

Integral

R. Southworth ESA/ESOC Integral Users Group Meeting, ESTEC, 19/1/2012

Mission Extension Operations Review, 2012

Integral | IUG 19/1/2012 | ESA/ESOC | OPS-OA | Page 1

Spacecraft Status

From MEOR 2010

- Changes only
- Areas not mentioned in this presentation, assume currently no change

Summary of Subsystem Statuses

- Attitude and Orbital Control Subsystem (AOCS)
 - All prime units in use, full redundancy available no change, slight STR degradation
 - Sufficient margin on limited lifetime units no change
 - Sufficient fuel no change
- Electrical Power Subsystem (EPS)
 - All prime units in use, full redundancy available no change
 - Array degradation less than predicted, sufficient margin degradation has increased due to low perigee, sufficient margin still available
 - No noticeable battery degradation
- On Board Data Handling Subsystem (OBDH)
 - All prime units in use, full redundancy available no change
- Radio Frequency Subsystem (RFS)
 - All prime units in use, full redundancy available no change
 - Link margin sufficient no change
- Thermal Control Subsystem (TCS)
 - All prime units in use, full redundancy available no change
- Currently no Hardware issues which could limit lifetime no change

AOCS / RCS - Hardware

- Star Tracker shows only slight degradation, 5 blemish pixels plus another 4 suspect (out of 110000 total) – now 21 suspect (probably due to Proton exposure at low perigee), use of on board blemish pixel table is being investigated, STR2 still available
- No memory patches in ACC or STR – no change
- AOCS performance is well within specifications:
 - Periodic calibrations of Sensors and Actuators display consistent results no change
 - Two emergency mode entries (ESAM) to date, both fully recovered no change
- Pointing and Slew performance is well within specifications and effectively unchanged since last MEOR. – no change

AOCS / RCS – Fuel Consumption

Fuel Consumption rate remains unchanged

- Remaining Fuel 30/4/2010: 128.5kg (now 115.4) estimated
- Lifetime at current usage: 14.5 years more (incl. 3,5% uncertainty and 1 ESAM per year) – no change
- Capacity to be verified using P.V.T method as XMM done, in line with estimate

AOCS / RCS - Anomalies

- RMU-A LCL switch-off (occurred 2x) due to SEU in SPDU:
 - Critical, as RMU used for rate control in emergency mode
 - Mitigated by OBM entry which will switch the RMU on again within 24 seconds.
- 2 ESAM entries:
 - Both times ESAM executed nominally
- 2 memory corruptions affecting units selection in Failure Detection Electronics
- Increase in Loss of guide Star Events during perigee, probably due to intense proton radiation, probably temporary phenomenon.
- No significant new anomalies

EPS Hardware – Solar Arrays

- Linear projection of worst case power output at current rate shows generous power margin at end of 2014
- Effect of proton belts passage is unknown see "Areas of Concern". - now visible, damaging but not yet constraining

RFS - Hardware

- Due to the evolving perigee altitude Integral will start to break ITU regulations in late 2010. => transmitter to be switched off and back on via time-tagged command every perigee. – now done every revolution.
 - Outside ground station visibility => no impact on operations
- **Transmitter 2 functional**ity re-verified in March 2010
- RFDN switching strategy is to cycle the use of RF switches at a frequency of about once per year (to maximize the use of both switches in their BOL state):
 - Rate of switching is about 270/year.
 - Switchings to date are:
 - SWA: 978 (1245)
 - SWT: 1039 (1336)
 - During the test campaign pre-launch, identical switches were successfully tested for up to **10000** hot switchings
 - Minor degradation observed after 4000 switchings, but Performance still within requirements.

Areas of Concern – Radiation Environment

- Perigee altitude falls to 2800km in late 2011.
 - Minimum perigee passed
 - Inclination drops from 87deg to about 55deg in late 2014

Areas of Concern – Radiation Environment

Leading to a large increase in **Proton radiation** Exposure

Predicted flux based on AE-8 and AP-8 models

Areas of Concern – Radiation Environment

- SVM units total dose to exceed qualification levels:
 - By end of 2012, by maximum 6%
 - By end of 2014, by 30 35%
- Qualification Limit is 1.5 * calculated dose for nominal 5 year extended mission
- The above statements also apply to the electronic components of the Payload as they were developed under the same conditions as the platform units
- Increased rate of SEUs or degradation / failure of components may occur
 - Use of redundant units
 - Force changes in operational strategy / procedures
- So far little effect seen:
 - Increased Array degradation
 - Increased STR suspect blemish pixels
 - No increase in SEUs
 - PLM???

SPI Cryocooler

Compressor Drive Electronics (CDE) power supply configuration:

- •CDE1 (Master) powered via 1 LCL -
- •CDE2 (Slave) powered via 2 LCLs
- 2-LCL configuration of CDE2 more robust
- LCL1 also now powered in twin LCL mode
- Anomalies affecting Cryocooler:

•CDE1 power relay command failure -> hence CDE1 still powered only via 1 LCL- sensor failure

•CDE2 LCL switched off by SEU ->temporary degradation in performance, recovered at annealing

Cryocooler has behaved absolutely nominally to date

SPI Cryocooler

CDE power consumption vs stroke setting remains stable

Seasonal temperature increase at perigee, combination of earth albedo / low perigee - Mitigated by selecting special perigee attitude.

CDE LCL current stable also at high stroke

•Can continue 80K operations (maximise time between annealings)

•CDE LCL current stable also at high stroke

•CDE power consumption vs stroke setting remains stable

SPI Cryocooler

Seasonal temperature increase at perigee, combination of earth albedo / low perigee –

- Mitigated by selecting special perigee attitude.
- Effect will decrease as perigee height raises
- Probably not necessary with perigee above 6000km

Instruments Summary and Conclusions

- All instruments' health is nominal no change
- Full redundancy is still available no change
- All instruments can be operated using nominal procedures no change
- SPI Cryocooler operations are stable no change
- Minor performance degradation, not impacting overall science return (see C. Winkler, P. Kretschmar)
- No effects of proton belts seen so far on any instrument no change??tbc
- Good and close co-operation with all PI teams no change
 - E.g. Relocation of IBIS DPE equipment at ESOC, which will facilitate onboard SW maintenance
- Telemetry bandwidth margin is sufficient and will probably improve with new solar cycle – no change

No open issues for continued operations – no change

Integral MOC - Data Systems

Proposed MCS Evolution

- Migrate Current S2K 3.1 based MCS to LINUX SLES11, now Solaris 10, virtualisation
- Justification:
 - SPARC processor clients can no longer be purchased
 - S2K 3.1 designed to run under both Solaris and LINUX
 - LINUX compatible Hardware **costs much lower** than Sun
 - Integral MCS has been built against LINUX (SLES9) and runs
 - some errors in mission specific applications
 - SLES11 OS and Hardware supported until at least 2016 (Solaris 10 longer)
 - **Commonality** of HW OS and COTS with many other ESOC missions
 - Very low porting effort in combination with XMM, ROS, MEX, VEX
 - Virtualisation allows use of common facilities and Gaia facilities
- We will take this opportunity to reduce the amount of computer hardware (~20 processors XMM / INT combined):
 - Sharing with XMM and Use of more powerful modern processors
- Development Cost / Effort to be shared with XMM
- Simulator Evolution is covered in XMM presentation
 - Possible emulator solution VMS emulation

Integral MOC - FCT

Integral and XMM FCTs combined and reduced in line with MEOR 2007 recommendation:

	INT	XMM (pre MEOR 2007)
SOM	1 (1)	1 (1)
SOE	3 (5)	4 (5)
Analyst	1 (2)	1 (2)
SPACON	3 (6)	3 (6)

- SOMs assigned individually but act as back-up for one another no change
- SOEs assigned individually, but with back-up functions for the 2nd mission
 - 1 new shared SOE for MCS porting validation (1.5 years tbc)
 - Some sharing of SOEs with other missions Gaia
 - **On-call shared** between the missions
- SPACONs fully shared, 1 controller controls both missions simultaneously no change

Integral MOC - FCT

No degradation in mission performance following merger / reduction – no change.

- Performance measure is number of completed slews (about 1000 slews per month planned)
- Slew execution requires reliable functionality of entire ground segment
- Yearly manpower figures also plotted.

Integral MOC – Networks and Communications

ESA Internal

- ESOC Networks infrastructure No change
- ESA inter site connectivity No change
- Shared resources which will remain

available to integral – No change

ESA external

- Communications to DSN and Weilheim
 - Shared resources which will remain available to integral – DSN no longer used
- Communications to ISDC
 - To be upgraded in 2010 done new Hardware, reduced monthly costs

Integral MOC – ESA Ground Stations

ESA Ground Stations configured to support Integral:

- REDU: prime station 95% of support
- VIL2: main back-up in case of unavailability of REDU / DSN
- MSP: back-up in case of unavailability of REDU, VIL2 and DSN, hardly used
- Perth: can provide visibility close to perigee, hardly used
- REDU completely available to Integral until after 2014
 - A few short periods of maintenance
 - Gap in visibility opens up in late 2014
 - TBD by ESOC FD if this gap can be delayed or even removed.
 - This gap cannot be covered by another European station
 - Use of Kiruna being investigated

Integral MOC - Ground Station Visibility

Station Visibility Evolution (REDU, DSN)

1 TEST