INTEGRAL's Earth Observations 4 similar CXB occultation observations in Jan-Feb 2006

INTEGRAL Earth observation

Spectral shapes could be independently derived for

- Cosmic X-ray background
- Earth emission
- Galactic X-ray background
- Point sources

This is the result of 1 day of observation (rev 401-406)

Turler et al 2010

Why do we care about the CXB?

- The CXB is emitted by a population of unresolved AGN
 - •fraction of obscured, unobscured, and Compton-thick AGN
- evolution with redshift

 There is a controversy with the CXB normalisation at the level of 10%

Cosmic X-ray background

Comparison with other recent CXB measurements

INTEGRAL results are in agreement with HEAO-1, i.e. we do not confirm a 10% higher intensity. Error bars can be decreased with more exposure

Galactic ridge emission

The broad-band view

Average mass of white dwarfs in the Galaxy: 0.6 Mol INTEGRAL provides the best galactic ridge spectrum. We can make it even better -> INTEGRAL legacy

Earth emission

Disentangling CXB reflection & cosmic-ray emission

Important difference in normalization

Status

We derived state-of-the-art hard X-ray spectra of 3 fundamental components:

The Cosmic X-ray Background

The Galactic Ridge emission

The Earth reflection & emission

All this with only ~1 day of INTEGRAL observing time!

INTEGRAL CAN DO BETTER

An AO proposal has been submitted by a large group lead by Roman Krivonos...

...but no decision yet to perform more Earth observations.

Gain on systematics by looking away from the Galaxy with less cosmic-rays

Gain on statistics

by a factor 2 with 4x4 new Earth-occultation observations

(i.e. 4 days)

2011

