (κ) of the LSF in the stream of sample values Nk. In this case the scene consists of
a uniform background of brightness β (in electrons per sample) plus a single point source of
intensity α (in electrons) at k = κ.

As a consequence of these relations, the LSF fitting only compensates for the flux outside the
window in the AL direction, while the PSF fitting compensates for all flux outside the window.

That is, when fitting β + αP (k − κ,m − µ|s) to a two-dimensional image, the resulting flux
estimate α refers to the total flux of the image, including all parts outside the sampled window.
However, when β + αL(k − κ) is fitted to a one-dimensional image, the resulting flux estimate
α only refers to the flux within the AC interval m = 0 . . .M − 1, and therefore requires a
correction by the factor C(v|s) to represent the full flux, where v is the offset in AC and s the
amount of AC smearing.

2.4 Centroid, origin and location

A clear distinction between these three terms was introduced in Lindegren (LL-080), from
which Fig. 2 is taken. Briefly, with reference to the LSF L(u) schematically shown in Fig. 2,

• the centroid u0 is defined by the shape of the LSF itself without any reference to
external data. For a symmetric LSF it is naturally given by the point of symmetry,
but for more general shapes it is necessary to introduce some convention for the
definition of the centroid. This is further discussed below;

• the origin is the agreed reference point where u = 0. It could be the centroid, but
in general it is not (i.e., u0 6= 0 in general). The main reason for this is chromatic-
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ity: the origin should correspond to a well-defined point on the celestial sphere,
independent of the colour of the source. This is further discussed in Sect. 6.2;

• the location is the coordinate (or coordinates, for a PSF) of the origin in the fitted
image, i.e., in the CCD sample stream. It may be given as a pixel coordinate, as in
Fig. 2, or (in the AL direction) converted to the corresponding ‘transit time’ when
the origin passes to the serial register, or to the ‘observation time’ when the origin
passes the fiducial observation line close to the centre of the integration.

Concerning the definition of the centroid u0 of the arbitrary LSF L(u), several different conven-
tions have been proposed and used over the years, including ‘the minimum difference mirror
point’ (Lindegren, GAIA-LL-044), minimizing∫ +∞

−∞
[L(u0 + x)− L(u0 − x)]2 dx , (10)

and a family defined in terms of some odd analytical weighting function w(x), such that∫ +∞

−∞
L(u0 − x)w(x) dx = 0 , (11)

where in particular the weighting function representing Tukey’s biweight (TBW) was advocated
in Lindegren (LL-068).

The precise definition of the centroid is unimportant for the following discussion, as long as a
well-defined prescription exists. However, in the context of the generic LSF model described
in Sect. 3, it appears that the most natural definition is simply the origin of the adopted basis
functions, i.e., u0 = h0.3

3 A generic LSF model

3.1 General formulation

In Lindegren (LL-088), the following very general representation of the LSF in terms of basis
functions Hn(x) was introduced:

L(u) =

{
H0(u− h0) +

∑N−1
n=1 hnHn(u− h0) if N > 0 ,

H0(u) otherwise.
(12)

The model, here referred to as the generic LSF model, depends on N ≥ 0 model parameters.
The case N = 0 corresponds to a ‘default’ LSF equal to H0(u), while for N > 0 the model

3In general this origin does not coincide with the mirror point or TBW centroid, except for symmetric profiles.
Moreover, it does not exactly correspond to the point obtained by fitting H0 to the profile, except when the profile
is symmetric.
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parameters are hn, n = 0, . . . N − 1. The default LSF, which may be used in the absence of any
other information, should ideally be close to the expected (mean) LSF of the real instrument.
Moreover, the default value of any parameter is hn = 0, so that the default LSF is also obtained
by putting all parameters equal to zero. The first parameter h0 represents a pure shift of the
origin of the LSF.

The basis functions must satisfy ∫ +∞

−∞
Hn(x) dx = δ0n (13)

for all n, where δij is Kronecker’s delta. This guarantees that L(u) is normalized to unit area
for any choice of model parameters. The sum-invariance property of the LSF is satisfied if, in
addition, all the basis functions have the corresponding property,

∀κ :
∑
k

Hn(k − κ) = δ0n . (14)

Apart from the strict constraints in (13), the basis functions should satisfy some less well-
defined criteria, viz.:

1. The basis functions are such that the linear combination in (12) can represent any
observed LSF to sufficient accuracy. This requires a certain minimum number of
basis functions to be defined, spanning the relevant subspace of possible LSFs.

2. H0 is not far from the mean actual LSF over some relevant set of LSFs, as discussed
above.

3. The basis functions of increasing order n = 1, 2, . . . represent ever finer details of
the LSF, so that a truncated expansion provides a useful approximation of the full
expansion.

4. The basis functions are approximately orthogonal.

5. The derivative H ′0(x) does not belong to the linear subspace spanned by the basis
functions.

The first criterion is obviously necessary for the model to be at all useful; however, it is not easily
quantified as a requirement, if only because the relevant set of LSFs is not known beforehand.
The second and third criteria are related to the desired property that we want to use as few free
parameters as possible to model the observed LSFs. The fourth criterion ensures numerical
stability of the fitting process. The fifth criterion ensures that the shift parameter h0 is not
degenerate with respect to the other parameters.

Technical Note Lund Observatory 9
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3.2 Interface

The interface to the generic model is very simple. On construction, a default LSF (equal to
H0) is set up, equivalent to N = 0 model parameters. Methods are needed to set the number
and values of the parameters (hn, n = 0, 1, . . . N − 1), and to get the function value L(u) and
its derivative L′(u) for arbitrary argument u, as well as the N partial derivatives ∂L/∂hn for
arbitrary u.

L(u) and L′(u) are generally needed for the image parameter determination. L(u) and ∂L/∂hn
may be needed for the LSF calibration, but not for the image parameter determination.

3.3 Implementation: LSF88

Within this general framework one can in principle define many different sets of basis functions
{Hn(x)} that might work about equally well for the real LSFs of Gaia. One example is given
in Lindegren (LL-088), based on the Principal Component Analysis (PCA) in Lindegren (LL-
084) of a large ensemble of randomly generated, but physically plausible LSFs. This set of
basis functions, using components up to n ' 50, has been found to fit (and, indeed, overfit) all
observed undamaged LSFs in several sets of astrometric test data from Radiation Campaign #3
and #4 (C. Crowley). In the following I will refer to this particular implementation of the generic
LSF model as the LSF88 model. However, all subsequent discussion of the LSF model and its
role in IDT, FL, IDU and AGIS refers to the generic model and is not directly linked to LSF88.

Nevertheless, LSF88 appears to provide a sufficiently accurate and flexible model to work in all
current and planned simulations, and perhaps even as a starting approximation in the real Gaia
data processing. Lindegren (2010) describes a procedure whereby the basis functions can later
be redefined in the light of the real data. Figure 3 shows the first four basis functions in LSF88,
while Fig. 4 shows what the LSF looks like when the first four parameters take the values−1, 0
and +1. As already mentioned, h0 represents a shift of the origin, and it is seen that h1 mainly
affects the width of the LSF, h2 the skewness, and h3 the kurtosis of the LSF. The details of
these curves depend of course on the precise definition of basis functions, but it is reasonable to
expect that any set of basis functions that satisfy all the criteria listed above will look somewhat
similar in its lowest orders, with in particular h1, h2, and h3 representing modifications of the
width, skewness and kurtosis relative to the default LSF.
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FIGURE 3: The first four basis functions Hn(x), n = 0 . . . 3, in the LSF88 model, i.e., the
generic model as implemented in Lindegren (LL-088).
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FIGURE 4: The LSF as described by the LSF88 model, when the first four parameters hn,
n = 0 . . . 3 take the values −1 (dotted curves), 0 (solid curves), and +1 (dashed curves).
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3.4 Modification for binned data

SM data are binned 2×2 or 4×4 pixels, which drastically modifies the LSF and PSF. The generic
model can easily take this into account, without necessarily redefining the basis functions; how-
ever, the normalization issues should be carefully considered and adopted conventions clearly
defined.

Consider the AL binning by 2 pixels as an example. If the 2-binned LSF is defined as

L̄(u) = L(u− 1
2
) + L(u+ 1

2
) , (15)

the expected number of electrons in a sample from a source with flux α is Nk ∼ αL̄(k − κ) for
k ∈ K, where K is the set of pixel coordinates for the binned samples (e.g., the even integers).
This LSF satisfies the normalizations4∫ +∞

−∞
L̄(u) du = 2 and ∀κ :

∑
k∈K

L̄(k − κ) = 1 . (16)

The generic model for the 2-binned LSF is

L̄(u) = H̄0(u− h0) +
N−1∑
n=1

hnH̄n(u− h0) , (17)

where the 2-binned basis functions are correspondingly defined in terms of the unbinned basis
functions:

H̄n(x) = Hn(x− 1
2
) +Hn(x+ 1

2
) . (18)

In the LSF88 implementation, the binned basis functions can be represented (to sufficient ap-
proximation) in the same manner as the unbinned basis functions, i.e., as a sum of a biquartic
spline and an analytical tail, only with a different set of coefficients; in this way the evaluation
of the binned LSF will not require more operations than the unbinned LSF.5

The use and calibration of the binned LSF model is therefore completely analogous to the un-
binned version, and the physical interpretation of the model parameters hn is in fact independent
of the binning. This means that the same set of parameters can be used for, and even calibrated
from, any mixture of binned and unbinned data.

The extension of the above to arbitrary binning factors in AL and AC is trivial.

4Obviously it is just a matter of convention where to put the factor 2 (or 1/2) in these equations; an alternative
convention could be L̄(u) = 1

2 [L(u− 1
2 )+L(u+ 1

2 )] withNk ∼ 2αL̄(k−κ) and the normalizations
∫ +∞
−∞ L̄(u) du =

1 and
∑
k∈K L̄(k − κ) = 1

2 .
5The binned biquartic spline is another biquartic spline obtained by binning the coefficients; the binned tail

function can well enough be approximated by 2 times the same tail function.
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4 A generic PSF model

As previously discussed, the PSF model must allow a variable amount a smearing s ≥ 0 in the
AC direction due to AC image motion during the integration. A possible generic PSF model,
obtained by an obvious two-dimensional extension of the generic LSF model, is

P (u, v|s) = H0(u− h0)K0(v − v0|s) +
N−1∑
n=0

J−1∑
j=0

n+j>0

hnjHn(u− h0)Kj(v − v0|s) , (19)

where {Kj(y|s)} is a set of basis functions for the AC LSF with a similar normalization as in
Eq. (13). The parameters are h0, v0, and hnj for n = 0 . . . N − 1 and j = 0 . . . J − 1, excluding
h00, i.e., in total NJ+1 parameters. However, not all NJ+1 need to be defined (the remaining
ones being 0 by default); for example, retaining only h0j and hn0 is equivalent to a PSF that is
the product of the corresponding LSFs in the AL and AC directions.

For each observation the amount of smearing in the AC direction, s (pixels), is a known quantity
and its effect on the PSF can be described by a rectangular convolution. The basis functions
Kj(y|s) for s > 0 can therefore be defined in terms of Kj(y|0) as

Kj(y|s) =
1

s

∫ +s/2

−s/2
Kj(y − t|0) dt . (20)

For Kj(y|0) we may use a similar set as Hn(x), but the efficient implementation of Eq. (20)
remains to be worked out and will depend on the mathematical representation of Kj(y|0).

The important point to note is that the PSF parameters h0, v0 and hnj in Eq. (19) are not affected
by the AC smearing. Thus they can be calibrated from a set of observations with varying degree
of AC motion, as long as the relevant s is used when computing the expected photon counts in
each observation. The s applicable to each observation is of course known from the attitude and
geometric calibration.

The AC LSF is readily obtained by applying the integral in Eq. (8) to (19) and using (13); the
result is

LAC(v|s) = K0(v − v0|s) +
J−1∑
j=1

h0jKj(v − v0|s) , (21)

from which the photometric correction factorC(v|s) can be calculated as in Eq. (9) as a function
of the AC offset v and smearing s.

5 Two approaches to the LSF calibration

In terms of the generic LSF model, the LSF calibration simply means that the parameters hn,
n = 0 . . . N−1, are estimated from a given set of one-dimensional images {Nk} (where we can
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assume that the background has been subtracted). In the general case, this estimation is made
via the Charge Distortion Model (CDM), in order to take into account radiation damage effects.
However, for the discussion in this section we disregard all complications caused by the CTI,
i.e., we assume that the counts are unaffected by radiation damage.

In order to clarify the relations between the LSF calibration and AGIS, two different approaches
to the LSF calibration will be described below. They are referred to by the terms internal and
total LSF calibration. 6 While the total LSF calibration determines all the LSF parameters in a
single process, the internal calibration leaves certain LSF parameters (viz., h0) undetermined,
or set to zero.

5.1 Internal LSF calibration

The input to this procedure consists of the background-subtracted sample data {Nik} for each
of the calibration images i, and nothing else. It proceeds roughly by the following steps:

1. For each image, the location κi of the centroid is estimated by some suitable proce-
dure, e.g., by maximizing the cross-correlation withH0(x). Each sample is assigned
the coordinate xik = k − κi.

2. The counts of each image are flux-normalized: N̂ik = Nik/
∑

kNik (possibly with
a correction factor for the flux outside of the window in the AL direction).

3. The LSF parameters hn, n = 0 . . . N − 1, are fitted to the full data set (xik, N̂ik)
using least-squares, chi-square minimization or maximum likelihood.

4. The shift parameter h0 is set to zero.

5. The procedure may be iterated, as the provisional LSF generally allows to improve
the estimated centroid and flux of each image.

Experience shows that it is not useful, and possibly harmful, to iterate the centroid and flux
estimation more than once.

One can think of many variants of this procedure, in particular to make it more robust. For
example, normalized counts can be grouped, according to k−κi, into bins that are much smaller
than a pixel, and a robust normal point formed within each bin; the LSF model is then fitted to
the normal points rather than to the original counts.

The important feature of the intrinsic LSF calibration is that it cannot determine a meaningful
shift parameter h0, which is why it is set to zero in Step 4. However, h0 must be included as
a free parameter in Step 3, since the centroiding in Step 1 does not necessarily correspond to
h0 = 0 (cf. footnote 3).

6‘Total calibration’ is preferred to the perhaps more obvious choice ‘external calibration’, which rather implies
a procedure to make the internal calibration total; cf. Sect. 6.
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5.2 Total LSF calibration

In this process we need, in addition to the (background-subtracted) sample data {Nik}, knowl-
edge about the source, attitude, and (geometric) calibration parameters. Normally these are
provided by a previous AGIS solution. The relevant information is combined in the field angle
offsets (FAO)

Dη(t) = ηobs(µ(t)|c)− ηcalc(t|s,a, g) , (22)

Dζ(t) = ζobs(µ(t)|c)− ζcalc(t|s,a, g) , (23)

which are the computed offsets, along η (AL) and ζ (AC) of the image centre at time t from the
relevant observation line.7 s, a, c and g are source, attitude, calibration and global parameters
calculated by AGIS. The calculation of the FAO can be regarded as a black box: it will be
provided in GaiaTools and there is no need to understand how it actually works. The important
thing to know is that for t = tobs (the ‘observation time’ of the image, i.e., when the LSF
origin passes the fiducial observation line of the CCD), we expect Dη = 0. Thus, if we insert
t = tik (the observation time of sample ik) in the FAO calculator, the returned value Dηik is
the calculated offset of the sample from the LSF origin. Dividing by the AL pixel size pη (in
radians) gives the calculated offset in pixels.8

The total LSF calibration then may proceed as the internal LSF calibration with two important
modifications: the AL sample coordinate is calculated as Dηik/pη instead of k − κi, and h0 is
retained. Thus:

1. For each image i, the FAO of one sample k (preferably near the centre of the image)
is calculated and the sample is assigned the coordinate xik = Dηik/pη. The other
samples in the image are assigned coordinates that differ by integer values from this
(xik+1 = xik + 1, etc).

2. The counts of each image are flux-normalized: N̂ik = Nik/
∑

kNik (possibly with
a correction factor for the flux outside of the window in the AL direction).

3. The LSF parameters hn, n = 0 . . . N − 1, are fitted to the full data set (xik, N̂ik)
using least-squares, chi-square minimization or maximum likelihood.

7ηobs(µ|c) is called the ‘observed’ AL field angle, because we know that at the time of observation tobs the
image is located exactly on the fiducial observation line of the relevant FoV/CCD/gate combination, and ηobs(µ|c)
is the equation of this fiducial line as function of the AC pixel coordinate µ (depending on the geometric calibration
parameters in c). Similarly ηcalc(t|s,a, g) is called the ‘calculated’ AL field angle, even though it usually (but not
always!) is calculated for the observation time t = tobs. See Lindegren (LL-063) for some further discussion of
the related terminology.

8It may not be immediately obvious that Dηik/pη gives k − κi with the correct sign. For the samples in a
given observation, ηobs will be almost constant while ηcalc will decrease with time. Dη will therefore increase with
time as does also k by definition. Similarly, Dζik/pζ gives m − µi with the correct sign: for a given source at a
given time, pixels at a higher column m will correspond to larger ζ, so ζobs will be larger while ζcalc will be nearly
constant. Dζ will therefore increase with m.
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4. The procedure may be iterated to improve the estimated flux of each image.

5. Re-normalize the LSF calibration by subtracting the h0 estimated for the reference
SED (see Sect. 6.2).

In this case the LSF calibration provides a meaningful estimate of the shift parameter h0. We
will have h0 6= 0 if there are errors in the geometric calibration provided by AGIS, or because of
chromaticity (e.g., different spectra give different h0 for the same FoV/CCD/gate combination).

The total PSF calibration is analogous (see Sect. 7).

5.3 Comparing the internal and total LSF calibration

Although the two approaches to the LSF calibration use the same LSF model, the results are in
general different. In particular, h0 = 0 by definition for the internal calibration, while it may be
non-zero for the total calibration. For the remaining LSF parameters hn, n > 0, which describe
the shape of the LSF, one should in principle obtain the same values in the two approaches.
However, in practice one must expect significant differences due to the finite accuracy by which
the sample coordinates xik are obtained:

• The (random) errors in xik result in a calibrated LSF that is slightly wider than the
true LSF.

• For the internal LSF calibration, the errors in xik come from the sensitivity of the
centroid estimation to the photon noise and RON of the individual image. These
errors are independent of the AGIS solution but increase for faint stars.

• For the total LSF calibration, the errors in xik come from the errors in the source
parameters, attitude, and geometric calibration, via the FAO calculation. These are
expected to be relatively large in the early stages of the mission, and later decrease
to a much lower level than for the internal LSF calibration, especially for the fainter
stars.

Eventually, the total LSF calibration should be used, because it is expected to determine the
LSF shape more accurately (once the source and attitude parameters are accurate enough) and
because it gives a direct determination of the shift parameter needed for a correct treatment of
chromaticity.

However, in the early stages of the mission it is probably much preferable to use the internal
LSF calibration, as being less susceptible, e.g., to attitude errors. One must be aware of the
possible side effects, for example that the LSF may appear systematically wider for the faint
stars, and that AGIS may find a significant chromaticity.

It appears natural to use the internal LSF calibration in FL, and the total LSF calibration in IDU.
For the image parameter determination, one can use either calibration both in IDT and IDU,
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depending on what is available or which is the more reliable calibration at a certain stage. At an
early stage of the mission, the IDU may benefit from using the internal calibration (optionally
followed by an external calibration as discussed in Sect. 6.1). It is also quite possible that the
selection may depend on brightness: at some stage, the internal calibration may be preferred for
bright stars and the total for faint. The conclusion is therefore that both methods of calibration
should be available in IDU, and that both IDT and IDU should be able to use either calibration
for the image parameter determination.

Regarding the magnitude distribution of calibration stars, it should be recalled that we have
only rather narrow ranges available for the gated observations. For the ungated observations,
at least the PSF will also be obtained from certain narrow magnitude intervals (ungated bright
stars, and Calibration Faint Stars). As far as gated, bright stars are concerned, saturation will be
a concern.

6 External calibration and the role of AGIS

6.1 Chromaticity and CTI effects in AGIS

The generic calibration model for AGIS (Lammers, UL-031) allows to add terms in the func-
tions ηcal and ζcal of the FAO calculator that depend on quantities such as the effective wavenum-
ber (νeff) and magnitude (G) of the source, and the time (T ) since the previous charge injection.
Typically, the complete AL calibration function may look something like this:

ηcal = ηgeo + (νeff − νref)c0 +
∑
α

∑
β

α+β>0

bαβ g
α τβ , (24)

where g = (G−Gref)/5 and τ = log10(T/Tref) are suitably normalized variables for the magni-
tude and change injection delay. ηgeo is the purely geometric part of the calibration, depending
on a subset cgeo of the calibration parameters; the non-geometric calibration parameters cnon

consist (in this example) of the parameters c0 and bαβ .

The reference values νref, Gref, and Tref have the following meaning: The purely geometric
calibration ηgeo is valid for an observation with νeff = νref, G = Gref, and T = Tref. Proposed
reference values: νref = 1.5 µm−1 (Marrese & Brown, PM-004), Gref = 15 (approximate
mid-range), and Tref = 100 TDI periods (approximate geometric mean of the minimum and
maximum T ).

Each FoV/CCD/gate combination requires a different geometric calibration in AGIS, and in the
case when the model includes non-geometric effects, these, too, must be different depending on
the gate used. Different reference points Gref, closer to the actual mean magnitudes, should be
chosen for the gated observations.
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In the AGIS solution, one should ideally find cnon = 0, indicating that the chromaticity and CTI
effects have been properly taken into account by the preceding IDU by means of the LSF and
CDM calibrations. This will of course never happen in practice. The non-zero chromaticity
parameter c0 can be used to improve the shift parameter h0 as a function of νeff, thus providing
an external LSF calibration to supplement the internal one (cf. footnote 6) or improve the total
LSF calibration; however, there is no obvious way to incorporate the non-zero CTI parameters
bαβ into an improved CDM calibration. The non-geometric parameters are therefore mainly
diagnostic in that they signal some deficiency in the preceding LSF and CDM calibrations.

6.2 Where is the LSF origin set?

In the internal LSF calibration (e.g., as performed in FL) the origin is fixed by the convention
h0 = 0. However, this leads in general to cnon 6= 0 in the subsequent AGIS solution. Let us
assume that we then make a total LSF calibration in the subsequent IDU. If the full calibration
vector c from AGIS (including the non-geometric terms) is fed to the FAO calculator in Eq. (22),
nothing will be improved in terms of the chromaticity and CDM model. The only way to force
the LSF calibration in the subsequent IDU to absorb the chromatic shifts, and similarly force the
CDM model to produce the proper G and T dependent shifts is by insisting that the calculated
LSF origin is achromatic and independent of G and T .

This is done by using only the geometric part ηgeo when calculating the FAO in Eq. (22). This
happens automatically, as the default mode of the FAO calculator is to assume cnon = 0. (Only
internally in AGIS is the FAO calculator run with the full calibration model, including non-
geometric terms.)

As a consequence, the LSF origin obtained in the total LSF calibration corresponds to the
centroid for a source with effective wavenumber νref. However, in the course of the IDU/AGIS
iterations in subsequent processing cycles, the chromaticity becomes fully incorporated in the
LSF calibration, eventually resulting in c0 ' 0, at which point νref loses its meaning.

Similarly, as the CDM calibration improves in the course of the IDU/AGIS iterations, the CTI
parameters bαβ obtained in AGIS gradually diminish in size, until they are negligible; at which
point the reference values Gref and Tref lose their meaning.

There is however a subtle difference between how the CDM calibration and the total LSF cali-
bration interacts with AGIS. The CDM model has a built-in capability to ‘understand’ the case
of no radiation damage. Consequently, there is no remaining degeneracy between the purely
geometric calibration in ηgeo and the CDM model. The LSF calibration, on the other hand, has
no a priori information about what the case of no chromaticity means. Consequently, there re-
mains a degeneracy between the purely geometric calibration in AGIS and the choice of origin
in the total LSF calibration. This is potentially problematic when analyzing trends in the var-
ious calibrations: an apparent variation of the geometric calibration of AGIS could be caused
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by an opposite variation of h0 in the LSF calibration. It is therefore necessary to introduce the
convention that h0 = 0 for a certain reference SED. This is done in Step 5 of the total LSF
calibration in Sect. 5.2.

The reference SED must be defined in terms of the colour indices, spectral shape parameters,
or whatever spectral data are used to parametrize the LSF calibration. Rather than fixing the
reference SED a priori, one could use the initial LSF library built during the first several months
of the mission (before any AGIS solution can be made) to make a selection that is close to
optimal, and which should thereafter not change any more. Since the LSF library is built for
photometric classes based on a small number of photometric parameters, one can simply choose
a well-populated class in the middle of the photometric parameter ranges.

7 Total PSF calibration

For completeness, the procedure for the total PSF calibration (including AC chromaticity) is
here described in analogy with Sect. 5.2:

1. For each image i, the FAO of one sample (k,m) (preferably near the centre of the
image) are calculated and the sample is assigned the coordinates xikm = Dηikm/pη
and yikm = Dζikm/pζ . The other samples in the image are assigned coordinates
that differ by integer values from this. The AC smearing, s, is a known quantity for
the image.

2. The counts of each image are flux-normalized: N̂ikm = Nikm/
∑

kmNikm (possi-
bly with a correction factor for the flux outside of the window in the AL and AC
directions).

3. The PSF parameters h0, v0, and hnj (a maximum of NJ + 1 parameters) are fitted
to the full data set (xikm, yikm, N̂ikm) using least-squares, chi-square minimization
or maximum likelihood.

4. The procedure may be iterated to improve the estimated flux of each image.

5. Re-normalize the PSF calibration by subtracting the (h0, v0) estimated for the ref-
erence SED (see Sect. 6.2).
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