ISGRI ENERGY CALIBRATION

Isabel Caballero, Philippe Laurent, François Lebrun, Fabio Mattana, Simona Soldi, Juan Zurita Heras AIM CEA Saclay / APC+FACe Paris 7

1) Energy correction

OSA 9 correction based in IREM counters

OSA 10: PH gain-offset described as a function of time (and RT), not using IREM counters

Gain evolution for different RT intervals

Temperature correction/ MDU

Status

- ✓ New correction developed in IDL
- \checkmark Implemented in OSA
- ✓ Validation between IDL/OSA codes done
- •TO DO:

olow threshold correction (see next section)
oARFs, to be produced by Lorenzo with our input (Crab spectra for all the mission)

2) Low Threshold

LT correction: IDL => make_LT_b3D.pro OSA => ii_shadow_build

Crab with OSA9

Crab with OSA10

Transformation of Energy Low Threshold (E_LT) into Pulse Height (PH) in make_LT_b3D

Black: OSA9-IDL equation

PH=gain0*(gs*(E_LT-olut2)-os/2.)+offset0

But isgri_energy and make_LT_b3D are not coherent.

 Red: OSA9-IDL with sign «+» for off_scale in make_LT_b3D

PH = gain0*(gs*(E_LT-olut2)+os/2.)+offset0

Blue: OSA10 LT with new energy correction

PH = gain0*(E_LT*gs+os)+offset0

 Parameters definition: gain0,offset0: energy drift correction law < 50 keV gs,os: final gain,offset scale olut2: offset after LUT2 application (only OSA9) values changed between OSA9 and 10

Transformation of Energy Low Threshold (E_LT) into Pulse Height (PH) in make_LT_b3D

✓ No problem with new energy correction in OSA10
✓ Also present in OSA9 but hidden by the wrong sign in front of « os »
✓ But the low threshold applied is... too low

Black: OSA9-IDL equation

PH=gain0*(gs*(E_LT-olut2)-os/2.)+offset0

But isgri_energy and make_LT_b3D are not coherent.

 Red: OSA9-IDL with sign «+» for off_scale in make_LT_b3D

PH = gain0*(gs*(E_LT-olut2)+os/2.)+offset0

Blue: OSA10 LT with new energy correction

PH = gain0*(E_LT*gs+os)+offset0

 Parameters definition: gain0,offset0: energy drift correction law < 50 keV gs,os: final gain,offset scale olut2: offset after LUT2 application (only OSA9) values changed between OSA9 and 10

1. Obtain Crab spectrum using OSA without the LT correction

1. Obtain Crab spectrum using OSA without the LT correction

2. simulated Crab spectrum: model broken PL Γ_1 =2.1, E_{break}=100 keV, Γ_2 =2.3, Norm(1 keV)=10 ph cm⁻²s⁻¹keV⁻¹

2. simulated Crab spectrum:

model + ARF (MC simulation, P. Laurent) in Xspec

3. LT function = OSA Spec. / Simulated Spec.

3.
$$F(E, LT, \sigma) = 0.5 \left(1 + erf(\frac{E - LT}{\sqrt{2}\sigma})\right) = 1 - 0.5 erfc(\frac{E - LT}{\sqrt{2}\sigma})$$

Fit results total

Mean LT settings with energy drift correction (blue) Comparison with the fitted LT

Mean LT settings with energy drift correction (blue) Comparison with the fitted LT

Status

- ✓ New correction developed in IDL
- \checkmark Implemented in OSA
- ✓ Validation between IDL/OSA codes done
- •TO DO:

olow threshold correction is underestimated:

✓ Suggested correction:

New $LT = 4.12 + 0.9 \times LT_{\text{DriftCorrected}}$ $\sigma = 2.83$

 OARFs: to be produced by Lorenzo with our input (Crab spectra for all the mission)