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Abstract

This report summarizes the current status of the Discrete Source Classifier (DSC), part
of the CU8 Apsis system. Various issues surrounding the current design performance
are discussed, as well as plans for developments in the near future.
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0.1 Acronyms used in this document

The following table has been generated from the on-line Gaiaacronym list:

Acronym Description
AC Astrometric Classifier
BP Blue Photometer
BR Brightness Ratio
CU Coordination Unit
DPAC Data Processing and Analysis Consortium
DSC Discrete Source Classification Classifier
IMF Initial Mass Function
KDE Kernel Density Estimator
MPIA Max Planck Institute for Astronomy (Heidelberg)
OCA Object Clustering Analysis
PDF Probability density function
QSO Quasi-stellar object
RA Right Ascension
RP Red Photometer
SDD Software Design Document
STR Software Test Report
SVM Support Vector Machine
UCD Ultra-cool dwarf
WD White Dwarf
WP Work Package
WR Wolf-Rayet star

1 Introduction

Gaia will observe around109 individual sources, the overwhelming majority of which will be
stars or binaries. Some small number will fall into other classes such as quasars, point like
galaxies or white dwarfs. The task of coordination unit 8 (CU8) is to classify all the Gaia sources
and find astrophysical parameters for them, according to their class. The CU8 software system,
called Apsis, contains two main work packages with responsiblilty for classification. One of
these is the Discrete Source Classifier (DSC), which sorts the sources into broad astrophysical
classes on the basis of supervised classification techniques. The other work package, the object
clustering analysis package, or OCA, uses unsupervised methods to search for clusters of objects
in the Gaia data space. The astrophysical classes used by DSCare listed in Table 1.
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TABLE 2: The classes currently used by DSC.
STAR Stars, including emission line stars and other unusualtypes.
WD White dwarfs
PHYSBINARY Physical (i.e. bound) binary stars
NONPHYSBINARY Chance alignments
QUASAR Quasars
GALAXY Point-like galaxies
UNKNOWN Objects identified by an outlier detector as being of unknown type
UNDEFINED Objects with indeterminate probabilities
UNCLASSIFIED Objects for which no classification was possible due to a lack of data

The source classifications will form part of the final database, and are used to trigger various pa-
rameterizing algorithms further down the Apsis chain (see [1]). The available input information
from the satellite consists of low-resolution spectra fromthe Gaia photometers, sky position and
apparent magnitude, proper motion and parallax measurements, possible variability information
and, for the bright sources, high resolution spectra in the region 8470-8740̊A. Not all of this
information is currently used, some may be used in the future, and some may not be used in the
final package.

The high ratio of stellar objects to other types in the input data poses a significant class imbalance
problem for any classifier. Furthermore, amongst the stars class at least, there will be a small
admixture of unusual stellar objects alongside the usual main sequence or giant branch stars.
These must also be recognized in order to obtain correct classifications.

Since the classification scheme must deal with several different types of input data, we have used
a modular approach. Several different subclassifiers, eachtaking a different type of input data,
classify probabilistically and the outputs are then combined.

Specific problems facing the DSC include the imbalance in theclass fractions, with the vast
majority of the sources being single or multiple stars and a small minority falling into classes
such as QSOs or Galaxies. The classifier must deal with a wide range of noise characteristics
and also be robust against missing or damaged data.

In this document, we will first describe the overall design ofthe package. We will then provide
a detailed description of the subclassifiers that are currently operational. In Section 4 we give
the results for the main test data sets, and in Section 4.1 we analyse these and comment on
some systematic effects and ongoing problems. In Sections 4.3 and Section 4.4 we describe
some more specific test cases, and in Section 6 we present sometests of the sensitivity of the
classifier to problematic data. Section 7 summarizes the results and outlines several planned
future developments.
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2 Overall classifier design: modular approach

The DSC consists of a number of subclassifiers, each working with a particular Gaia data product
or a small set of data products, and each producing a posterior class probability vector. These
posterior probabilities then have to be combined into the final output probabilities. IfDi are indi-
vidual data products,C is the class of interest andP (C|H) is the prior, including the model and
training data used, and any assumptions which go into the classifier – in fact, all the information
available before the classification begins, we can write

P (C|D1, ....., DN , H) =
P (D1....DN |C,H)P (C|H)

P (D1, ...DN |H)
, (1)

which is just Bayes’ Theorem for all the data products. However, since the data productsDi are
conditioned on the same informationC,H, they are conditionally independent and we can write

P (D1, ..., DN |C,H) = P (D1|C,H) × P (D2|C,H) × ... × P (DN |C,H), (2)

and for each of theP (Di|C,H)

P (Di|C,H) =
P (C|Di, H)P (Di|H)

P (C|H)
. (3)

Putting Equations 2 and 3 into Equation 1 we obtain

P (C|D1, ....DN , H) =
Πi=N

i=1 P (Di|H)

P (D1, ...DN |H)

Πi=N
i=1 P (C|Di, H)

P (C|H)N−1

= a ×
Πi=N

i=1 P (C|Di, H)

P (C|H)N−1

(4)

where we usea to denote the normalization factor arising from the ratio ofthe (unknown) proba-
bilities of the individual dataP (Di|H) and the joint probability of all the dataP (D1, ....DN |H).
Equation 4 is derived with more discussion in [2] and varioussurrounding issues are treated at
length in that document. One particularly important point to realize is that the equation holds
provided that the likelihoods are conditioned on the same underlying assumptions. The back-
ground informationH can of course be replaced with another classifier in the chainproducing
the posteriorP (C|H) and the prior would then beP (C). In other words,H can be treated just
as any of theDi in equation 4.

At present, DSC consists of three working subclassifiers. One takes as input the BPRP photo-
metric data and is referred to as thePhotometric Classifier. The proper motions and parallaxes
are used as the input to theAstrometric Classifier. The RA, Dec and G magnitude are used by
the Position-GMag Classifier. At present, this last component includes information fromthe
expected class fractions of the various sources, i.e. the fact that stars are more common than
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quasars or galaxies. In the future, it is planned to separatethe class fraction probability into
a separate prior and use the Position-Gmag classifier to compute the relative probabilities for
different classes as a function of position and G magnitude.

The design of the DSC is described in the documents [3], the software design document for
CU8 algorithms, and [4], which discusses primarily the hierarchical design of the photometric
subclassifier.

2.1 Some issues discussed

Below, we show some examples of probability combination illustrating various potential prob-
lems, or results which are (perhaps) non-intuitive.

2.1.1 Zero values

The use of equation 4 introduces a problem if some of theP (C|Di) are zero, since this will lead
to zero probability for that class in the final probability vector regardless of the results from the
other subclassifiers. Zero values could occur for two reasons, which are very different from one
another. First, a classifier could produce probabilities that are vanishingly small and are rounded
to zero. Second, a subclassifier may not be trained to classify all the classes handled by the other
subclassifiers. The secondcase should be avoided if at all possible. If not avoidable, the zero
values should be probably be replaced with a prior. In the first case, it would still be advanta-
geous to prevent zero values being included in the probability combination. For this reason, we
introduce a type of softening parameter,ǫ, to the probabilities from each subclassifier separately.
This parameter is set independently for each subclassifier,and is added to each class probabil-
ity in the output probability vector except for the probabilities corresponding to UNKNOWN,
UNDEFINED and UNCLASSIFIED. The probabilities are then renormalized.

Below, we show some simpified examples with four classes and two subclassifiers;

P (Ci) = [0.25, 0.25, 0.25, 0.25]

P (Ci|D1) = [0.9, 0.0, 0.05, 0.05]

P (Ci|D2) = [0.0, 0.9, 0.05, 0.05]

P (Ci|D1, D2) = a × [0.0, 0.0, 0.0025, 0.0025]/P (Ci)

= a × [0.0, 0.0, 0.01, 0.01]

= [0., 0., 0.5, 0.5]

Classes 1 and 2 are both very likely, but because there is a zeroreturned for each from one
subclassifier, they are disregarded in the output probability. Suppose we introduced a small
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probability offset from zero, so that the missing classes are now forced to be returned with low but
non-zero probabilities. [Note that in this example, we havesimply introduced a small probability
of 0.01 for the two probabilities that were previously zero,and lowered the probabilities for class
3 and 4 to maintain the normalization. This is for convenience only and does not reflect the action
of a proposed algorithm].

P (Ci) = [0.25, 0.25, 0.25, 0.25]

P (Ci|D1) = [0.9, 0.01, 0.045, 0.045]

P (Ci|D2) = [0.01, 0.9, 0.045, 0.045]

P (Ci|D1, D2) = a × [0.009, 0.009, 0.002025, 0.002025]/P (Ci)

= a × [0.036, 0.036, 0.0081, 0.0081]

= [0.408, 0.408, 0.092, 0.092]

With a minimum probability enforced, the two missing classes are now restored as the most
likely results.

If the class is missing from only one subclassifier

P (Ci) = [0.25, 0.25, 0.25, 0.25]

P (Ci|D1) = [0.89, 0.01, 0.05, 0.05]

P (Ci|D2) = [0.4, 0.4, 0.05, 0.05]

P (Ci|D1, D2) = a × [0.36, 0.004, 0.0025, 0.0025]/P (Ci)

= a × [1.44, 0.016, 0.01, 0.01]

= [0.976, 0.011, 0.007, 0.007]

replacing with a minimum value for class 2 strongly suppresses the eventual probability for that
class in the output vector, although it has still produced a probability greater than that for classes
3 and 4. This could distort the eventual class probabilities, so it is best if all subclassifiers are
capable of classifying all classes of interest.
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2.1.2 Overall most probable object not most probable in any subclassifier

It is possible for the most likely eventual class to be one notchosen by any subclassifier individ-
ually. For example;

P (Ci) = [0.25, 0.25, 0.25, 0.25]

P (Ci|D1) = [0.45, 0.5, 0.025, 0.025]

P (Ci|D2) = [0.45, 0.025, 0.5, 0.025]

P (Ci|D3) = [0.45, 0.025, 0.025, 0.5]

P (Ci|Dj) = a × [0.09, 0.0003, 0.0003, 0.0003]/P (Ci)

= a × [0.36, 0.0012, 0.0012, 0.0012]

= [0.99, 0.0033, 0.0033, 0.0033]

This will be seen to occur in Section 5, although it is rare. When demonstrated in the example
above, it is clear that this outcome is not anomalous.

3 The individual subclassifiers

We describe each individual subclassifier in detail.

3.1 Position-GMag Subclassifier

The position-G Mag subclassifier assigns probabilities based on the position of an object on the
sky and its brightness in the G band.

In the version of DSC used for the cycle 10 tests the classifierworked on the principle of a Kernel
density estimator (KDE). Training objects were used to build a model PDF for the various source
classes evaluated at regular grid points on the sky and in magnitude space. The model is stored
as a look up table of RA, Dec, G magnitude and probability. In the application phase, the nearest
grid point to the input source is found and the probabilitiesassigned accordingly.

For the results we present here, we have replaced the KDE-based classifier with one based on a
simple analytical model. This choice has been made due to thelack of satisfactory training data
for the KDE method. The probabilities returned currently include the class fraction probability,
i.e. the fact that stars and binaries are 100–1000 times morecommon on the sky than quasars and
galaxies, depending on the position on the sky and the magnitude. In the future, it is planned to
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TABLE 3: Values of parameters in the Position-Gmag classifier model
Wl 0.01
Wb 0.05
WG 0.04
βG 2.2
σl 60◦

σb 20◦

γ 10◦

separate this probability from the Position-GMag classifier output and introduce it explicitly as a
prior, with the position-Gmag classifier reporting relative probabilities as a function of position
and magnitude.

The model is a crude approximation of the expected galactic structure seen by Gaia. If this
approach replaces the KDE-based approach for the position-G magnitude classifier, the model
will be developed and calibrated more accurately against known class fractions as a function of
G, l andb.

The G-magnitude dependence is modeled as a sigmoid function, which modulates also thel andb
dependence. Theb dependence is a Gaussian withσ = 20◦. Thel dependence is also a Gaussian
centred on the Galactic centre withσ = 60◦, modulated by a Gaussian in latitude withσ = 10◦.

P (Extragalactic) =
[

Wl × e−b2/γ2

× e−(l−180)2/σ2

l + Wb(1 − e−b2/σ2

b ) + WG

]

×
(

1

1 + e−βG(G−15)

)

P (Quasar) = P (Extragalactic)/2.

P (Galaxy) = P (Extragalactic)/2.

P (Star) = 1 − P (Extragalactic)

(5)

wherel, b are galactic longitude and latitude respectively, andG is the G band magnitude. The
values of the parameters currently used are given in Table 3.1.

Wl, Wb andWG control the weights of the effects ofl, b andG respectively.βG controls the
scale length of the sigmoid function governing the responseto the magnitude.σl andσb control
the width of the Gaussian models of the galactic disk and the falloff in stellar populations from
the galactic centre towards the anticentre. Figure 1 shows theP (star) as a function of the main
variables.
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FIGURE 1: The probabilityP (Star) given by the Position-GMag subclassifier for the Phoenix
R grid, which has uniform random distribution of RA, Dec and G magnitude. Top: P (Star) as a
function ofl andb for stars withG ≥ 15. only. Bottom:P (Star) as a function of G magnitude
for all stars.
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3.2 Astrometric Subclassifier

The Astrometric classifier (AC) classifies sources on the basis of the proper motions and paral-
laxes, and the uncertainities on these quantities. The AC works on the principle of a Gaussian
Mixture model. The data space is the set of parallax and proper motions in RA× cos δ and
Declination, which are considered separately.

3.2.1 Models for the Astrometric Classifier

Each separate class of object is represented by a Mixture Model, a collection of three-dimensional
Gaussians which is intended to model the noise-free PDF of the distribution of objects. The num-
ber of Gaussians in each model is unconstrained. The equation for three dimensional Gaussians
is

f(xi) =
A

(2π)3/2|Σ|1/2
exp(−

1

2
(xi − µi)

T Σ−1(xi − µi)) (6)

whereA is the weight of the component,Σ is the covariance matrix,xi is the data,µi is the mean
vector,()T denotes transpose.

The number of components is chosen before training by the user. The mixture is fitted using
a representative training set with an EM algorithm. The model used here was trained for stars
using the Phoenix random data. For the Quasar and Galaxy models, a delta function (Σ = 0)
was used.

We assume normal errors on the measured parallax and proper motions. Values of sigma for
these quantities should be returned by the data processing chain.

If we label one of these three parametersµ and callµtrue the true value andµobs the observed
value, then the likelihood for the modelM is

P (µobs|M) =

∫

µtrue

P (µobs, µtrue|M)dµtrue

=

∫

µtrue

P (µobs|µtrue,M)P (µtrue|M)dµtrue

=

∫

µtrue

P (µobs|µtrue)P (µtrue|M)dµtrue,

where the integrand is the product of the likelihood of some value of µtrue given the model
and the likelihood of some observed valueµobs given the true value and the error model. The
development from line two to line three is possible because the noise model and the model of the
phenomenon are independent. Since the error model is GaussianN (x, σ)

P (µobs|µtrue) = N ((µobs − µtrue), σ) (7)
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and the integral is a convolution of the Gaussian mixture model with the Gaussian noise model.
This is easy to achieve in Equation 6 by making the transformation

Σmod → Σmod + Σnoise (8)

whereΣmod, Σnoise are the covariance matrices of the model components and noise respectively
(note: the noise has zero mean). It is therefore straightforward to adapt the noise-free mixture
model to each measured point before applying.

3.2.2 Application

The input mixture model for galactic objects will consist ingeneral of several different Gaussians.
The model for extragalactic objects will be a single Gaussian with zero covariance. The gaussians
of the model are first convolved with the Gaussian of the errorfor the source and the likelihoods
can then be evaluated from Equation 7. The priors are taken tobe uniform for all classes, so if
we haveK classes, labeledCk, andJ models, labeledMj,k, each corresponding to a particular
classCk,

P (µi,obs|Cj) =

∑

l P (µi,obs|Mk,l)
∑

k,l P (µi,obs|Mk,l)
(9)

whereµi,obs are the three observables (parallax, proper motion RAcos δ, proper motion Dec).

3.3 Photometric Classifier

The photometric classifier produces a probabilistic classification based on the low resolution
prism spectra from the BP and RP ’photometers’ (so-called for historical reasons). It has a
hierarchical design and is based on Support Vector Machines(SVMs) running in two modes,
multiclass and one-class.

3.3.1 Design

The hierarchical design currently splits the classification problem in two ways. A first stage
classifier searches for stellar versus non-stellar objects, and a second stage then classifies the
various stellar classes (stars, white dwarfs and binaries).

The first and second stage classifiers are each subdivided into what we have termed the ’narrow’
and ’broad’ classifiers. The broad classifier is trained on data generated over a broad range of
parameter space. This means it can recognize unusual objects in the mission data. The narrow
classifier is trained on data from more realistic objects, possibly taken from an empirical library.
With this classifier, we hope to obtain a good performance on typical objects, without having to
model unusual objects. This strategy mostly makes sense forthe stars, for which it is possible
to produce spectra from model stellar atmospheres occupying a parameter volume much larger
than that occupied by actual evolutionary tracks.
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The narrow and broad general classifiers are each fronted by a’region detector’ algorithm. This
tests for compatibility between the spectrum under consideration and the data space occupied
by the training objects. The region detectors are used to exclude outlying objects where the
classifiers are not competent to carry out the classification.

FIGURE 2: Hierarchical design of DSC photometric subclassifier. The region detector modules
are based on one-class SVMs, whilst the classifiers themselves are multiclass SVMs. The
training data is split into stellar versus galaxies and quasars, and then into various stellar classes.
The data is also split into the narrow and broad groups – see text for details.

The design is shown in Figure 2. After preprocessing (edge clipping, flux rescaling), an object
requiring classification is first considered by the narrow general region detector algorithm. This
algorithm is described in more detail below in Section 3.3.2. If it is found to be compatible with
the narrow classifiers, it is passed on to the narrow general classifier for classification, and then
on to the narrow stellar classifier1. If it is found not to be compatible with the narrow classifiers,
it is passed first to the broad region detector. If it is found to be compatible with the broad region
detector training set, it is passed to the broad general classifier and then on to the broad stellar
classifier. If it is not found to be compatible with the broad training set, it is labeled as an outlier
(sourceType=UNKNOWN).

3.3.2 The SVM algorithms

The SVM is a standard algorithm taken from the libSVM library. The region detector algorithms
are one-class SVM’s (see [5] for details). The multiclass classifiers are based on multiclass SVMs
using radial basis functions as kernels. The multiclass SVMis in fact a series of two class SVMs
running on pairs of classes. Probabilities are initially calculated by modeling the distribution of
training sources across the decision boundary, after the method of [6]. The probabilities from

1Even objects likely to be non-stellar are classified by the stellar classifier, since we need to know the relative
probability between the various stellar classes
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the different two-class SVMs can be combined by using an algorithm called pairwise coupling
,described in [7].

3.3.2.1 Tuning The multiclass SVM requires two parameters to be set. One,γ, is the scal-
ing parameter for the radial basis function. The other, called C, is the cost parameter which
specifies the penalty for misclassifications. This parameter allow the SVM to be trained without
overfitting. The best values for these parameters are estimated from the training set using cross
validation and a Nelder-Mead tuning routine, described in [8].

3.3.3 Dealing with different magnitudes

The classifier has to deal with input sources of arbitrary magnitude betweenG = 6 andG = 20.
This is facilitated by training a grid of models at reasonable intervals, and assigning each input
source to an appropriate set of models in the grid. The sourceis rescaled according to the
expected difference in flux based on the G magnitude of the source and the G magnitude of
the training data used to produce the models. Preliminary tests indicated that one magnitude
intervals were sufficient to produce good classifications.

It was initially intended that input sources would be assigned to the nearest set of models in
magnitude space, however the performance was found to show adramatic degradation for sources
fainter than the assigned model (see Figure 3). Sources are now assigned ot the next faintest
model. There is some evidence (discussed in Section 4) that this solution might also not be
optimal - the performance may not be optimal even for sourceswith G magnitude identical to
that of the training data. This is possibly due to colour differences between the training and
testing objects. We are considering introducing a buffer sothat sources are classified by a set of
models fainter by some minimum amount.
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FIGURE 3: Classification of quasars in development cycle 7 with the photometric subclassifier,
choosing the nearest magnitude model from the grid.Top left: The distribution of quasars
with G > 16.5. Top rightThe correctly classified quasars.Bottom leftThe correctly classified
quasars (green) and incorrectly classified quasars (red). The models are trained with data at
magnitudes 15,16,17,18,19, and 20.

Gaia DPAC Document 18



CU8-MPIA
DSC status report
GAIA-C8-TN-MPIA-KS-019-01

4 Results

An overview of the latest results is given in the top half of Table 4. In the lower half of this table,
we give the results from development cycle 7. In cycle 7, onlythe photometric classifier was
used, and no account was taken of the relative class fractions. We include these results mainly
because they include libraries of several types of object not available in cycle 10, in particular
binaries, white dwarfs, and hot stars. The data for cycle 7 isdescribed in [9] and the data used
for cycle 10 are described in [10].

The latest results are similar to the results from cycle 10, except that here we use the version
of the position-GMag classifier based on Equation 5 whereas in cycle 10 the version based on
a KDE was used. The results of cycles 7 and 10 are discussed briefly in the STRs from those
cycles ([11]).

In the top panel, the rows refer to the input data set. The mainstellar libraries in the top set of
results are the two generated from Phoenix models, plus the SDSS stars, SDSS Qsos and SDSS
Galaxies, which are based on SDSS spectra. The Phoenix Nominal (or N) grid contains a broad
range of models and is regularly sampled in parameter space,whereas the ’R’ (Random) grid is
contains stars compatible with stellar evolutionary tracks. Other more unusual objects include
A peculiar stars, ultra-cool dwarfs (UCD) of two types, Wolf-Rayet stars and Fast rotators. The
columns in the table indicate the output class, with the correct classification highlighted in bold.
The figures are percentages of the input test set (so the rows should each sum to 100). Of
particular interest is the result for SDSS stars. The SVM models were trained without using any
objects from this library, so the result is obtained using only synthetic data for training.

The cycle 7 data includes the MARCS stellar library, plus libraries of hot stars, white dwarfs,
carbon stars, Be stars and binaries. The binary input librarywas made by combining spectra
from the MARCS and BaSeL cool stars input libraries.

From Table 4, the overall true classification rate for the main libraries in cycle 10 is over 90%.
Many of the misclassified sources are put into the unknown class, thus preventing contamination
of other output classes. The contamination in the quasar andgalaxy classes, however, is not
weighted for the relatively higher number of stars comparedto these groups. The contamination
from common stars (here, Phoenix R and SDSS stars), must be multiplied by a factor of between
100 and 1000 to make it comparable. This means that even low contamination rates can still be
problematic. High contamination from unusual stellar types such as A peculiar stars is not so
serious, as these objects are also rare.

In Figure 4 we show a subset of the results in a colour-colour diagram. The colours are made
by comparing the total fluxes in BP or RP with the reported G flux. We plot the residual in the
colour-colour space relative to a fit to the locus of Phoenix random stars. We stress that this
diagram is intended as a broad illustration, since the classification is not done in a colour-colour
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TABLE 4: Results from the two most recent cycles of DSC runs. The top section shows the
most recent results for a selection of data libraries. These are similar to the results obtained in
development cycle 10. The lower panel shows results for cycle 7. The rows refer to the test
sets. The table breaks down the input set into percentages of objects classified into each output
category. The column with the correct answer is highlighted in bold. For cycle 7, the position-G
mag classifier and astrometric classifier were not running, but two extra categories of sources
were available, namely binaries and two types of white dwarfs. The addition of the astrometric
classifier is expected to improve the performance on the white dwarfs in particular.

Grid N star white
dwarf

binary quasar galaxy unknown

APec 252 96.03 3.97 0.00 0.00
Fastrot 288 98.26 0.00 0.00 1.74
Phoenix N 45 610 95.73 0.02 0.54 3.70
Phoenix R 10 000 99.04 0.02 0.34 0.60
Stars SDSS 50 000 99.89 0.02 0.08 0.00
UCD Cond N 126 29.37 0.00 0.00 70.64
UCD Cond R 10 000 78.06 0.00 0.00 21.94
UCD Dust N 62 74.19 0.00 0.00 25.81
UCD Dust R 1 000 98.60 0.00 0.00 1.40
WR 43 76.74 0.00 0.00 23.26
Quasar SDSS 70 556 0.31 94.74 0.92 4.03
Galaxy SDSS 33 670 0.25 0.21 98.73 0.81
Results from cycle 7
MARCS 2000 82.05 2.80 5.75 4.05 1.90 3.45
Basel 4000 80.18 3.23 4.83 3.90 3.30 4.58
O 500 78.80 11.00 0.40 5.80 1.20 2.80
B 500 86.20 5.80 1.00 4.40 0.80 1.80
A 1000 89.10 3.20 0.90 3.60 1.00 2.20
Be 174 82.75 1.72 0.00 10.92 4.59 0.00
C stars 428 89.48 0.23 1.40 7.24 1.63 0.00
Binaries 4000 29.27 1.60 57.40 4.67 2.32 4.72
WDA 4000 18.20 58.42 0.52 16.10 1.95 4.80
WDB 4000 15.67 58.20 0.55 19.37 1.95 4.25
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FIGURE 4: Subsample of three grids plotted in a colour-colour space. The x-axis isthe BP-
G colour, and gthe y-axis is the residual of the BP-RP colour compared to asmoothed value
for the Phoenix random grid. Green points are SDSS stars, blue points are Quasars and violet
points are Galaxies. The hot stars lie to the left of the sequence and the cool stars to the right.
Misclassified sources are marked with asterisks with the colour of the correct (input) class.
Where sources were wrongly attributed to another class, other than unknown, the asterisk is
ringed with a coloured circle. The colour of the circle indicates which class the source was
wrongly attributed to. Uncircled asterisks represent sources classed as unknown.

space but rather in the full 360 dimensional space of the prism spectra (subject to edge clipping).
Nevertheless, this gives some idea of the spectral distribution of sources and the misclassification
characteristics. The semi-empirical stellar locus is similar to the synthetic Phoenix locus, which
is expected. The Galaxies are clustered toward the right end– together with the hotter stars from
Phoenix. The Quasars mostly occupy a region above and to the left of the stellar locus, but scatter
throughout the colour-colour space. For this reason, most of the misclassified quasars end up in
the UNKNOWN bin.

4.1 Analysis of particular libraries

In Figure 5 we show some more details of the classification of the Phoenix random grid. The
panel in the upper left shows the misclassified sources as larger points in the plane of two pa-
rameters, here magnitude and Teff. To the left and below are plots of the cumulative distribution
of misclassified sources compared both to the overall distribution and to a uniform sample with
the same size as the misclassified sample. It is clear that themisclassifications are not distributed
uniformly in either parameter. In the case of magnitude, it is clear that most misclassifications
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occur for the faint stars, but there are also clumps of misclassified sources at the bright end. To
the lower left is shown a running average true classificationrate with the source sorted on Teff.
The cooler stars are systematically less well classified.
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FIGURE 5: Performance on Phoenix random grid stars. The plot at upper rightshows the dis-
tribution of all input sources in G magnitude and Teff (small dots). The largesymbols show the
misclassified sources. The misclassifications are colour coded, with black symbols represent-
ing unknown output, green representing quasars and blue representing galaxies. At upper left
is shown the cumulative distribution with Teff of all sources (blue line), misclassified sources
(red line), and also a sample drawn randomly from a uniform distribution with the same number
of objects as the set of misclassified sources (black line). At lower right isa similar plot for
the cumulative distributions in G magnitude. At lower left is shown a moving average correct
classification rate (binsize 300) for sources sorted on Teff. The classification rate holds up well
except for the low temperature stars.

Similar plots are shown for Quasars in Figure 6 and for ultra-cool dwarfs in Figure 7. For
the quasars, we plot redshift against G magnitude. The inputdistribution of redshifts shows
the characteristic pattern of the SDSS quasar sample; a large number of sources with redshifts
in the range 1-2, and a lack of objects at redshifts around 2.3. Misclassifications in redshift
occur predominantly for the higher redshifts, possibly because these are underrepresented in the
training data. This problem will be addressed in the future when we have access to simulated
training data with uniform redshift sampling.

Gaia DPAC Document 22



CU8-MPIA
DSC status report
GAIA-C8-TN-MPIA-KS-019-01

In G magnitude, the quasars misclassifications occur in bands around integer values of the magni-
tude. These correspond to the borderline regions between models trained at different magnitudes.
Sources with similar magnitude to the training data are often classed as outliers because of minor
mismatches in the noise. This problem can perhaps be addressed by requiring that a source is
classified by a model trained on data fainter than the source itself by some margin.
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FIGURE 6: As Figure 5, but showing the Quasars in GMag versus redshift, z. Misclassified
sources at upper right are coloured red for stars, blue for galaxies, black for unknown.

For the ultra-cool dwarfs, we show the effective temperature and logg. The library shows many
misclassifications around the edges of the parameter distribution. This may indicate that the
training set did not adequately sample the full parameter space.

In Figure 8 we show a similar plot for APec stars, concentrating on G magnitude and Teff. The
results for APec stars are much sparser than for the previouslibraries, but it is still clear from the
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FIGURE 7: As Figure 5 and Figure 6, but showing the ultra-cool dwarfs in logg versus Teff
space. The misclassified sources are almost all classed as unknown, and are clustered around
the edges of the parameter distribution. This indicates that the library has been undersampled
when constructing the models, and this leads to sources being rejected by theone-class SVM.

panel at lower left that the misclassifications occur preferentially amongst the high temperature
objects. Most misclassifications are into the Quasars class.

Figure 9 shows an analysis of the results from the classification of physical binaries in cycle 7.
Physical binaries are an particularly interesting class because, as the brightness ratio increases,
they essentially blend into the single stars class with no definite boundary.

We present the classification as a function of three parameters, instead of only two as in the
previous cases. These parameters are the brightness ratio (BR), effective temperature of the
primary Teff1, and the G magnitude. The top two panels of Figure 9 show the distribution of
misclassified sources in GMag-Teff1 and GMag-Brightness ratio space.
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FIGURE 8: As Figures 5 to 7, but showing the Apec stars in Teff versus G magnitudespace. The
library is more sparse than the preious examples. The misclassified sourcesare split between
Unknown and quasars, and are concentrated at the high temperature end of the distribution.

4.2 Class fractions

We have discussed briefly several times the fact that the class fractions encountered by Gaia will
be highly unbalanced. In the version of the code discussed here, the class imbalance is built into
the positon-Gmag classifier. In the future we intend to include it as a separate prior.

The test sets we have used are composed exclusively of sources from a single input grid. In this
way ,we can anlyse which grids are better classified, and which types of objects within each grid
are still problematic. If we want to assess the overall performance of the classifier, however, we
have to take the class fractions into account, not only in theclassification itself, but also in the
importance of various contaminating populations.

when assessing the result, we can define thecompletenessin a particular class as

completenessj =
ni=j,j

Ni

, (10)

whereni,j is the number of objects of true classi classified as output classj and Ni is the
total number of input sources of classi. Input sources can be lost from the output class due to
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misclassification into another class, or by remaining unclassified due to an insufficiently high
classification confidence. Thecontaminationof the output sample can be defined as the number
of falsely classified sources of that class divided by the number of sources classified into that
class, whether correctly or incorrectly,

contaminationj =

∑

i6=j ni,j
∑

i ni,j

. (11)

The second of these has strong implications for assessing the performance of the classifier in the
case of strongly unbalanced class fractions. If we considerthe case of quasars contaminating
stars, quasars are comparatively rare, so if we have equal numbers of each in the test sets, we
would have to adjust the quasars down by a factor of 100 or moreto get the real expected con-
tamination. If we consider normal stars contaminating the output quasar sample, the opposit is
the case. We would have to multiply the number of contaminating stars up by an appropriate
factor to get the true contamination.

If we consider the case of SDSS stars in Table 4, we see that only 0.08% of the stars are misclas-
sified as quasars. If the stars are 100 times as numerous as quasars, however, we would expect
the true fraction of contaminants in the output quasar sample to be of order 8%. The factor of
100 is probably conservative. for the Phoenix random test set, the situation is worse, with 0.34%
of the input sources being misclassified as quasars, which would translate to 34% of the output
quasar sample with a ratio of 100:1.

We investigate the effects on the completeness and contamination of the output quasar sample
caused by varying the assumed class fraction and also the probability threshold for classification.
For this experiment we use only the photometric classifier. We start with a 1:1 ratio of quasars to
stars and reduce the number of quasars. This has two effects.First, the class fraction prior in the
classification is adjusted so that quasars area priori less likely. This effect reduces the posterior
probability of a source being a quasar (left-hand plot of Figure 10). If the posterior probability
for a source falls below the selected threshold, the source drops out of the output quasar sample.
A threshold of 0.67 is indicated by the horizontal line in theleft-hand plot of Figure 10.

This tends to reduce the completeness (green curves in Figure 10, right hand side). It also in-
creases the contamination, since the contaminating stars are ’upweighted’ proportionally to their
relative class fraction. However, the increasing prior probability against quasars in the classifi-
cation eventually excludes the contaminating stars, causing the sharp falls in the contamination
seen in Figure 10. The contamination will tend to fall in the long term if the contaminating
sources tend t obe less probably quasars than the true quasars.
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FIGURE 9: Similar to Figures 5 to 8, but with a slight change in format. These plots illustrate
the performance on hpysical binaries in the cycle 7 results. We investigate three parameters, the
G magntude, the effective temperature of the primary ,Teff1, and the brightness ratio, BR, which
is in factlog10L1/L2, the log of the bolometric luminosity ratio. On the top row we show plots
of the Teff1 against GMag, and BR against GMag for the input sources. Misclassified sources
are plotted with large symbols. Colour coding for misclassified sources is: black=UNKNOWN,
red=STAR, scarlet=WD, green=QUASAR, blue=GALAXY. The plots in themiddle row and
the left-hand plot on the lower row show the cumulative distributions of all input sources (blue)
and misclassified sources (red), as well as the distribution of a uniform sample with the same
size as the number of misclassified sources (black). At lower right we show a histogram of the
classifications distributed by brightness ratio (classification threshold:P (class) = 0.5) The red
histogram shows sources classified as binaries, blue indicates stars, cyan indicates Unknown,
green indicates Quasars, and black indicates Galaxies.
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FIGURE 10: At left, the result on the output probabilities from the photometric classifier of
varying the fraction of the input class (in this case Quasars). The log of the fraction of sources
is shown on the x-axis. The threshold for classification is indicated with a horizontal line at
P=0.67. probabilities still accepted as quasars are plotted in green and rejected regions are plot-
ted in red. On the right is shown the resulting completeness (in green), and the contamination
(red). Both these are plotted for various classification thresholds between 0.5 and 0.95.
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4.3 Test on high radial velocity stars

The DSC was tested on stellar data with varying Radial velocity. The dataset is the cycle 5
VRAD grid, with 40 objects. The radial velocities for objectsin this grid ranged from zero to
five hundred km/s. Only the photometric classifier was used for this test.

4.3.1 Results of radial velocity test

Figure 11 shows the probabilities from the photometric subclassifier versus the four varying
parameters Teff, logg, Fe/H and Rv. Table 5 shows the number ofcorrect and incorrect classifi-
cations broken down by parameter.
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FIGURE 11: Plots of P(Star) versus various parameters for the radial velocity test. Clockwise
from top left: Teff, logg, Rv and Fe/H.

The results for this are broadly consistent with the resultsfor the main stellar libraries of cycle
5 data, which had a correct classification rate of 70% for bothMarcs and Basel (Table 4).
The correct classication rate might be skewed by the presence of more low temperature stars
compared to the cycle 7 test sets - the low temperature stars are very badly classified.

The main conclusion is that there is no clear evidence of any effect of the varying RV on the
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P > 0.67 P ≤ 0.67 % correct
Teff=4000 3 13 18.75
Teff=4500 12 4 75.0
Teff=5000 5 3 62.5
logg=2.5 15 5 75.0
logg=4.5 15 5 75.0
Fe/H=0. 10 14 41.67
Fe/H=-1.5 10 6 62.5
RV=0. 6 4 60.0
RV=100 4 6 40.0
RV=250 5 5 50.0
RV=500 5 5 50.0
Overall 20 20 50.0

TABLE 5: Correct and incorrect classifications, with a P=0.67 threshold, for the various param-
eter values in the radial velocity test.

classification performance.
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4.4 Overlapping stellar libraries

4.4.1 Overview

We test the performance of the DSC on the overlapping regionsof the cycle 5 data stellar libraries.
For this test, only the photometric classifier was used.

4.4.2 The libraries

The Basel library in cycle 5 includes stars with3000 < Teff < 15000K. The Marcs library
has4000 < Teff < 8000K, while the A stars library covers8000 < Teff < 15000. Thus
the region fromTeff = 4000 to Teff = 8000 is covered by both Basel and Marcs, whilst the
region fromTeff = 8000 to Teff = 15, 000K is covered by both Basel and A libraries. There
is no overlap between Marcs and A. We prepared data from all three random libraries with G=15.

Figure 12 shows the distributions of stellar parameters forthe overlapping regions only. The
distributions of Teff and Av are broadly similar. There are differences between the libraries in
logg and metallicity.

Figure 13 shows the median spectra for the stars in the overlapping regions. The Basel and Marcs
median spectra between 4000K and 8000K are almost identical- the main visible difference is a
notch at the top of the RP spectrum. The A stars median spectrumis apparently somewhat bluer
than the Basel median spectrum between 8000K and 15000K. Thismay reflect differences in the
metallicity distribution.

4.4.3 Results of the overlap test

Figure 14 shows classification results for the objects in theoverlapping regions for each library.
These results were obtained with DSC V7.1 with Astrometric classfier and PostionGMag classi-
fier turned off, i.e. photometric classification only.

Table 6 shows the numbers of objects correctly classified with P (star) > 0.5 andP (star) >
0.67 for the overlapping libraries, and also the number of objects for whichP (star) < 0.5. The
most significant difference seems to be the much lower misclassification rate for the A library
compared to the Basel library in the same region.

Figure 15 shows the cumulative distribution functions for P(Star) for the three libraries over
their whole range (i.e. the whole range of the BaSeL library).The cumulative distribution
for BaSeL simply shows cumulative P(Star) versus number of objects, with the objects sorted
according to increasing Teff. A steep slope in this graph indicates generally a good classification
performance, whereas a shallow slope indicates poor performance. Dashed lines are plotted for
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FIGURE 12: The distributions of parameters for stars in the overlapping regions. The param-
eters shown are Teff, Av, logg and Fe/H. On the top row are shown the distributions for both
Basel and Marcs in the region betweenTeff = 4000 andTeff = 8000K. The Basel distribu-
tion is plotted in black and the Marcs in red. On the bottom row are the distributionsof Basel
and A stars betweenTeff = 8000K andTeff = 15000K. The Basel distribution is again in
black whilst the A stars distribution is plotted in red.

P(Star)¿0.67 P(Star)¿0.5
Basel 4000-8000K 8,205 (93.2%) 8,500 (96.5%) 302 (3.4%)
Marcs 4000-8000K 13,469 (89.9%) 14,231 (94.9%) 759 (5.1%)
Basel 8000-15000K 4,210 (94.4%) 4,392 (98.4%) 70 (1.6%)
A 8000-15000K 9,983 (99.9%) 9,951 (99.6%) 5 (0.05%)

TABLE 6: Numbers and percentages of stars classified correctly at P=0.5 anmd P=0.67 thresh-
olds, and numbers of objects falling short of P(star)=0.5, for the overlapping libraries.
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FIGURE 13: In the top panel, the median spectra for the overlapping region betweenBasel and
Marcs (4000K to 8000K). Basel is plotted in black and Marcs in red. The spectra are almost
identical. In the bottom panel, the median spectra for Basel and A in the overlapping region
(8000K-15000K). Basel is shown in black and A in blue. Here, the A stars spectrum is bluer
than the Basel.
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FIGURE 14: Classification results. On the left, the results of Basel and Marcs classification
between 4000K and 8000K. Marcs results are shown in red and Basel inblack. The y-axis
shows the object density, but the histogram bins are equal so the two plots are directly com-
parable. The Basel histogram has a higher proportion of objects in the topprobability bin and
so the classification is more successful. On the right, the same comparison forBasel and A
stars libraries in the region between 8000K and 15000K. The A stars are inblue. The A stars
classification places a greater proportion of objects into the top bin, and so ismore successful
by that measure.

the cases P(star)=0.5 and P(star)=0.67. Also shown on the same axis are similar curves for Marcs
(red) and A stars (blue). These are shifted so that they startat the same point as the first Basel
star with the minimum temperature of the library - the Marcs curve starts at the first Basel point
where Teff=4000K, the A star curve starts at the first Basel point with Teff=8000K. The curves
are also scaled to the same number of objects as there are in the overlapping section of the Basel
grid. This means they also end at the points of equivalent Teff on the Basel curve. Both the x and
y values are scaled by the same factor, so the slopes are directly comparable.

From Figure 15 it can be seen that the Basel grid is quite poorlyclassified between 3000 and
4000K, where the Marcs grid starts. The average P(star) hereis barely over 0.5. The performance
improves after this and is reasonably consistent for the rest of the temperature domain. The Marcs
slope is slightly shallower than the Basel one and the A stars slightly steeper, which supports the
result seen in Figure 14.

Figure 16 is similar to Figure 15, but shows instead the falsenegative rate, or more accurately
the number of objects for whichP (star) <= 0.5, with the objects sorted by Teff. As before,
the Marcs and A stars curves have been shifted and scaled so that they occupy the same domain
as the overlapping Basel points. The change in performance for Basel is very clear. Of the
1151 total misclassifications in the Basel library, 778 occurfor sources withTeff < 4000K and
989 for sources withTeff < 5000. Only 162 occur for sources withTeff > 5000K. The
Marcs misclassifications are also clustered at low temperatures, with 596 out of a total of 759
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FIGURE 15: The cumulative true positive probabilities (i.e. P(star)) for Basel (black line) Marcs
(red) and A stars (blue). For the Basel plot, the x-axis indicates the number of objects sorted
on Teff, from lowest to highest. The y-axis is the cumulative P(star). Thetwo dashed lines
show the rate of increase of cumulative P(star) if all values were 0.5 (lower dashed line) or 0.67
(upper dashed line). The Marcs and A stars curves also show cumulative P(star) versus number
of objects in increasing Teff order, but their start points have been moved to the equivalent point
on the Basel curve (i.e. where TeffMarcs/A=TeffBasel) and both the x and y values have been
scaled by the ratio of the number of Basel sources in the overlap region to the total number of
objects in the Marcs or A star library. This means the segment correspondingto, for example,
Marcs, occupies the same domain as the Basel stars of equivalent temperature, and the slopes
are comparable since bothdx anddy are scaled by the same factor.
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FIGURE 16: The cumulative false negative rate, with objects sorted for increasingTeff. The
Basel curve is shown as-is, the Marcs (red) and A stars (blue) are shifted so that their start point
coincides with the corresponding point in the Basel distribution, and the scale of these curves is
multiplied by the ratio of the number of Basel points in the overlapping region to thenumber of
Marcs or A stars points, so that these curves occupy the same domain as theoverlapping Teff
region of the Basel curve.
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misclassifications occuring atTeff < 5000K.
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FIGURE 17: Distribution of misclassified sources (false negative,P (star) <= 0.5) for Basel,
Marcs (red) and A stars (blue).

Figure 17 shows that the Basel and Marcs misclassifications are dominated by low-temperature
sources.

5 Comparison of different subclassifiers

We examine the correlations in the performances of the different subclassifiers.
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FIGURE 18: Distribution of output probabilities for the Phoenix random grid from various
subclassifiers. Clockwise from top left: combined probability, photometric, position-Gmag
and astrometric. The frequencies are plotted on a log scale because most of the bins have few
counts. Where the frequency is zero, the value of log(N) has been setto zero. Note that there
are no negative values of log(N) as there are only integer numbers of objects in each bin.

Figures 18, 19 and 20 show the histograms of the various probability outputs for the Phoenix
random, SDSS stars and SDSS quasars tests respectively. Thehistograms are plotted on a log
scale because of the large contrast between counts close to zero or one and counts in the middle
of the range.

From these plots, one can see that the photometric classifierprovides the strongest positive ev-
idence for the correct classification. The Astrometric classifier for the phoenix and SDSS stars
has many sources withP ∼ 0, which are then misclassifications. This is not true of the quasars,
which have a prominent spike atP ∼ 0.45 (the probability from the astrometric classifier is split
equally between the quasars and galaxies).

Gaia DPAC Document 38



CU8-MPIA
DSC status report
GAIA-C8-TN-MPIA-KS-019-01

P(Star) all

lo
g(

N
) 

S
ta

rs

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

P(Star) photometric

lo
g(

N
) 

S
ta

rs
0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

P(Star) astrometry

lo
g(

N
) 

S
ta

rs

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4

P(Star) position

lo
g(

N
) 

S
ta

rs

0.88 0.90 0.92 0.94 0.96

0
1

2
3

4

FIGURE 19: As Figure 18, but for the SDSS stars.

In Tables 7, 8 and 9 we show a breakdown of the subclassifier results. These tables are each
subdivided into sixteen cells, to show the correct or incorrect classification according to all three
subclassifiers, plus the overall result (24 = 16).

The eight cells in the left hand half of each table show the number of sources correctly classified
overall, whilst the eight cells in the right half show the number incorrectly classified.

The top two rows of the table show the sources correctly classified by the photometric classifier,
the lower two rows the misclassified sources. We use a threshold of P (correct) = 0.5 as the deci-
sion boundary. Note that in the DSC full results, the decision boundary for correct classification
is atP (correct) = 0.67.

The left hand side of each half of the table (i.e. columns 1 and3) shows the number of sources
correctly classified by the position-G magnitude subclassifier. For the purposes of this table,
we have removed the effect of the class fraction prior from the position-Gmag probabilities by
dividing through by an estimated prior, replacing with an equal prior, and then renormalizing.
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FIGURE 20: As Figure 18, but for the quasars.

The prior divided out was chosen so that roughly 50% of the stars were misclassified by the
position G mag classifier. A factor of 25 increase in the quasar prior was found to achieve this.
The threshold for correct quasar classification is set to 0.25%, because the probability for an
extragalactic object is split equally between the quasar and galaxy classes. Even with the class
fraction prior removed, very few quasars were misclassifiedby the position-Gmag classifier. One
reason for this is that the test quasars all haveG > 15, whilst the stars are evenly distributed over
a wide range of magnitudes (6 < G < 20).

Finally, rows 1 and 3 show the number of sources classified correctly by the astrometric classifier,
and rows 2 and 4 show the number of sources misclassified by theastrometric subclassifier. For
the quasars, the threshold is againP (Qso) = 0.25, because the probabilities are split between
quasars and galaxies.

From Tables 7, 8 and 9 we can note particularly the meaning of the following elements;
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Pall > 0.5 Pall < 0.5
Ppos > 0.5 Ppos < 0.5 Ppos > 0.5 Ppos < 0.5

Pphot > 0.5 PAC > 0.5 3404 3246 0 0
PAC < 0.5 2408 724 0 17

Pphot < 0.5 PAC > 0.5 3 25 0 0
PAC < 0.5 1 0 0 19

TABLE 7: Breakdown of results by subclassifier for Phoenix random test set.A probabil-
ity threshold of 0.5 is used in this classification, in contrast to the main results, because it is
easier to understand. 2 516 sources withP (UNKNOWN) = 1, P (UNDEFINED) = 1 or
P (UNCLASSIFIED) = 1 for any subclassifier were omitted, leaving 7 484 test sources in the
sample.

Pall > 0.5 Pall < 0.5
Ppos > 0.25 Ppos < 0.25 Ppos > 0.25 Ppos < 0.25

Pphot > 0.5 PAC > 0.25 66 480 4 1 0
PAC < 0.25 83 0 1 0

Pphot < 0.5 PAC > 0.25 216 0 898 0
PAC < 0.25 0 0 1 0

TABLE 8: Breakdown of results by subclassifier for quasars. A probability threshold of 0.5 is
used for the overall classification and the photometric classification, but a probability thresh-
old of 0.25 is adopted for the position-Gmag and astrometric classifiers, because in these cases
Quasars and Galaxies are indistinguishable and so the probability tends to besplit between
them (in the case of the astrometric classifier, it is formally impossible forP (Qso) to rise
above 0.5 because of the split with galaxies). 2 872 sources withP (UNKNOWN) = 1,
P (UNDEFINED) = 1 or P (UNCLASSIFIED) = 1 for any classifier were omitted, leav-
ing 67 684 test sources in the sample.

Pall > 0.5 Pall < 0.5
Ppos > 0.5 Ppos < 0.5 Ppos > 0.5 Ppos < 0.5

Pphot > 0.5 PAC > 0.5 17 282 19 797 0 0
PAC < 0.5 12 038 176 0 17

Pphot < 0.5 PAC > 0.5 92 499 2 7
PAC < 0.5 50 2 7 20

TABLE 9: Breakdown of results by subclassifier for SDSS stars. A probability threshold of 0.5
is used in this classification. 12 104 sources withP (UNKNOWN) = 1, P (UNDEFINED) =
1 or P (UNCLASSIFIED) = 1 for any classifier were omitted, leaving 37 896 test sources in
the sample.
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Row 1 Col 1: These are the sources classified correctly by all subclassifiers. For all the classes,
many of the objects end up in this bin.

Rows 3 and 4, Cols 1 and 2These sources are misclassified by the photometric classifier, but
are correctly classified overall based on the results of either the astrometric subclassifier or the
position Gmag subclassifier or both.

Row 4 Col 2These sources are incorrectly classified by all the subclassifiers, yet end up overall
in the correct category. This applies to only one source. This result may seem counterintuitive,
but in fact if all the subclassifiers return a moderate probability less than a half for a particular
class, but can’t agree amongst themselves on an alternativeclass, one can see that this can occur
(see discussion in section 2.1.2.

Rows 1 and 2, columns 3 and 4These sources are correctly classified by the photometric classi-
fier, yet end up misclassified because of the results of one or both of the other two subclassifiers.

5.0.4 Results breakdown and discussion

For the Phoenix stars, a large majority of objects are classified correctly. A total of 29 objects are
misclassified by the photometric subclassifier, but ’saved’by the astrometric and position Gmag
subclassifiers, and a total of 17 objects correctly classified by the photometric subclassifier are
ultimately misclassified due to the two other subclassifiers.

For the quasars, the largest category of objects are classified correctly overall and by all the
subclassifiers. 216 objects are misclassified by the photometric classifier but correctly classified
by the position-Gmag nad astrometric classifiers and end up correctly classified. A total of two
objects are correctly classified by the photometric classifier, but end up misclassified due to a
combination of the position Gmag and astrometric classifiers, and the class fraction prior. 899
objects are misclassified, despite correctly classified by the position-Gmag classifier.

The SDSS stars results resemble those of the Phoenix stars. The majority of the objects are
spread between the three bins at the top left. A total of 443 sources are misclassified by the
photometric classifier, but end up correctly classified due to the other subclassifiers and the class
fraction prior. A total of 17 sources are correctly classified by the photometric classifier, but are
eventually misclassified due to the other subclassifiers andthe prior.

6 Robustness against damaged data

A subclassifier is not run if the input data are missing, or if NaN’s or saturated values are present.
The performance of the photometric subclassifier was investigated in the case of various types of
other damage or imperfection to the BP or RP spectra, or errors in the overall flux or wavelength
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calibration.

6.1 Data sets

The damaged data models are very simple, since the exact processing method is not yet estab-
lished and the likely data problems are not yet known. We investigate four types of compromised
data. They are:

• Hot pixels, caused by cosmic ray hits or possibly other events.

• Cool pixels. Cause unknown.

• Bad flux calibration, causing the G magnitude to vary from its true value.

• Bad wavelength calibration, causing a global shift to the spectrum.

We prepared simple versions of these types of data from the cycle 5 simulations, which include
various types of stars, quasars, galaxies, binaries and white dwarfs. We selected objects which
were (reasonably) well classified in their unaltered form, and applied a progressive degradation
to the data, to find out at what level the classification beginsto be compromised. We carried out
tests for normal stars (MARCS library), galaxies and QSOs.

For each class of objects, one hundred reasonably well classified examples were first selected.
By ’reasonably well classified’, we mean that the true positive probability was greater than 0.5
for the undamaged spectrum.

The simulated spectra are provided with 180 resolution elements, corresponding to a factor of
three oversampling with respect to the BPRP pixels. For this test, we resampled the spectra to
the approximate pixel sampling of the BPRP chips (60 elements in each of BP and RP), before
clipping the low signal elements at the edges. The models were trained on the remaining 86
resolution elements from both BP and RP.

For the ’hot’ and ’cool’ pixel datasets, the data degradation was carried out on each pixel in turn.
Fifty different ’degrees’ of damage were applied for each pixel.

For the wavelength calibration and flux calibration tests, the whole spectrum was affected (there
is no pixel-by-pixel test). For the flux calibration, the value of the G magnitude in the calPhot-
Source was altered progressively. For the wavelength calibration, the entire spectrum was resam-
pled with pixel bins shifted by up to 1 pixel redward and blueward of the true spectrum centre.
A renormalization was carried out to ensure that the flux was conserved.
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6.1.1 Hot pixels

A three dimensional grid of data was built for this experiment, of one hundred objects by 86
pixels by 50 different hot pixel ’strengths’. Each of the 86 pixels, in BP and RP, used by the DSC
cycle 7 models was degraded in turn. The hot pixel is generated by multiplying the original flux
by a factor

f = 1. + i/10. i = 1, ...50 (12)

(13)

so there are fifty hot pixels of different ’strengths’ for each affected pixel.

The damaged data grid is run through DSC with the normal models available (see cycle 7 doc-
umentation for DSC). The output probabilities (from the BPRP subclassifier) are represented in
Figure 21 for the stellar spectra, Figure 22 for the galaxiesand Figure 23 for quasars. These are
the average probabilities over 100 objects.

These figures indicate that the classifier performance is quite strongly affected by hot pixels
across the whole range of pixels. for the most sensitive pixels, misclassification can arise for hot
pixels of a factor of order 1.5 in flux. In one or two cases, the threshold is even lower.

In these Figures, misclassifications have been colour codedaccording to the class assigned. The
assigned class is the largest probability in the BPRP probability vector. It should be borne in
mind that the class assignments are based on the averaged results, so may not reflect the true
statistical distribution of misclassifications in the data.

For the MARCS (stars) data, the presence of blue and red points in the misclassification area
indicates a tendency for the stellar spectra to be misclassified as binaries or quasars. As the hot
pixels become extreme, there is a greater and greater tendency for the sources to be classed as
UNKNOWN (black points in the Figure). This is encouraging as it indicates that the outlier
detector is excluding strange objects from the classification proper.

For the galaxies plot, most misclassifications are into the quasars class (red). Again, badly dam-
aged spectra are classified as UNKNOWN.

The quasars plot is interesting as it indicates that no misclassifications occur into other astro-
physical classes, but rather that all damaged spectra are classified as UNKNOWN. We stress
again here that the output classes have been assigned based on averaged probabilities over all
one hundred sample objects, not on the basis of individual misclassifications.
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FIGURE 21: The performance of the classifier on stellar spectra damaged by the addition of
spurious extra flux to one pixel (a hot pixel). The classifications are applied based on the
average probability over all one hundred sources. The x-axis showsthe pixel number affected.
The combined BP and RP spectra cover 86 pixels, after accounting for resampling and edge
clipping. The y-axis is the factor applied to the original flux in the affected pixel. The size of
the plotting symbols represents the probability returned that the object is a star(which it is).
Larger symbols represent larger values ofP (star). Additionally, symbols are colour coded
according to the most probable source type. This would correspond to theclassification in
the event that there is no probability threshold applied. Green symbols are stars, red symbols
quasars, blue symbols binaries, grey symbols white dwarfs, pink symbols are galaxies and black
symbols are unknown.
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FIGURE 22: The performance of the classifier on one hundred galaxy spectra damaged by the
addition of spurious extra flux to one pixel. Axes, symbols and colours aresimilar to Figure 21,
except that now the size of the symbols indicates the returned probability thatthe source is a
Galaxy, rather than a star.
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FIGURE 23: The performance of the classifier on one hundred quasar spectradamaged by the
addition of spurious extra flux to one pixel. Axes, symbols and colours aresimilar to Figure 21,
except that now the size of the symbols indicates the returned probability thatthe source is a
quasar, rather than a star.
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6.1.2 Cool pixels

This is similar to the hot pixels data. All 86 BP and RP pixels aretested in turn with fifty different
levels of flux loss. Pixel fluxes are multiplied by the factor

f = 1./(1. + 0.1 ∗ i); i = 1, ....50, (14)

to introduce the ’cool’ pixel. The results for one hundred stars, one hundred galaxies and one
hundred quasars are plotted in Figures 24 to 26
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FIGURE 24: The performance of the classifier on one hundred star spectra damaged by the
presence of a cool pixel. Axes, symbols and colours as for Figure 21,except now the y-axis is
the index used to generate the ’cooling factor’ in equation 14. Larger y-axis values therefore
represent worse damage to the original spectra.

These figures show again that, for sensitive elements, even modest alterations of the flux value
can cause misclassification of the source. Values of the ’cooling factor’, by which is meant
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FIGURE 25: The performance of the classifier on one hundred galaxy spectra damaged by a
cool pixel. Axes, symbols and colours are similar to Figure 24, except thatnow the size of the
symbols indicates the averaged probability that the sources are Galaxies, rather than stars.
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FIGURE 26: The performance of the classifier on one hundred quasar spectradamaged by the
addition of a cool pixel. Axes, symbols and colours are similar to Figure 24, except that now
the size of the symbols indicates the averaged probability that the sources are quasars, rather
than stars.
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the indexi in Equation 14, of about 5 correspond to a pixel with a factor 0.67 lower in flux
than the undamaged spectrum. Factors of approximately thissize in the most sensitive pixels are
sufficient to cause misclassification of stellar spectra. The number of sensitive pixels and the level
of damage needed to cause misclassification is generally much lower for all three test classes than
it was for the hot pixel data in the previous section. The quasars show no misclassifications at
all due to cool pixels. The maximum factor by which the pixelscan be reduced is 1/6, or 0.167,
so the flux reduction is quite large and it is not clear that considering stronger reduction factors
would be helpful.

Misclassifications of stars tend to be into the quasar class,and misclassifications of galaxies can
be into a variety of other classes, at least including stars,binaries and quasars.

6.1.3 Flux calibration

The G magnitude is shifted from its original value,G0, by one hundred different values between
-0.5 and 0.5 magnitudes, in steps of 0.01 magnitudes. This affects the normalization applied to
the data, and therefore rescales the whole spectrum when compared to the SVM models.

As with the hot pixels and cool pixels, one hundred of each main class of sources were classified
and the results averaged to produce the output shown in Figures 27, 28 and 29. The plots show
the averaged output probability for each main class as a function of the data degradation.

The plots for stars and galaxies show that the performance falls off dramatically with a scale of
between 0.1 to perhaps 0.3 magnitudes. This fall-off is not necessarily entirely symmetric, and
the performance seems to fall away more steeply on the ’bright’ side than the ’faint’ side. To
understand this, we review the procedure for dealing with different magnitudes in DSC.

An input spectrum for DSC is assigned to the next faintest of the preprepared SVM models in
the model grid. The spectrum is then normalised to the magnitude of the training data used to
prepare that model. The main source of error in this process in normal circumstances is that
the input spectrum will have slightly different noise characteristics to the training data used to
build the model. For input spectra brighter than the training data, this does not make a crucial
difference. For input spectra fainter than the model, the performance declines on a scale of about
0.5 to 1 magnitudes (Figure 2 of [11]).

If there is an error in the G magnitude, the spectrum will be wrongly normalised and will have too
much or too little flux compared to the support vectors in the model. The SVM standardization
will not correct for this problem, and we can expect the results to rapidly deteriorate. The tests on
the DSC magnitude handling in [11] indicate that wrong flux normalization will cause problems
for discrepancies larger than about 0.1 magnitudes, and this is what we see in Figures 27 to 29.
The stars data apparently are misclassified after an offset of 0.1 to 0.2 magnitudes. The galaxies
are similar to the stars and the quasars are misclassified after a factor of 0.2 to 0.4. As with the
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FIGURE 27: Variation of output probabilities with variation of the flux in the CalPhotSource
table for one hundred MARCS stellar sources. The flux is varied by up to one magnitude in one
hundred 0.01 magnitude steps around its true value. The probabilities for thedifferent output
classes are colour coded (see key in plot).
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FIGURE 28: Variation of output probabilities with variation of the flux in the CalPhotSource
table for one hundred Galaxies. The flux is varied by 1 magnitude in one hundred 0.01 mag-
nitude steps around its true value. The probabilities for the different output classes are colour
coded (see key in plot).
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FIGURE 29: Variation of output probabilities with variation of the flux in the CalPhotSource
table for one hundred Quasars. The flux is varied by 1 magnitude in one hundred 0.01 mag-
nitude steps around its true value. The probabilities for the different output classes are colour
coded (see key in plot).
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hot and cool pixel data, we must bear in mind that the probabilities plotted are averages over one
hundred sources, and the performance for individual objects could vary.

From the stars and galaxies plots, it seems that misclassification as a quasar is likely for modest
magnitude offsets (0.1 - 0.3) whilst classification as UNKNOWN sets in for worse offsets. for
the quasars, misclassifications seem to be overwhelmingly into the UNKNOWN category. This
is consistent with the results from the hot pixel data.

6.1.4 Wavelength calibration

The spectrum is shifted from -1. resolution element (bluewards) to +1 resolution element (red-
wards) relative to the original. One hundred steps of 0.02 pixels are used. The shift is done
by calculating new pixel fluxes from linear combinations of original fluxes from neighbouring
pixels. A flux normalization is performed after the resampling to ensure flux conservation.

The results are shown in Figures 30, 31 and 32. These plots aresimilar to the flux calibra-
tion plots, and show the output probabilities for each classaveraged over all one hundred input
sources as a function of the spectrum shift. In all cases, strong effects on the output probabil-
ities from DSC are seen with these∼0.1 pixel shifts. The stars classification exhibits a strong
peak with a scale of 0.1 pixels or so. The Quasar and galaxy classifications are both slightly
more robust. Both seem also to be more robust to the positive shift side, which corresponds to
the spectrum being shifted to the red. This may be due to the fact that the Galaxy and Quasar
training sets include redshifted objects.

The stars spectra, when shifted bluewards (negative shift), show a tendency to be misclassified
as quasars. When shifted redwards, there is a tendency to misclassify as white dwarfs. The
galaxies are most likely misclassified as quasars for modestpixel shifts in both directions, and
the quasars are classified as UNKNOWN rather than into any other astrophysical class. For large
shifts (order 1 pixel) in either direction, the stars and galaxies are also classed as UNKNOWN.

6.1.5 Summary of the robustness test

The tests indicate that the DSC performance can be quite sensitive to even relatively small varia-
tions in the pixel-to-pixel response. Variations of 0.1 magnitudes in flux calibration, or shifts of
about 0.1 pixels in the dispersion solution between the training data and the evaluation data, can
also lead to misclassifications. We are working on some ways to mitigate some of these effects.
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FIGURE 30: The performance of the BPRP subclassifier for one hundred stellarspectra with
the pixels shifted by between -1 and +1 resolution elements in steps of 0.02 (100 steps). Green
symbols showP (Star) (the true class), red→ P (Quasar), blue→ P (PhysBinary), grey
→ P (Whitedwarf), black→ P (Unknown), pink→ P (Galaxy).
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FIGURE 31: The performance of the BPRP subclassifier for one hundred galaxy spectra with
the pixels shifted by between -1 and +1 pixels in steps of 0.02 (100 steps). Colours have the
same meaning as for Figure 30.
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FIGURE 32: The performance of the BPRP subclassifier for one hundred quasar spectra with
the pixels shifted by between -1 and +1 pixels in steps of 0.02 (100 steps). Colours have the
same meaning as for Figure 30.
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7 Summary, conclusions and future work

The DSC currently consists of three working subclassifiers.The photometric subclassifier returns
a probability based on the appearance of the BP and RP spectra, and is based on Support Vector
Machines. The Astrometric Classifier returns a probability based on the proper motions and
parallax, and is based on a Gaussian mixture model. The Position-Gmag classifier returns a
probability based on the sky position and G magnitude of the source, and in the version of the
code presented here, is based on a simple parametric model. The probabilities from all these
subclassifiers are combined to produce a combined probability vector for all the possible output
classes.

Tests with the current classifier reveal that the completeness for most libraries exceeds 90%.
Contamination into incorrect astrophysical classes is below 1% except for the APec stars, which
have a∼ 4% contamination into the quasars class. The ultracool dwarfsand WR stars libraries
have relatively low completeness. In the case of the ultracool dwarfs, this is consistent with a
trend to less accurate classification seen for the main cool stars libraries at lower temperatures
(Section 4.4). Tests show that, for the ultracool dwarfs at least, there could be a problem with
the sparseness of the training set used. We will investigateusing active learning or a similar
technique to improve the training sets and attempt to improve the completeness in these grids.

In previous cycles, classes such as the white dwarfs and binary stars have given results with
significantly worse completeness than the other libraries.It is hoped that the combination of
position-Gmag and, particularly, astrometric information can improve these results. We will test
this in the next development cycle, when we will once again have simulated data covering these
libraries.

In summary, the immediate improvements which will be attempted for DSC in the coming year
are;

• Run tests with a complete set of test cases including Binaries and White dwarfs

• Run tests with semi-empirical data (from SDSS) tested on models trained on syn-
thetic data (e.g. Phoenix for the stars). In the next data cycle we will have both
semi-empirical and synthetic libraries for normal stars, quasars and galaxies.

• Improve the parametric model for the position-Gmag classifier, and calibrate it against
known Quasar and Galaxy populations.

• Investigate using active learning or similar techniques tobuild the training data sets,
and whether this will help particularly with rare objects such as rare types of stars.
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