IBIS mask calibration status latest developments and AO8 data

François Lebrun, S. Soldi, F. Mattana, J. Zurita Heras, and the IBIS/ISGRI Paris-Saclay team

Recent improvements of the imaging performances of the IBIS software

...but there still are residuals

Mask

Excluded regions in OSA 9

Excluded regions: white

Components:

- bolts and screws
- potting
- mask borders

Optimizing the excluded regions

But the mask 'radiography' shows the complex geometry of the mask transparency.

We need to:

- minimize the rejected signal (to minimize the loss of effective area);
- refine the rejected area (to properly take into account the geometry and transparency of the defects)

Exclusion mask: loss of effective area

One source (Crab)

- on-axis loss ~2.2%
- maximum loss ~4.5% (< 10° off-axis)

Crowded field (Inner Galactic disk)

# sources 4	Mean 7.4%	Max 8.7%
6	10.6%	12.3%

Exclusion mask: not enough area excluded

Screw projection 6.3 mm @ 4.5 deg 17 mm @ 12 deg

- The exclusion region due to the screws should be one-sided
- Screw projection overcoming the exclusion region
- A treatment depending on the off-axis and roll angle is required even in the FCFOV

exclusion region 3.8 mm

Asymmetric mask defects

Mask defect radiography

R_N = mask defects radiography of the N corner

$$A_N = (R_1 + R_2 + R_3 + R_4)/4$$

 A_N = average of the radiography of the 4 mask corners

$$D_N = R_N - A_N$$

 D_N = difference of the N corner from the average

For a significant improvement over OSA 9, we need to characterize the transparency of the mask at a ~1% level

To reach this goal, we are:

- accumulating large exposure of the mask,1 Ms per mask corner, adding up Crab and Cyg X-1 archival data and upcoming observations
- modeling the mask defects (geometry and absorption)
 to implement a new mask model in the IBIS software

Where we are with the mask exposure

Effective exposure time in ks up to the end of 2010

IBIS mask calibration with AO-8 open time observations (I)

Method:

- use already approved observations
- keep the original pattern strategy
- select the satellite z-axis direction to illuminate the "correct" mask corner
- increase the exposure time of a fraction of the pointings (those useful for calibration).

Successfully applied in AO-7 to the Cygnus region observation (PI: P. Martin) in collaboration with ISOC

IBIS mask calibration with AO-8 open time observations (II)

Broad view on high energy Galactic background: Galactic latitude scans at I=55 deg (ID 0820029, PI: A. A. Lutovinov)

+200 ks 100000 200000

Raster pattern: 139 useful pointings

To be discussed with the PI

IBIS mask calibration with AO-8 open time observations (III)

Perspectives

- AO-8 Galactic scan observation?
- Dedicated mask calibration:
 70 ks/rev. per corner (2 corners/rev.)
- → with Galactic scan + 4 dedicated mask calibration revolutions we will reach the 1 Ms/corner goal
- Implementation in OSA

