

IBIS/ISGRI

Isabel Caballero, Juan A. Zurita Heras, Fabio Mattana, Simona Soldi, Philippe Laurent, François Lebrun

AIM/APC-FACe Paris

Man power

- Temporary CNES contracts
 - From 4 (present) to 3 FTEs in May
 - Present team probably completely renewed within 2 months → loss of experience
 - CNES help: one position already opened (in advance) till the end of the month
- Permanent people (CEA) less available → much longer development time (e.g. Fantomask)

Spectral drift Calibration Status

Reminder: OSA 9

Reminder OSA9

IREM counters used to describe the gain

OSA 10

New temperature correction per MDU, using the temperature from thermal probes on the MDU frame (temp2)

OSA 10

Linear description of gain/offset Laws based on revolutions 42-990

OSA 10

Linear fit for the gain

Quadratic fit for the offset

OSA 10 energy correction, final updated version

lrfu

saclay

- Energy correction has been updated: New offset evolution now described with second order function
- W and Na lines stable along the mission
- Update and final verification of the C code ongoing before delivery

Photometry Low threshold (LT) drift correction

Crab model

No correction

LT efficiency function

Two main parameters: LT position E_{LT} and resolution σ

LT efficiency function: position

16384 pixels => 16384 E_{LT} read in the context files and corrected from the energy drift:

With LT correction (constant width)

$$LT(E) = 0.5[1 + erf(\frac{E - E_{\rm LT}}{\sqrt{2}\sigma})]$$

- Resolution = ? :
 - In OSA9: FWHM = 5.6 = FWHM(W line)
 - In OSA10: FWHM (W line) ≠ constant
 - But applying W line resolution gives efficiency loss

$$LT(E) = 0.5[1 + erf(\frac{E - E_{\rm LT}}{\sqrt{2}\sigma})]$$

- Study of Crab spectrum: 2727 ScWs spread in 71 revolutions (39 to 1096)
- Average LT(E)=Spectrum_NoLT/Spectrum_WithLT
- Fit:
 - $E_{LT,fit}$ > average E_{LT} from context files
 - Fitted resolution > input resolution
- Impact of the pixel validity map?
- E_{LT} distribution => $\sigma_{out} = \sqrt{\sigma_{in}^2 + \sigma_{distr}^2}$?

Build the average LT function (per revolution) from context (3D)

lrfu

saclay

Energy efficiency function

Best solution : $\sigma(revol) = (4.5 + 710^{-4} \times revol)/2.36$

Crab spectra (energy and LT last correction)

Crab spectra (energy and LT last correction)

lrfu

saclay

Crab spectra (energy and LT last correction)

lrfu

saclay

OSA 10 delivery

- Within 1 week, delivery of new ibis_isgr_energy and ii_shadow_build
- Verification of C code before delivery to ISDC
- New energy calibration files to be delivered
- To do before delivery to users:
 - Verification of Nomex correction (with ISDC)
 - set of ARFs (work in collaboration with IBIS team in Rome)
 - Update of the IBIS user manual

IBIS mask calibration and modeling

Mask defect image

lrfu

saclay

(< rev 1096)

Mask defect image

lrfu

saclay

(< rev 1096)

Mask defect image

lrfu

saclay

(< rev 1096)

Ζ

Where we are with the mask exposure (Ms)

Effective exposure time computed for good data (7019 scw, < rev 1096), i.e. where Crab or Cyg X-1 > 5σ

Example mask image

lrfu

saclay

Effective exposure time computed for all data (9227 scw, < rev 1096)

Corners exposure [Ms]

AO-8 GPS contribution to the mask exposure [ksec]

Fantomask

- An improved Ghost Buster with more precise exclusion zones that takes into account the source direction
 - Less ghosts
 - More sensitive area (small effect)
- Difficulties
 - Accuracy
 - Computing time
- Planning
 - Dévelopment: 2 FTE-months between February and May
 - Tests at the fall
 - Delivery: end 2012