The 'Nucleosynthesis' Field

by Roland Diehl MPE Garching

Contents

- Review & Update on Science Results and Discussion Status
- "Legend" Assessment

INTEGRAL's Legacy in Nucleosynthesis

Science Goals: (from 2010 Extension Request)

Key science areas of INTEGRAL are:

- Studies of nucleosynthesis through gamma-ray lines from elements formed in supernovae,
- Studies of the physics of emission mechanisms of white dwarfs, neutron stars, and black holes,
- Deep surveys for supermassive black holes in Active Galactic Nuclei, and
- Observations of gamma-ray bursts.

A key asset of *INTEGRAL* is its high resolution gamma-ray line spectroscopy, which will remain a unique capability for more than a decade to come.

Annihilation Emission:

- Origin of Positrons
- Annihilation Site

- → DM and Exotic Sources?
- → Positron Transport

[©] Diffuse Radioactivities (²⁶Al, ⁶⁰Fe):

- Massive-Star Groups / Clusters → Nucleosynthesis Yields
- Dynamics of Hot ISM
- ^C Supernova Mechanisms (⁴⁴Ti, ⁵⁶Ni):
 - ccSN Interiors (⁴⁴Ti/⁵⁶Ni)
 - SNIa Yields (⁵
- (⁺⁺11/⁵⁶Ni) (⁵⁶Ni)
- → Nucleosynthesis Yields
 → Nucleosynthesis Recycling
- ⁵⁶Ni):
- → Asymmetries
- → Brightness Calibration

INTEGRAL will be able to measure possible offsets [4], [5], relative to the Galactic Centre as well as spatial structures in the galactic distribution of the 511 keV emission (Fig. 2). Precision measurements of the line shape and positronium fraction will identify the gas properties of the annihilation site [71]. This will be key information for the determination of the origin of the positrons [72].

INTEGRAL will be able to disentangle ²⁶Al source regions along the line of sight, and thus measure ²⁶Al yields from massive stars in associations (e.g. the Cygnus region [6]).

INTEGRAL will be able to test if the spatial distribution of the 60 Fe line emission is consistent with that of 26 Al emission and will constrain the dynamics of the hot interstellar medium in the inner Galaxy (as demonstrated through a longitude-velocity diagram for 26 Al, [7], see Fig. 4).

INTEGRAL will be able to study in greater detail the inner regions of core-collapse supernovae through the ⁴⁴Ti gamma-ray line emission (e.g. Cas A). In addition, the homogeneous exposure of the galactic plane is likely to reveal other ⁴⁴Ti candidates. These results will guide future *NuSTAR* observations of ⁴⁴Ti, and constrain core-collapse supernova yield models. Similarly, tighter limits on ²²Na and ⁷Be line gammarays will establish *INTEGRAL*'s legacy on nova nucleosynthesis.

INTEGRAL will also provide a unique diagnostic to probe the black holes in X-ray transient outbursts through the red-shifted 511 keV line emission.

INTEGRAL will be the premier mission to study nucleosynthesis in an exploding star in case of a nearby supernova event, either type Ia at a few Mpc, or a core collapse supernova, like SN 1987A in the LMC (Fig. 6). Only gammarays directly measure the radioactivity which powers SN light. Given that there is a chance of such an event during the extended mission operations phase, the opportunity to observe gamma-rays from ⁵⁶Ni decay (Fig. 6) provides a unique potential for nuclear-line astronomy. Gamma-ray measurements are able to probe dynamics of radioactive ejecta most directly. With *INTEGRAL*, we might well learn more about supernova physics from one such object than from all previous ones combined.

Nuclear Reactions in Cosmic Sites

Status of the Nucleosynthesis Field - Overview Al in the Galaxy

1810 Energy [keV

Spatially-Resolved Spectra Constraints ²⁶Al versus Models **"ISM Dynamics Studies started**

2 ⁶⁰Fe in the Galaxy

Clear Detection; no Imaging (yet?) ^{CF60}Fe/²⁶Al Ratio and ⁶⁰Fe Nucl. Physics Being Revised

Supernovae

@⁴⁴Ti: Cas A Constraints from all 3 ⁴⁴Ti Lines; SN1987 Detection Model Variety for cc-SNe and SNIa SN2011fe Limits on ⁵⁶Ni

☆ Positrons in the Galaxy

Spatially-Resolved Spectra Line Shape Constraints Bulge/Disk Ratio: New Models & Theory

The Signature of Annihilating Positrons

2

3

- Annihilation γ-rays are dominated by a Bright Inner-Galaxy Component
- ☆ The ²⁶Al e+ Produced in the Disk (82%) are a Minor Contribution
- Annihilation γ-ray Emission Presents a Puzzle:
 - @ e+ Sources ?
 - Propagation !!
 - Annihilation Environments

5

IUG Meeting 18/19 Jan 2012, ESTEC, Noordwijk (NL)

Roland Diehl

8

7

Locations of Candidate Positron Sources

Prantzos et al., RMP 83 (2011)

☆ Nucleosynthesis

Accreting Binaries

☆ Pulsars

☆ SMBH?

Dark Matter?

Only Gamma-**Rays Can Tell**

Source	Process	$E(e^+)^{\rm a}$ (MeV)	$e^+ \text{ rate}^{b}$ $\dot{N}_{e^+}(10^{43} \text{ s}^{-1})$	Bulge/disk ^c B/D	Comments
Massive stars: ²⁶ Al	β^+ decay	~1	0.4	< 0.2	\dot{N} , B/D : Observationally inferred
Supernovae: ²⁴ Ti	β^+ decay	~ 1	0.3	< 0.2	N: Robust estimate
SNIa: ⁵⁶ Ni	β^+ decay	~ 1	2	< 0.5	Assuming $f_{e^+,esc} = 0.04$
Novae	β^+ decay	~ 1	0.02	< 0.5	Insufficient e^+ production
Hypernovae/GRB: 56Ni	β^+ decay	~ 1	?	< 0.2	Improbable in inner MW
Cosmic rays	<i>p</i> - <i>p</i>	~30	0.1	< 0.2	Too high e^+ energy
LMXRBs	$\gamma - \gamma$	~ 1	2	< 0.5	Assuming $L_{e^+} \sim 0.01 L_{\text{obs},X}$
Microquasars (μ Qs)	$\gamma - \gamma$	~ 1	1	< 0.5	e^+ load of jets uncertain
Pulsars	$\gamma - \gamma / \gamma - \gamma_B$	>30	0.5	< 0.2	Too high e^+ energy
ms pulsars	$\gamma - \gamma / \gamma - \gamma_B$	>30	0.15	< 0.5	Too high e^+ energy
Magnetars	$\gamma - \gamma / \gamma - \gamma_B$	>30	0.16	< 0.2	Too high e^+ energy
Central black hole	<i>p</i> - <i>p</i>	High	?		Too high e^+ energy, unless $B > 0.4 \text{ mG}$
	$\gamma - \gamma$	1	?		Requires e^+ diffusion to ~ 1 kpc
Dark matter	Annihilation	1 (?)	?		Requires light scalar particle, cuspy DM profile
	Deexcitation	1	?		Only cuspy DM profiles allowed
	Decay	1	?		Ruled out for all DM profiles
Observational constraints		<7	2	>1.4	

^aTypical values are given. ^b e^+ rates: in roman: observationally deduced or reasonable estimates; in italic: speculative (and rather close to upper limits). ^cSources are simply classified as belonging to either young (B/D < 0.2) or old (< 0.5) stellar populations.

2009 Analysis Efforts: Different Groups & Methods

☆ Systematics??

- Analysis Method?
 - Which Sky Model is Fitted?
 - » Sky Pixels / Few Different Shapes
 - How is Bgd Defined and Determined?
 - » On/Off versus Longterm Models
 - $\ensuremath{\gg}$ Parametrizations and their Solutions
- Pointing Pattern?
- Instrumental Longterm Changes
 - Detector Degradation
 - » Least/Most Degraded Exposure:
 - Background Changes

(**F**

Asymmetry of inner Disk Debated

Tridence" at 3...4 σ by one Group

- rejecting "equal-flux" hypothesis

Consistency with Symmetric Models by other Groups

- less sensitive?
- more conservative?

 \rightarrow

Figure 2: The exposure to the sky for the least (top) and most (bottom) degraded subsets of the Mar. 3, 2009 data set. For the least degraded data, the contours are at exposure levels of 1, 2, ..., 6 \times 10⁶ cm². S. For the most degraded data, the contours are at exposure levels of 1, 2, and 3 \times 10⁸ cm² s.

1.00€-02

00E-03

1urazov+ Otranto'09

Morphology of Positron Annihilation Emission

• Trying to Discriminate Different Sources...

How much Exposure is Needed to Obtain an Answer?

Galactic longitude (deg)

IUG Meeting 18/19 Jan 2012, ESTEC, Noordwijk (NL)

Spatus of the Nucleosynthesis Field - ²⁶Al

Spatially-Resolved Spectra

- Galactic ²⁶Al versus Models
 - Wang et al., A&A (2009)

Regional ²⁶Al versus Models

- Cygnus (Martin et al., A&A (2010)
- Sco-Cen (Diehl et al., A&A (2010)
- Carina (Voss et al., A&A (2011)

Population Synthesis for Massive-Star Groups

- Voss et al., A&A (2009; 2010)

☆ ²⁶Al Nucleosynthesis Models

Stellar Evolution from MS through Collapse, with Effects of Stellar Rotation, Winds, Reaction Rate Updates...

☆ ²⁶Al Astronomy

Finner-Galaxy Line Centroid Variations
 Kretschmer et al., in preparation for A&A

- Massive-Star Groups in Orion
 - Krause et al., in preparation for A&A

Locations of Candidate Nucleosynthesis Sources

Gamma-Rays May Complement Incomplete Knowledge

The Sco-Cen Association: Triggered Star Formation?

- Compare Data with Population Synthesis R. Voss, RD, et al., 2009, 2010, 2011
 - ☆ Observed ²⁶Al Emission
 - ☆ Stellar Groups Ages & Richness
 - ☆ ISM Shell/Cavity Observables

The Carina Region

☆ Comparing Model Predictions to Observations: Served al. 2011

Plüschke+2001; Martin+ 2011: ²⁶Al Gamma-Rays 1-2 10⁻⁵ ph cm⁻² s⁻¹ → 4...9 10⁻³ M_☉ of ²⁶Al

Smith & Brooks 2007: Stellar-Wind Energy ~ 2 10³⁸ erg s⁻¹ No SNe

Smith & Brooks 2007: Ionizing Photons \rightarrow Rate ~ 2 10⁵¹ s⁻¹

Dynamics of the Interstellar Medium

 ISM is Highly-Dynamic → Formation of (Super-)Bubbles

* Mixing of SN Ejecta into Disk and Halo?

• Simulations:

* Trace Evolution of Massive-Star Activity in Parental Cloud

²⁶Al Kinematics

Mapping ²⁶Al-enriched gas in inner Galaxy with INTEGRAL:

 2.7° FWHM 'Beam'
 ☆ Integrate ²⁶Al Line in ∆l Bins → Centroid → Galactic Rotation

- fit sky maps to INTEGRAL data
 - → spectrum
- spectral fit
 → line centroid
- scan region of interest along Galactic plane

ISM Kinematics along the Galactic Bar

* Hot ISM as Traced by ²⁶Al Appears at Higher Velocities

an example, where gamma-rays complement other bands

Soutus of the Nucleosynthesis Field

☆ ⁶⁰F^{®®}in the Galaxy

Clear Detection

Wang et al., A&A 2007; Lang et al., in prep.

Limits for Cygnus, Vela

- Wang et al., A&A 2007; Martin et al., submitted to A&A

[©]⁶⁰Fe/²⁶Al Ratio: New Models & Theory

- Updates & Variants on Stellar & SN Models
 - » Limongi & Chieffi, A&A 2006
- Review/Re-Measurements of Nuclear Rates
 - » First-Ever Measurement of 60 Fe (n, γ) 61 Fe (10.2 ±3 mb) (Reifarth et al. 2009)
 - » First Measurements of ⁵⁹Fe $(n, \gamma)^{60}$ Fe in preparation
- Simulations for ISM-Massive-Star Groups
 - » Balsara et al. 2008
 - » Voss et al. 2009

Time [Myr]

latest FRANEC model (Limongi & Chieffi 2006)

[©]⁶⁰Fe Lifetime Re-Determined/Revised

- » 'old' value: τ =(2.15 ±0.3) My (Kutschera et al 1984)
- » 'new' value: $\tau = (3.78 \pm 0.06)$ My (Rugel et al 2009) based on ⁶⁰Fe from PSI beam dump and AMS
- » Implications for Young Regions (not 'steady-state')

IUG Meeting 18/19 Jan 2012, ESTEC, Noordwijk (NL)

Roland Diehl

RD 06/08

latest model Woosley et al 2007

lar evolution & nucleosynthesis & IMF

60

40

(%) ratio

Solatus of the *Nucleosynthesis* Field - ⁴⁴Ti

ASTER SOUT Ti from Supernovae

Cas A Constraints from 3 Lines

- IBIS provided best total-flux measurement (2.5 ± 0.3) 10⁻⁵ ph cm⁻² s⁻¹ (Renaud+ 2006)
- Compatible Velocities >500 km/s (SPI 1157 keV line limit); Martin+ 2009

SN1987A Discovery with IBIS:

Grebenev+, submitted to Nature / Chia Laguna Sep 2011 ⁴⁴Ti flux on high side, but convincing detection exclusively in 60-80 keV band

10-4

☆ Radioactivity Constraints for SNe

- Cas A Echo Spectrum, Krause+ 2008
- [©] Cas A ⁵⁶Ni Yield from Reddening, Ericson+ 2008
- SNR G1.9+0.3 with ~100 yrs age
 - Reynolds+ 2008
 - No Hint for ⁴⁴Ti Emission found in SPI/IBIS¹⁰⁻⁶

☆ New Model Yields & their Variabilities

- 2 x-dimensional Parametrized Simulations of Extremes
 - Strong Y, Dependency; Fryer+ 2008, Magkotsios+ 2008, 2011
 - Nuclear-Network Studies (Parikh+, in prep.)
- Re-Measurements of Key Nuclear Reaction Rates
 - ⁴⁰Ca(α , γ)⁴⁴Ti being measured; ⁴⁴Ti(α ,p)⁴⁷V to be done (RIB); others?

SN1987

Rauscher et al. 2002

0.1

Cas A

144 Fe56)

0.01

BIS SN8

"Calibration" of Thermonuclear Supernovae

OSN 1991T

- Peculiar & Super-Bright; d~17Mpc
- Indication of ⁵⁶Co Lines (COMPTEL) $\rightarrow M_{Ni} \sim 0.6 - 3.3 M_{\odot}$

- Unusually-high Reddening; d~8-12 Mpc
- Limits on Lines (OSSE; COMPTEL)
 Constrain Models:
 No He Cap Detonator(s)
- Instrumental Sensitivity Requires d < 10 Mpc
- Two "Opportunities" Both "Unusual"
- Accuracy Insufficient for Real ⁵⁶Ni Mass Constraints

SN 2011fe (PTF11kly) in M101

SN Observables:

Coordinates:

- RA 14:03:05.81, Dec +54:16:25.4
- I=101.983168, b=59.843299
- Discovered 24 Aug 2011 by Palomar Transient Facility
- Distance to M101:

6.4 Mpc (±0.2 stat ± 0.5 sys; Shappee & Stane ApJ 2011)

- Galactocentric Distance of SN: ~8.9 ±0.9 kpc
- Metallicity at SN Location: ~0.39 solar
- Inferred Explosion Date: 23 Aug 2011

2E+04 4E+04 6E+04

SNIa Models and Gamma-Rays

 Early Observations Could Rule Out He Cap Models, for SN 2011fe in M101

day after explosion

...working on analysis of the observations

Flux (ph/s/cm²/keV)

Analysis Requires

Filtering of Data

Contamination by **Intense Solar Flare**

Building & Verifying a Background Model Celestial-Source Analysis 🐨 ... time ...

Quick-Look Results

- ☆ Confirmation of Methods and Sensitivities
- ☆ No Indications of any (plausible) SNIa Gamma-Ray Line from SN2011fe

 $^{\odot}$ Limits ~10⁻⁴ ph cm⁻² s⁻¹

energy (keV)

Kolana Uleni

SNIa Models and Gamma-Rays: SN2011fe @6.4 Mpc

The ⁶⁰Co Gamma-Ray Intensity Peaks at ~50...90 Days after

INTEGRAL Legacy: Sky Survey

• INTEGRAL's Sky Exposure will be 'Legacy' in the Domain of Nucleosynthesis Lines (0.1-5 MeV) for a Long Time to come

INTEGRAL Legacy: MeV Sky Survey

Coverages in Longitude and Latitude:

- ☆ Are Biases Acceptable for a 'Legacy Survey'?
- Which "Nucleosynthesis Regions" may be missed?
 - 🐨 Inner Galaxy... Molecular Ring
 - Spiral-Arm Regions
 - Cygnus, Carina, Orion, ...
 LMC

INTEGRAL's Legacy in Nucleosynthesis

Science Goals: (from 2010 Extension Request) A Legacy / INTEGRAL

Annihilation Emission:

- Origin of Positrons
- Annihilation Site

Tiffuse Radioactivities (²⁶Al, ⁶⁰Fe):

- Massive-Star Groups / Clusters → Nucleosynthesis Yields
- Dynamics of Hot ISM
- ^C Supernova Mechanisms (⁴⁴Ti, ⁵⁶Ni):
 - ccSN Interiors (44 Ti/ 56 Ni) \rightarrow Asymmetries
 - SNIa Yields (56 Ni) \rightarrow Brightness Calibration

Observations as Legacy for:

The Galaxy, i.e.

- Inner Galaxy and Bulge
- Entire Galactic Plane
- Spiral-Arm Tangential Views 🖌 ... O
- Outer Galaxy
- Cygnus, Cas A, Vela, Orion

C LMC

Virgo Cluster Galaxies

Nearby Dwarf Spheroidals

🐨 e+:

- Inner-Galaxy Map → unique
- Plane, Regions, Sources → unique

☞ ²⁶Al, ⁶⁰Fe:

- Massive-Star Groups / Clusters → unique
- Dynamics of Hot ISM → unique

[©] Supernova Mechanisms (⁴⁴Ti, ⁵⁶Ni):

- ccSN Interiors (⁴⁴Ti/⁵⁶Ni) → NUSTAR

(⁵⁶Ni)

- SNIa Yields

→ unique

☆ Priorities:

Galaxy Survey

- Morphology Studies in Longitude Bulge/Disk Ratio Spiral Structure and Bar Region Inner/Outer Galaxy SFRs versus Large-Scale

Specific Sources

- Massive Clusters in Galaxy
- Nearby Stars and Binaries (e+, ²⁶Al, WW
- LMC/SN1987A

Nova and SNIa Opportunities

Roland Diehl

- 0
- √?

1

0

→ DM and Exotic Sources?

Nucleosynthesis Recycling

Positron Transport

- **v**...
- **v**?

Legacy Tor.

Requirements to Establish the Legacy

