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Abstract

It will be possible to obtain a good calibration of the differential dispersion
variations of the BP and RP photometers for Gaia early in the mission as part
of the initialization of the geometric calibration. This note describes how this
can be done.
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1 Introduction

The processing of the BP/RP photometric data remains one of the most difficult elements
of the Gaia data reductions. This is largely due to the combined effects the prism
dispersion and instrument LSF have on the forming of an image from the spectral energy
distribution (SED) of a source. As both the dispersion and the LSF are a function of the
across-scan focal-plane coordinate (Xfpa) of the image, it follows that images as observed
at different across-scan positions cannot be related through exact transformations,
complicating the definition of internally calibrated spectra. However, there are some
initial calibrations one can do concerning the image stretching (dispersion variations)
and positioning (geometric calibration) that can provide a common pseudo wavelength
scale for all spectra, and thus make easier the comparisons between the sampled
spectra obtained at different AC positions or FoVs. The common pseudo-wavelength
scale allows for a direct comparison between responses (samples) obtained in spectra
at different AC and AL positions and in different FoVs. The remaining differences
between such “partially normalized” spectra are primarily due to the smearing effect
of the LSF, which itself depends on AC-position and wavelength. They are of course
also affected by local variations in the CCD responses.

The pseudo wavelength scale can also be used for accumulation and representation of
the mean spectra. This scale is by definition relative, i.e. it can be defined through the
position of a single reference point (reference pseudo wavelength) on, say, a grid of 60
samples, and a reference dispersion function relative to the reference point. Together
these define the (relative) sample positions of the pseudo wavelengths and vice-versa
in the mean spectrum. The pseudo wavelength scale for any spectrum as observed
by the instrument can be related to the representation of the mean spectrum through
identification of the reference point, which we will define as the Artificial Reference
Sample (ARS), and a local adjustment (scaling) for the dispersion. The identification
of the ARS position (κARS) for observed spectra of different types is obtained through
the geometric calibration, which by definition identifies the position in an observed
spectrum that corresponds with the effective wavelength of the ARS.

The geometric calibration can be described as a combination of two transformations.
The first of these predicts the focal plane coordinates (Xfpa,Yfpa) of the observed source
for a given time associated with the observations, for example the mean observation
time for the 60 samples. This can simply be the default projection for the optical system
as applied to the apparent source position at the mean time of observation. Together
with the default positions of the CCDs and the focal length of the telescope, this
translates into a pixel position at the chosen reference time. The second transformation
defines what should be a small correction from this initial prediction to a final position
applicable to the ARS. This is the geometric calibration we have to determine and apply
in our reductions in order to relate spectra of different types and as observed at different
focal plane positions to the same pseudo wavelength scale.

Technical Note Institute of Astronomy 4
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As will be shown in Section 3, the differential effects of the dispersion amount to a
relative scaling of the sample widths and positions, and a similar effect on the responses.
This scaling itself turns out to be a very simple function of the across-scan focal plane
coordinate, reflecting the tilt of the prism. As long as the effects are described in focal
plane coordinates, the small differences in beam shape between the two FoVs have a
very minor effect on this. This follows from the principle-ray calculations on the optical
design by Astrium.

The two differential effects described briefly above can be calibrated already very early
in the mission, using selections of stars in one or more relatively narrow spectral ranges;
how narrow is still to be found out from experiments. When doing the geometric
calibration in a narrow spectral range, the alignment of the spectra does not involve
the position of the ARS, but is done directly on the spectral responses. The position of
κARS can then be defined for the mean spectrum derived from those data. This can be
done such that the difference between the mean and effective wavelength at κARS show
minimal differences over a wide range of spectral types (see further Section 7). With the
definition of the ARS position, the dispersion variation and the geometric calibrations,
BP/RP observation for any spectral type, and on any CCD, can be transformed to the
same common pseudo wavelength scale.

There are a few differences with the approach used for a similar calibration in (JMC-003).
The dispersion corrections across the focal plane, and between the two fields of view, are
linked through a simple low-order polynomial; the effects of the LSF variations are seen
as being of secondary importance in these calibrations; and the definition of a reference
pseudo wavelength (κARS) is introduced to provide a link between the geometric calibra-
tion and a pseudo-wavelength scale. Furthermore the solutions are done by linear
least squares over all CCDs together to provide a full internally consistent pseudo-
wavelength scale for any spectrum as measured on any CCD. A linear least-squares
solution is simpler and faster than the χ2 minimization through maximum likelihood
as used in (JMC-003), and provides in addition direct estimates of formal errors on the
solved-for parameters. (JMC-003) does provide an insight into the suitability of sources
of different spectral types for this type of calibrations.

The calibrations described here provide a means of ‘un-loading’ the ai j-coefficients
solutions (JMC-006), by removing the need to not only compensate for the LSF variations
(and their interaction with the spectral features), but also having to correct for geo-
metric offsets and dispersion differences. The compensation for, and interpretation
of, geometric calibration and dispersion corrections as absorbed by the ai j-coefficients
is much less straightforward, in particular when trying to incorporate dependencies
(constraints) on the AC coordinate of the observations for the dispersion variations. By
removing this part of the dependencies from the ai j-coefficients solutions, the actual
coefficients become cleaner and easier to control and interpret.

Technical Note Institute of Astronomy 5
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In the context of absolute calibration of the dispersion the current approach provides
a single reference between the external and internal calibrations, which is well defined
in pseudo-wavelength scale.

1.1 Objectives

This note sets out to describe a method for deriving the differential and AC-dependent
geometric and relative dispersion calibrations as applicable to the BP and RP photometers.

1.2 Applicable Documents

When applicable documents change a change may be required in this document. The
applicable documents are listed here for clarity - the full reference is below in Sect. 1.3.

FVL-001 CU5 Software Development Plan
FVL-074 CU5 Software Requirements Specification, top level
CF-012 Proposal for internal calibration of XP spectra

1.3 References

[BAS-003], Bastian, U., 2007, Reference systems, conventions and notations for Gaia,
GAIA-CA-SP-ARI-BAS-003,
URL http://www.rssd.esa.int/llink/livelink/open/358698

[AB-009], Brown, A., 2007, Photometry with dispersed images - overview of BP/RP data
processing,
GAIA-C5-TN-LEI-AB-009,
URL http://www.rssd.esa.int/llink/livelink/open/2329785

[JMC-003], Carrasco, J., Jordi, C., Fabricius, C., Figueras, F., Voss, H., 2007, Chi-squared
minimisation for wavelength calibration,
GAIA-C5-TN-UB-JMC-003,
URL http://gaia.esac.esa.int/dpacsvn/DPAC/CU5/docs/

GAIA-C5-TN-UB-JMC-003/GAIA-C5-TN-UB-JMC-003.pdf

[JMC-006], Carrasco, J.M., Fabricius, C., Jordi, C., et al., 2009, A simple calibration model
for BP/RP spectra,
GAIA-C5-TN-UB-JMC-006,
URL http://www.rssd.esa.int/llink/livelink/open/2892507

[CDO-001], Domingues, C., Rebordao, J., 2009, Dispersion Analysis,
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GAIA-C2-TN-INET-CDO-001,
URL http://www.rssd.esa.int/llink/livelink/open/2860520

[CF-012], Fabricius, C., Jordi, C., van Leeuwen, F., et al., 2009, Proposal for internal
calibration of XP spectra,
GAIA-C5-TN-UB-CF-012,
URL http://www.rssd.esa.int/llink/livelink/open/2922510

van Leeuwen, F., 2007, Hipparcos, the New Reduction of the Raw Data, Springer,
Astrophysics and Space Science Library. Vol. 350 edn.

[LL-084], Lindegren, L., 2009, Minimum-dimension LSF modelling,
GAIA-C3-TN-LU-LL-084,
URL http://www.rssd.esa.int/llink/livelink/open/2915742

[FVL-074], van Leeuwen, F., Richards, P., 2011, CU5 top-level Software Requirement
Specifications,
GAIA-C5-SP-IOA-FVL-074,
URL http://www.rssd.esa.int/llink/livelink/open/3073983

[FVL-001], van Leeuwen, F., Richards, P.J., 2010, CU5 Software Development Plan,
GAIA-C5-PL-IOA-FVL-001,
URL http://www.rssd.esa.int/llink/livelink/open/497754

[HV-001], Voss, H., Jordi, C., Fabricius, C., et al., 2007, AC flux loss analysis for AF and
BP/RP,
GAIA-C5-TN-UB-HV-001,
URL http://www.rssd.esa.int/llink/livelink/open/2746204

1.4 Definitions

The effective spectrum φ(λ)dλ, expressed in photons, is defined here as what is left
of the actual spectral energy distribution (SED) of a source after passing through the
Gaia optics, the photometric filters and the wavelength-dependent quantum efficiency
of the CCD, i.e. the spectral response that would be obtained if we could deconvolve
the observed spectra with the actual, wavelength-dependent, point-spread function
(PSF). The effective spectrum thus defined is independent of the AC position of the
observed spectrum, assuming that small variations in the individual CCD responses
can be calibrated out.

The monochromatic PSF, P(κ − κ0, µ − µ0 | λ,Yfpa,Xfpa, FoV), describes the normalized
response in the focal plane as produced by the telescope (indicated by FoV) for a given
wavelength λ and position in the focal plane Yfpa,Xfpa, which are the coordinates in

Technical Note Institute of Astronomy 7

http://www.rssd.esa.int/llink/livelink/open/2860520
http://www.rssd.esa.int/llink/livelink/open/2922510
http://www.rssd.esa.int/llink/livelink/open/2915742
http://www.rssd.esa.int/llink/livelink/open/3073983
http://www.rssd.esa.int/llink/livelink/open/497754
http://www.rssd.esa.int/llink/livelink/open/2746204


CU5-DU15
BP/RP differential dispersion and geometric calibration
GAIA-C5-TN-IOA-FVL-068-1

the focal plane assembly as defined in (BAS-003), measured from the centre of CCD
row 4. The responses are expressed for positions relative to a central position (see e.g.
LL-084 on how this centre position may be defined) given by (κ0, µ0). In practise a PSF
function may only be known as a ‘discrete’ function of λ, averaged over an interval
dλ, rather than a continuous function of λ. The image shape is determined by the PSF
applicable to the coordinates in the focal plane (Yfpa,Xfpa) and the field of view (FoV).
The image represents a PSF that is always integrated along-scan over (part of) the CCD,
and therefore an average over Yfpa, and also includes the effects of TDI smearing and
sampling. This average depends on the gate activation, and represents an effective PSF
that can in principle be derived from the observations in an absolute calibration of the
spectral responses. The image shape is also affected by the local across-scan velocity of
the FoV at the time of observation, which will cause smearing of the effective PSF in µ
over up to 4 CCD pixels in the across-scan direction.

The monochromatic line-spread function (LSF), L(κ − κ0 | λ,Yfpa, µi, FoV), is the PSF
integrated over 12 across-scan pixels (µ) as centred by the on-board software on a
window position µi (which would normally be close to, but not the same as, µ0). The
LSF is therefore a function of µi − µ0, though this is a minor effect in the context of
the current calibrations (but not a minor effect when considering flux calibrations, see
also HV-001). The resulting 1D image shape is in addition dependent on the local
across-scan velocity µ̇, which affects the position difference µi − µ0 as a function of the
integration time. The LSF is normalized such that∫

∞

∞

L(κ − κ0 | λ,Yfpa, µ0, FoV)dκ = 1. (1)

The AC velocity µ̇ for an observation is in first approximation a function of the rotation
phase Ω(t) of the satellite’s x axis in the SRS (BAS-003) (half-way between the two FoVs).
This rotation phase is measured from the crossing of the scan circle with the great circle
through the spin-axis position and the nominal direction of the Sun as seen from the
satellite. The dependence reflects the displacement as a function of time of the spin
axis in the celestial reference frame as it follows the nominal scanning law. The local
variation of the AC velocity at an along-scan focal-plane position Yfpa is approximately
given by

µ̇ ' 170(mas/s) sin(Ω(t) ± 0.5γ + Yfpa), (2)

where γ is the basic angle between the two fields of view. The + sign refers to
observations in the preceding FoV, the − sign to the following FoV, showing that
generally there will be different AC velocities applicable to the two FoVs (see also van
Leeuwen (2007)).

The dispersion function
κ = κ(λ − λ0,Xfpa) (3)

Technical Note Institute of Astronomy 8
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describes the relation between the wavelength λ and relative pixel positions κ that can
be applied to an effective spectrum. The function κ returns a value of zero for λ = λ0.
Physically, the dispersion function is defined by the optical properties of the prism and
the positioning of the prism relative to the FPA. The projection of the dispersed image on
the focal plane depends on the distance of the prism from the focal plane. The relation
between relative positions on the focal plane and wavelength of the incoming light
should therefore in first approximation be independent of the FoV, which is confirmed
by the principle-ray measurements by Astrium. The differences between the optical
centres for the two fields of view has therefore no measurable influence the dispersion.
The approximately linear scaling of the dispersion, which had been suggested before
by Anthony Brown, as function of the Xfpa of the transit is given by:

κ(λ − λ0,Xfpa) ' κ(λ − λ0, 0) · (1 + s(Xfpa)), (4)

The factor s can in first approximation be obtained from ground-based calibrations,
and corrections to it are part of the calibration described in this note. The inverse of the
dispersion function, Λ, is given by:

Λ(κ,Xfpa) = λ − λ0. (5)

The predicted focal plane position at the observation time for a measurement is
obtained from the optical projection and satellite attitude, astrometric parameters for
the observed source and various ephemerides. It is given in the along-scan direction
as the position κ f with respect to the extracted samples at observation time. Thus, κ f

is a focal plane position provisionally transformed to a CCD-readout position. In fact,
not the actual values of κ f is what we are interested in, but only differences. For this
we can define a mean κ f , and preserve the differences

∆κ f ≡ κ f − κ f (6)

for each observation. As we are not using the BP/RP data for astrometry, the exact
definition of κ f is not critical, though, once set, its value should not be changed. To
further assist the processing, these differences can be transformed to samples based on
the focal length calibration by Astrium at the start of the mission. Considering that these
are only small values, the conversion to samples doesn’t require an extremely accurate
focal length to be used. The reference time for calculating the focal plane position can be
observation time for the transit. At first assignment the ∆κ f values will be distributed
randomly within a range of about 4 to 6 samples. They will only become aligned once
the spectra have been aligned. Alternatively, the spectra will become approximately
aligned when aligning them on their∆κ f values. The geometric calibration provides
the information to go from this approximate to an accurate alignment. The geometric
calibration will still be a function of Xfpa, with local offsets and orientation variations
per CCD, as well as small, of order 0.01 pixel, systematic variations per stitch field
on each CCD. The position of a spectrum in the focal plane will need to be identified
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with a unique position in the spectrum, for which we use the artificial reference sample
κARS (see above). The transformation from ∆κ f to κARS is referred to as the geometric
calibration of the photometric instrument.

Together with the calibration of the differential effects of the dispersion function
across the focal plane, the geometric calibration, as defined for the ARS, provides a
unique relation between any observed sample position and a uniform set of pseudo
wavelengths. This reference system is very close to that of the centre of CCD 4 in either
BP or RP.

1.5 Acronyms

The following is a complete list of acronyms used in this document. The following
table has been generated from the on-line Gaia acronym list:

Acronym Description
AC ACross scan
AL ALong scan
ARS Artificial Reference Sample
BP Blue Photometer
CCD Charge-Coupled Device
CF Conversion Factor [e- per ADU]
FPA Focal Plane Assembly (Focal Plane Array)
FoV Field of View (also denoted FOV)
GOG Gaia Object Generator
LSF Line Spread Function
PSF Point Spread Function
RP Red Photometer
SED Spectral Energy Distribution
SRS Software Requirements Specification
TDI Time-Delayed Integration (CCD)
XP Shortcut for BP and/or RP

2 Description of a spectrum

The dispersed image r(κ) (giving the flux per sample at sample position κ) for a
(continuous) pixel position κ as created by one of the photometers from the effective
spectrum φ(λ)dλ as defined above in Section 1.4 (and not starting from the SED as is

Technical Note Institute of Astronomy 10
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done in, for example, AB-009) is given by

r(κ) =

∫ κ+Dκ

κ−Dκ
L(κc − κ|Λ(κc))

[
φ(Λ(κc) − λ0)∂dλ

∂κc

]
dκc∫ κ+Dκ

κ−Dκ
L(κc − κ|Λ(κc))dκc

, (7)

using the inverse dispersion function of Eq. 5 to describe the LSF and effective spectrum
in relative pixel positions. It is assumed here that the effective spectrum is already
scaled to provide the relevant flux for a star. The integration limits should in principle
be infinite, but in reality are limited to a range of ±Dκ, depending on the relevant
contributions from the LSF.

The “image” as represented by Eq. 7 is continuous rather than the actual image, which
is sampled. However, the smearing caused by the sampling can be included in the
LSF function L, in which case the predicted spectrum R at sample positions k is simply
obtained from the responses of r as defined in Eq. 7 at the required sample positions.
For this is needed the position of r with respect to the recorded string of 60 samples.
This is defined by the predicted focal plane position for the end of sample 30, and
the geometric calibration evaluated at the AC position Xfpa, to obtain the position κARS

within the 60 samples of the observation record. Assuming that κ is simply a linear
function of k, the responses at all pixel positions can be read out from r, to create a
predicted sampled spectrum R(k) associated with a reference position κARS.

3 The dispersion functions

The Gaia parameter data base provides a modelling of the dispersion functions in BP
and RP, and for the two fields of view, as two 3D arrays:

:Satellite:BP:Spectrum_DispersionFunction_Fitted

:Satellite:RP:Spectrum_DispersionFunction_Fitted

These functions were derived by Astrium through chief-ray analysis through the optical
system. They provide the dispersion functions at the centres of the 7 CCDs for BP and
RP. Expressed as functions of the inverse wavelength, they provide relative focal plane
positions in mm relative to the position associated with a reference wavelength, 440 nm
in BP and 800 nm in RP. The analysis of the dispersion functions presented here creates
a very much simpler, though still sufficiently accurate, 2D representation than has
been presented by CDO-001. Simple differential relation are beneficial when trying to
analyse the data, as this limits the degrees of freedom and improves solution stability.

A comparison between the functions for different CCDs (thus, at different AC positions),
shows that the functions for the same channel and FoV are to a high degree related
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Figure 1: Pixel position offsets, with respect to CCD-4, as measured at the same
wavelengths, for the BP dispersion curves in telescope 1. The wavelength range
covers 320 nm to 690 nm, the reference wavelength is at 440 nm. The colours of the
dots are an indication of the associated wavelength.

through a linear scaling (Fig. 1). In addition, the differential relations are as good
as identical between the two fields of view. In the Astrium model the dispersion
function for each CCD is accurately expressed as a 3rd order polynomial of the inverse
wavelength ν = 1/λ (with λ in nm) in BP, and similarly a 4th order polynomial in RP:

κ(ν) =

i=3∑
i=0

ai · ν
i. (8)

This relation is defined such that at ν = ν0 (the reference wavelength) the function in
Eq. 8 returns zero. If we start our analysis at the centre (Xfpa = 0) of the focal plane,
halfway CCD4, then the dispersion at any other AC position can be expressed as:

κ(ν|Xfpa) = [1 + s(Xfpa)] · κ(ν|Xfpa = 0). (9)

For the function s(Xfpa) a simple second-order polynomial in Xfpa is sufficient to
represent the Xfpa dependencies for both fields of view at the same time. Table 2
shows as an example the evaluation for the RP channel in telescope 1. If we give the
Xfpa position of the centre of CCD1 as −3, of CCD4 as 0, and CCD7 as +3, then the
following relation is found for s:

Technical Note Institute of Astronomy 12
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sRP(Xfpa) = −0.0149 · Xfpa + 0.001221 · X2
fpa. (10)

CCD Range Ratio s s̃
1 33.9149 1.0554 0.0554 0.05558
2 33.2435 1.0345 0.0345 0.03461
3 32.6497 1.0161 0.0160 0.01609
4 32.1339 1.0000 0.0000 0.00000
5 31.6967 0.9864 -0.0136 -0.01364
6 31.3381 0.9752 -0.0248 -0.02485
7 31.0586 0.9665 -0.0335 -0.03361

Table 2: Relations between the dispersion functions for the centres of the 7 RP CCDs.
Column 1: CCD; 2: Pixel range between λ = 630 nm and 1050 nm; 3: Range ratio with
respect to CCD4; 5: value for the function s as in Eq. 9; 6: fitted value for s.

Residuals with respect to this fit are also shown in Table 2, and are at the numerical
round-off level, well below what is still significant for the analysis of the BP/RP data.
A similar relation is found for the BP CCDs:

sBP(Xfpa) = −0.0161 · Xfpa + 0.000220 · X2
fpa. (11)

In the current application we are only interested in the differential effects of the
dispersion, for which Eq. 10 and 11 provide all the necessary information. These
relations are independent of the units in which the function κ(ν) is expressed. It is in
addition worth noting that the pixel positions at the limits of the wavelength coverage
for the images as produced by the two FoVs differ by no more than a few thousandth of
a pixel either side. In that sense it is also possible to compare images from the different
FoVs for an initial differential dispersion calibration.

4 Scaling the spectra

Scaling of the observed spectra attempts to remove the first-order effects of the dispersion
variation over the focal plane. It effectively re-aligns the samples of spectra taken at
different Xfpa positions to uniform pseudo-wavelength positions. The actual values
of the wavelengths are not important at this stage of the analysis. The scaling has to
take into account not only the positional displacement, but also the effective width
of the samples as expressed in the pseudo wavelength scale (or, more precisely, do
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Figure 2: Normalization of over-sampled and noise-free simulated spectra in RP, for
a (T=7000, log g = 4.5) star. Top: spectra as observed, aligned to a single reference
pseudo wavelength. Bottom: the same spectra, re-scaled according to the differential
dispersion relations.

an integration of the response over the sample width, CF-012). This amounts to
keeping the “surface area” for each sample constant, so when the observed sample
response is projected on a narrower reference sample response, the response will in
first approximation be increased by the same factor by which the width of the sample
was decreased:

R′(κ) =
1

1 + s(Xfpa)
R(κ · (1 + s(Xfpa))), (12)

where κ is used instead of k to indicate that the spectra have been aligned in along-scan
direction on a continuous pixel scale. The function s is the same as defined above in
Eq. 9.
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Scaling of the spectra is done relative to the position of κARS, and therefore involves
a definition of the κARS position in the spectrum. On the other hand, determination
of κARS is difficult when scaling has not been done. However, if we can assume the
scaling (the differential dispersion) to be quite accurately known at any time (starting
from ground-based specifications), then the further scaling correction is going to be
very small, and will hardly affect the determination of κARS. An example of this scaling,
using GOG data, is shown in Fig. 2.

5 Aligning the spectra

Aligning of spectra of the same type is used to establish the geometric calibration for
the BP and RP detectors. This geometric calibration establishes a relation between
predicted focal plane position at the time of observation (∆κ f ) and a reference sample
position κARS in the spectrum. The geometric calibration is established based on one
or more narrow groups of spectral types, thus stars with spectral images that are very
similar in shape, and only differ in the total flux. The spectra may also need to come
from a restricted range in magnitude, to limit the mixing of reddening and temperature
effects in the spectra.

In the following, a calibration unit (CalU) represents a single combination of CCD, FoV
and gate. The procedure is as follows:

1. Collect for a time interval all observed spectra (corrected for background
contributions, but keep a record of the original photon counts for error
assessments) within one or more narrow spectral ranges; the width in
spectral range that can be used is still uncertain, and likely to be itself
function of spectral type;

2. Normalize the flux and errors according to the integrated counts, this is the
first approximation of the total flux;

3. Separate the thus prepared spectra per CalU, to get relatively homogeneous
samples in LSF;

4. Per CalU, select an arbitrary reference observation (spectrum) from the above
selection, preferably bright and close to the centre of the CCD in AC direction
(Sect. 5.1); this only serves as an initial reference to start the iterative fitting
procedures;

5. Determine ∆κ f for each observation as described in Section 1, this will serve
as input for the differential geometric calibration for the CalU; note that κ f

has to have the same value for all CalUs;
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6. Through cross-correlation, align all other spectra obtained in each CalU to
the selected reference spectrum;

7. Based on the correlation statistics, eliminate poorly fitting (wrongly selected)
data;

8. Collect per CalU the aligned data in bins at some fraction of the sample
width (suggest 1/4); this includes information on the formal errors

9. Determine mean normalized responses and errors per bin; normalized
responses all have the same integrated response over the background- and
CTI-corrected sampled data;

10. Fit the binned data for CCD4 in one of the FoVs, and no gate, with a
spline function, re-normalize the response based on the integral of the fitted
function;

11. Re-align in position and flux all selected data per CalU with the fitted spline
function (see below);

12. Collect again in bins, this time correcting for the differential dispersion
variations across each CalU, determine means, and fit;

13. At this stage the AC resolution of the geometric calibration may be increased,
with possibly one or two points per stitch field;

14. Repeat the above processes until corrections to normalization factors for the
fluxes and the positional corrections become negligible;

15. Correct the total shift corrections as determined in the fitting described above
for ∆κ f , collect the differences as a function of Xfpa; this is the geometric
calibration, which should be added to ∆κ f to obtain the position of κARS.

5.1 Cross-correlation fitting

The cross-correlation process (points 6 and 7 above) is only required for initialization of
the geometric calibration. It is carried out over the range of the observed spectrum that
falls within the relevant instrument wavelength range. For RP this is approximately
630 to 1060 nm (38 to 42 pixels wide), for BP 320 to 690 nm (39 to 42 pixels wide).
Spectra are collected in macro-samples, covering 4 actual samples, in a fixed pattern,
i.e. start times of macro-samples are all synchronized. Thus, there is a variation of at
least 4 samples for the positioning of a spectrum within the 60 samples received in an
observation. Further variation in the positioning can be expected based on errors in
the on-board predicted position of the spectrum.
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The cross-correlation process is carried out per CCD, and uses arbitrary spectra as
references, one per CCD and per FoV. The reference spectra should be relatively bright
(but not saturated) and observed close to the AC centre of the CCD.

For the cross-correlation the 52 central samples (counting from zero, numbered from
4 to 55) of the reference spectrum, given by R(k), are available. For each spectrum to
be cross correlated with the reference spectrum, given by G(k), the 40 central samples
(numbered from 10 to 49) are used. The cross-correlation values X( j) are given by:

X( j) =

∑49
k=10 R(k + j) · G(k)√∑49

k=10 R(k + j)2
∑49

k=10 G(k)2

. (13)

The function X( j) is evaluated for −6 ≤ j ≤ 6. It is possible to reduce this range
considerably by obtaining a first rough estimate of the “centering” of the spectrum
within the 60 counts. This could be done, for example, by calculating the weighted
mean position of the full range of the accumulated counts:

〈k〉 =

∑59
k=0 k · G(k)∑59

k=0 G(k)
. (14)

Assuming that this returns, within a narrow range of spectra, approximately the same
sample position with respect to the spectral image independent of the position of that
image on the 60 samples, the differences between the mean positions for the reference
and target spectra will provide the first estimate of the position of the maximum in the
cross correlation. This then would provide a smaller set of target values for j to apply
in evaluating X( j).

The final step in the cross-correlation is the determination of the interpolated maximum
in the distribution of the values found for X( j). This is found by fitting the three
(neighbouring) highest values of X( j) with a second-order polynomial in the position j.
If X( j0) is the highest value found in the cross-correlation, then this concerns the values
from X( j0 − 1) to X( j0 + 1), and the position of the maximum is found through:

jmax = j0 +
X( j0 − 1) − X( j0 + 1)

2X( j0 − 1) + 2X( j0 + 1) − 4X( j0)
(15)

From this it follows that the correlation between the spectrum G and the reference
spectrum R(i) is highest when the pixel numbers are shifted by − jmax, i.e. generally a
non-integer number of pixels. This offset per observation should be preserved, as it is
needed again as part of the first guess offset in the next step of the fitting (Section 5.4).

5.2 Binning and solving

For the binning and subsequent fitting (points 8 and 9) the way the sub-sample positions
are defined is such, that the start of sample 0 is equivalent to position -0.5, the end of
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sample 0 to position 0.5, and the end of sample 59 is position 59.5. Thus, initially
the positions for the 60 samples are given as i, with i going from 0 to 59 (it could be
considered too to accumulate for a wider range of samples to gain some insight in the
extreme wings, though the data coverage will then be much reduced). If we now sub-
divide the samples into an odd number of bins then the samples of the reference spectra
will fall in the central bin within a sample. Given n bins per sample, the bin number b
assigned to a sample is given by the integer part of the shifted sample position:

b = bn · (k + 0.5 − jmax)c. (16)

For the reference spectrum jmax = 0. Data are only collected for bin numbers from 0 to
60 · n − 1.

The data collected per bin are the following:

S1 =
∑

j

w j

S2 =
∑

j

w j · r j

S3 =
∑

j

w j · r2
j

S4 =
∑

j

1 (17)

where w j = 1/σ2
j is the weight for the normalized response r j (as in item 3 in Section 5).

This gives per bin the following results:

〈r〉 = S2/S1

St.dev. =
√

(S3 − S2
2/S1)/(S4 − 1)

σ〈r〉 = St.dev./
√

S1 (18)

The pairs 〈r〉, σ〈r〉 per bin form the input to the next stage, curve fitting.

5.3 Curve fitting

The fitting of the data (point 10) primarily aims at providing a continuous reference
curve for further alignment and scaling of the individual spectra. For the fitting can
be used Householder splines routines as available through GaiaTools. The fit can be
made over all available bins. The adjustment of the number and position of the nodes
has to be decided on the remaining unit-weight standard deviation following the fit. In
general, the spread of nodes can probably be less dense in the wings and more dense
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in the core of the signal. Typical spread of nodes should reflect the scale-length of
the variations in a spectrum, which is set by the width of the LSF, typically about 2
samples. Whatever way of fitting the data is used, it is assumed here that this produces
a continuous function F(κ), with a continuous derivative, representing the accumulated
data. This spectrum can be “aligned” with an expected position through comparison
with a simulated spectrum. This alignment, given by jr, is not critical in any sense,
it only ensures that the position of the curve with respect to the sampling positions
is more or less where it would normally be found on average in the actual data. It
results in the value of F(0.0) to be the predicted normalized response for sample 0. The
alignment shift as applied should be preserved, as it provides part of the initial offset
corrections used in the next stage of the fitting. A normalization of the area under
the fitted curve, but covering only bins used in the fitting, should also be done. This
normalization should not change much from the previous one, which was based on
the reference spectrum, but helps to more accurately align data from different CCDs at
a later stage.

5.4 Fitting to the fitted curve

By shifting for each observation the sampling positions by jr and jmax as defined in
Eq. 15, the observed spectrum will be almost exactly aligned already with the fitted
function F(κ). At this stage we have to apply the small correction for the differential
dispersion variation, over the AC range of each CCD, to the spectra (Eq. 12), which
leads to corrections of up to 0.5 sample-positions either side of the useful part of the
spectrum. This correction could not be done in the cross-correlation described above,
as that method requires identical sampling for both inputs. In this next fitting step that
is no longer a requirement, and samples can effectively be anywhere. The assumption
is that the mean spectrum we obtained per CCD is closest to that at the mean AC
position applying to transits for that CCD. The small scaling corrections to account for
the dispersion gradient across a CCD should therefore bring each observation closer to
the mean spectrum determined before.

The fine-tuning of the position and scaling of the spectra (points 10 and 11) follows from
a comparison between the observed normalized counts and the predicted responses
function F(κ) at the (transformed) sample positions. The fine tuning effectively adjusts
the profile of F(κ) to the observations, then adjusts the observations and repeat the fitting
until the adjustments become small with respect to the accuracies of the determinations.
If by G′(κ) we denote the observed spectrum adjusted for the sample positions in shift
and scale such as to fit the representation of F(κ), then:

G′(κ) − F(κ) = dI · F(κ) +
∂F(κ)
∂κ

dκ, (19)

the solution of which by least squares leads to the following corrections for the observed
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signal:

G′′(κ′) = (1 − dI) · G′(κ),
κ′ = κ − dκ,
I′′ = (1 − dI) · I′, (20)

where I′ is the original total flux estimate for the transit. The weights applied in the least
squares solution are set by the errors on the observed signal, scaled in the same way as
the signal. The least squares solution provides formal errors on the two parameters, dI
and dκ, which are used as criterion for the convergence of the solution.

A comparison between the recovered total flux and the formal error on dκ provides
a reliable check on data quality and calibration limitations. Ideally we expect the
following relation for these errors:

σdκ ≈

√
n · I + σ2

c , (21)

where n is a normalization factor, and σc is the unresolved calibration noise.

5.5 Further iterations

Starting from the corrected observations as described by Eq. 19, and after eliminating
any poor-fitting data, the remaining data are again collected in bins to obtain a new
approximation for the profile F(κ). An integrated flux correction can be obtained as a
final correction. Then all data are again re-fitted, started with the corrected versions
from the previous iteration cycle. However, the differential dispersion scaling should
not be applied again, as this is already included in the corrected data. It is expected that
in the second iteration step the calibration noise σc reduces, while also the variances on
the binned data should reduce slightly. These observations can be used to determine a
convergence of the iterations.

6 Calibrating alignment and scaling

The processes described above are carried out per CCD and FoV. The next step is to do
a check on the assumed dependence of the dispersion function on the AC position, for
which the indication is that this is a simple second-order dependency (see Section 3).
The question is to what extent we can recover this relation in the presence of LSF
functions that also contain an AC-coordinate dependence. The indication that the
dispersion functions are nearly identical for the two fields of view can help here by
diffusing correlations with the effects of LSF variations. The scaling for dispersion
variations was given by Eq. 12 above. The default relation is applied to the data as
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Figure 3: The coefficients ϑ(κ) (top) and ϕ(κ) (bottom) for a 7000 K star in the RP
channel, for all 7 CCDs.

collected for the 7 CCDs, reducing the dispersion for all to coincide with the dispersion
on CCD4. It is expected that only very small corrections may need to be applied to
account for the actual in-flight configuration parameters:( 1

1 + δs

)
Fa
′(κ(1 + δs) + κa) = F4(κ), (22)

where Fa
′ is the response function at CCD a, corrected to CCD4 using the Astrium

dispersion calibration as shown in Section 4, δs is the small adjustment to the assumed
scaling from CCD a to CCD4, and κa is a correction for the positional offset in the
definition of Fa with respect to the definition of F4 which occurs because of their
independent determinations. However, as the same definition has been used for
positioning the spectra in the different CCDs, the values of κa are expected to be small,
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at the level of a fraction of a pixel only. That then leads to the following approximation:

Fa(κ)′ − δs
[
Fa(κ)′ − κ

∂Fa(κ)′

∂κ

]
+ κa

∂Fa(κ)′

∂κ
= F4(κ). (23)

For each spectrum Fa
′ the data points used in the construction of the spectrum Fa, but

after transformation to Fa
′ can be used rather than the fitted curve. The coverage in

pixels should only include the effective wavelength coverage of the instrument, outside
this range the response is fully LSF dominated. For F4 the continuous spline fit can be
used.

Figure 4: The coefficients ϑ(κ) (top) and ϕ(κ) (bottom) for a 7000 K star in the BP
channel, for all 7 CCDs.

The data from different CCDs and the two FoVs can be combined in one solution, where
δs is represented as a second order polynomial in the AC position of the CCD relative
to CCD4. The observation per bin, CCD and FoV is as follows:

(δs0 · Xfpa + δs1 · X2
fpa)ϕ(κ) + xaϑ(κ) = F4(κ) − Fa(κ)′ (24)
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The functionsϕ(κ) =
[
Fa(κ)′−κ∂Fa(κ)′

∂κ

]
and ϑ(κ) = ∂Fa(κ)′

∂κ are shown for a 7000 K star in the
RP channel in Fig. 3 and the BP channel in Fig. 4. Although showing similar features,
they are essentially orthogonal and have only a small secondary dependence on the
LSF, thus allowing in principle for a dispersion correction and the alignment of the
spectra on the different CCDs to be solved in one solution for all CCDs and both fields
of view, ensuring a geometric calibration that is fully consistent for all observations,
and very good calibration of the dispersion function.

7 Setting the position of the reference sample

With the spectra aligned and scaled on all CCDs and for both FoVs, the position of
the artificial reference sample (κARS) can be set as a reference point for the calibrations.
To reconstruct the spectra in their original position on CCDs other than CCD4, the
scaling, as defined through the Astrium dispersion determination and our own final
in-flight corrections, can now be applied with respect to the position of κARS, so that
on all CCDs κARS defines the same position in the spectrum. The κARS position applies
strictly to an effective wavelength, i.e. to the weighted response over the width of a
sample. However, by defining the position of κARS to a region of the spectrum where
the curvature is generally very small, this secondary effect will be much reduced.

With these two differential calibrations in place, the ‘pre-processing’ of the BP/RP
spectral data before submission to the a-coefficients, is now as follows:

• Determine the focal plane position as predicted for the end-time of sample
30, i.e. exactly halfway the 60 samples of the observation, correct for the
reference position κ f to obtain ∆κ f ;

• Add to ∆κ f the geometric calibration according to the Xfpa position of the
transit; a correction could be applied for the local AC scan velocity to obtain
the relevant position at mid-time of the observation; this defines the position
of κARS in the observation;

• Apply the differential dispersion correction, again according to the Xfpa

coordinate of the transit; this defines the uniform pseudo wavelength for
each sample.

For every observed sample we thus obtain ‘corrected’ positions and responses, which
are all on the same pseudo wavelength scale and response, independent of where on
the focal plane they were obtained. The remaining differences between the transformed
spectra come from the variations in LSF and the interaction between the LSF variations
and the spectral features in the effective spectrum. Generally, the stronger those spectral
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features are, the more sensitive this interaction becomes. As a result, the a-coefficients
can only compensate partly for the LSF differences.
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