
estec
NIRSpec Technical Note
NTN-2012-004
Author(s): G. Giardino
Date of Issue: December 20, 2012
Version: 3.0

European Space Research
and Technology Centre

Keplerlaan 1
2201 AZ Noordwijk

The Netherlands
Tel. (31) 71 5656565
Fax (31) 71 5656040

www.esa.int

MSA-detect tool

Abstract:
In this note we give a brief introduction to the software package MSA-detect. The main purpose of
this tool is to derive the mapping betwen each MSA micro-shutter and the position of its image (when
illuminated in imaging mode) onto the detector, in pixel coordinates. This mapping can then be used
to identify failed or partially-failed open shutters in MSA all-closed exposures and closed shutters in
all-open exposures.

1 INTRODUCTION

During NIRSpec calibration activities, a number of imaging exposures with the Micro-shutter
array (MSA) in different configurations will be acquired to establish the precise orientation of
the MSA with respect to the Focal Plane detector array (FPA) and monitor the MSA health. In
particular: exposures with a MSA “checkerboard” configuration will be obtained to derive the
mapping between the MSA-shutters and their projection onto the detector in pixel coordinate;
exposures with the MSA “all-closed” configuration will be acquired to monitor the number
and location of failed or partially-failed open shutters; exposures with MSA in “all-open”
configuration will be acquired to monitor the number and location of failed-closed shutters.
Below we describe the software tool MSA-detect which allows the mapping between MSA-ij
indexes and shutter detector-images (in pixel coordinates) to be derived. This mapping can
then be used to identify failed open or failed closed shutters.

2 MSA-DETECT

The main-programs within this tool are located in directory JWST_Python/MSA of NIRSpec
software repository. The programs use a library of specialized functions located in files
(mastransform.py, shutter.py and ds9regions.py) in directory JWST_Python/lib. Pro-
grams and library are written in Python.
The main-programs are the following:

1

NTN-2012-004

• splitQuadrants.py - Given an exposure count-rate file, splits the image in two, each
one corresponding to the image of one MSA quadrant, saved into two FITS files named
quad_3.fits and quad_4.fits, for SCA491 data, and quad_1.fits and quad_2.fits,
for SCA492.

• findShuttersCenters.py - Given one of the quadrant images of the MSA (output of
splitQuadrants.py), it identifies open shutters and save the xy-detector coordinates of
the open shutter centers in a ds9-region file. It requires a threshold (in counts/s), giving
the count value above which a typical shutter image is to be found (it does not need to
be very accurate).

• getMSAtransform.py - Using the ‘Cross-hair’ exposure it derives a first order linear
coordinate transform between MSA shutter centers and corresponding MSA IDs, that is
the MSA ij-indexes of the shutters. Output (the forward and backward transforms) is
saved in a FITS file.

• refineMSAtransform.py - Given a 3x3 ‘Checkerboard’ exposures it refines the initial
linear coordinate transform and derives also a distortion map that is used to have an
improved overall transform MSA-to-FPA and back. The output consists of the refined
forward and backward linear transforms (two 3× 3 arrays) plus the five coefficients of
the polynomial fit to the geometrical distortions in x and y direction and it is saved in a
FITS file.

• findFailedShutters.py - Given a quadrant image from an all-closed exposure detects
MSA failed open shutters. It requires a threshold (in counts/s), giving the count value
above which a typical open shutter is to be found and the directory where the MSA-to-
FPA transforms FITS file is located.

• findFailedOpenShutters.py - A newer variant of program findFailedShutters.py above,
it uses the same algorithm of findClosedShutters.py (below) and (on simulated data)
it appears to be better at handling contiguous failed open shutters. Given a quad-
rant image from an all-closed exposure detects MSA failed open shutters. It requires a
threshold (in counts/s), giving the count value above which a typical open shutter is to
be found and the directory where the MSA-mapping FITS file is located.

• findClosedShutters.py - Given a quadrant image from an all-open exposure detects the
closed MSA shutters. It requires a threshold (in counts/s), giving the count value below
which a typical closed shutter is to be found and the directory where the MSA-mapping
FITS file is located.

2

NTN-2012-004

3 USAGE

3.1 Generating the MSA-mapping

The following tutorial aims at finding the center of the FPA-image of all MSA shutters, in
image coordinates (pixels). It is assumed that the user is working with two exposures: one of
type ’cross-hair’ and the other of type ’checkerboard3x3-1’ as those generated by the IPS sim-
ulation software and located on the JWST-server in /JWST/MSAdemo/PREP-MSA-CHKCFG-X_01/

and /JWST/MSAdemo/PREP-MSA-CHKCFG-07_01/.

Set-up Make sure you have added to your $PATH the directory

/home/../Software/JWST_Python/MSA

where the MSA-tool main-programs are located. In addition the PYTHONPATH envi-
ronment needs to be specified:

setenv PYTHONPATH ${NIRSPEC_DIR}/../JWST_Python/lib

Step 1 Split the Cross-hair two count-rate images into the four images of the MSA-quadrants.
Run:

splitQuadrants.py dir/$

$ NIRSPEC_491_IPSFAKEPREP-MSA-CHKCFG-X_01_S_2012-11-30T18h29m26.cts.fits dir/

splitQuadrants.py dir/$

$ NIRSPEC_492_IPSFAKEPREP-MSA-CHKCFG-X_01_S_2012-11-30T18h30m09.cts.fits dir/

This generates, in directory dir: quad_1.fits, quad_2.fits quad_3.fits and quad_4.fits.

Step 1 Generate first-order linear transform FPA-to-MSA and back, by running (e.g.):

getMSAtransform.py PREP-MSA-CHKCFG-X_01/quad_1_start.reg

The program will bring up a ds9 display window as shown in Fig.1. The user needs a
this point to carefully place the provided 5 circular regions at the center of each cross
and save the regions, according to the normal use of ds9. When saving the region
file, ds9 will provide a default name for that file. It is important not to change that
name. After saving this region file, the program will proceed in computing the linear
transforms, that will be saved in fits file:

PREP-MSA-CHKCFG-X_01/quad_1_initAB.fits

Step 2 Find the shutter centers of the Checkerboard exposure. First split the Checkerboard
exposure in the 4 quadrants, by running splitQuadrants.py with the two count-rate
image as input, as described above. Note that, depending on the number of failed open
shutter, you may want to first subtract from the Checkerboard exposure an ’All-Closed’
exposure to remove the imprint of these failed shutters (this step was not necessary on
the simulated data). Run e.g.:

3

NTN-2012-004

findShuttersCenters.py dir/quad_1.fits threshold

This generates the list of centers of detected MSA shutter that will be saved in file
dir/quad_1.reg.

Before exiting, the program will open a ds9-window displaying the result, that is the
center position of the detected shutters as circular ds9-regions overlayed on the input
image (see Fig. 2). This is intended to provide the user with feedback on the choice of
the threshold value. If a large fraction of open shutters (say greater than 5-10%) are
undetected try re-running the program with a lower threshold value. The evidence so
far is that a threshold value of approximately 0.1−0.5 the typical peak value of an open
shutter should be a good choice.

Step 3 Generate the MSA-to-FPA mapping using the derived centers of the (detected) shutter
in the checkerboard exposure. Run (e.g.):

refineMSAtransform.py PREP-MSA-CHKCFG-X_01/quad_1_initAB.fits $

$ PREP-MSA-CHKCFG-07_01/quad_1.reg

This program uses the output of Step 2 to improve the linear transform derived in Step
1 using 5 points and derive a map of distortion in the x and y direction, by using all
the available shutter centers in the checkerboard image. The output of this program is
two linear transforms (FPA-to-MSA and back) and the 6 coefficients of two (5th) order
polynomial fits to the distortions between the shutters FPA position as computed using
the (improved) linear transform and their observed position (as derived with program
findShuttersCenters.py). The two 3×3 matrices and the two sets of polynomial coef-
ficients are saved in FITS file PREP-MSA-CHKCFG-07_01/quad_1_transforms.fits. Be-
fore exiting, refineMSAtransform.py will display the result by opening a ds9-window
where each MSA-shutter is represented by a circular ds9-region positioned at the shut-
ter image center, with text providing the MSA-id (see Fig. 3).

3.2 Detecting failed-open shutters

The following tutorial aims at identifying the failed-open MSA shutters in an all-closed (IPS)
simulated MSA imaging exposures. These are located in /JWST/MSAdemo/PREP-MSA-CHKCFG-01_01

that we rename expdir in the example below.
We will assume that the MSA-transform FITS files obtained using the program refineMSAtransform.py

are located in the Checkerboard exposure directory /JWST/MSAdemo/PREP-MSA-CHKCFG-07_01.
See Sect. 3.1 for the software set-up.

Step-1 Split the two image files of the all-closed exposure into the 4 MSA-quadrants by running
splitQuadrants.py (as outlined in the previous section).

This command will save MSA-quadrant images quad_1.fits, quad_2.fits, etc. in di-
rectory expdir.

4

NTN-2012-004

Figure 1: Cross-hair exposure of MSA quadrant 2. The centers of the 5 cross patterns are iden-
tified by a circular region. The users has manually to place these regions at the cross
centers and save the result in the provided ds9-region file. Program ‘getMSAtrans-
form.py’ will then compute the first order linear transform between MSA-index and
FPA shutter-centers.

5

NTN-2012-004

Figure 2: Zooming in a ds9-window opened by program findShuttersCenters.py that displays
the center position of the detected shutters (magenta circles) overlayed over the input
count-rate image of a checkerboard exposure.

6

NTN-2012-004

Figure 3: A zoom onto the ds9-window opened by program refineMSAtransform.py that shows
the MSA-id to detector coordinate mapping as ds9-regions. For each shutter the center
of each detector image is given together with its MSA-ij index. The ds9-regions are
overlayed over the checkerboard image that was used to derive the improved MSA-to-
FPA transform.

Step-2 Identify failed and partially-failed open shutters, by providing a threshold in image units
(e.g. count/s) above which failed shutters are apparent. Note that by providing a low
value for the threshold the program will also identify partially-open shutters. For the
simulated exposure the value of 150.0 counts/s was used. Run:

findFailedShutters.py expdir/quad_1.fits PREP-MSA-CHKCFG-07_01/ 150.0

findFailedShutters.py expdir/quad_2.fits PREP-MSA-CHKCFG-07_01/ 150.0

etc.

The program will generate a list of the centers and MSA-id(s) of the failed shutters
and save it in a ds9-region file named e.g. quad_1_failed.reg and located in the
same directory of the input image. It will also generate a plot of failed-shutters total-
flux vs average-flux that can help in identifying truly partially-failed shutters from the
occasional cluster of hot-pixels (which typically for a given total-flux tends to have
higher average-flux). Before exiting, the program opens a ds9-window showing the
identified failed shutters (Fig. 4) overlayed over the input image, together with a view
of the plot of total-flux vs average-flux for those failed shutters, in png format (Fig. 5).

7

NTN-2012-004

Figure 4: The ds9-window opened by program findFailedShutters.py showing failed and
partially-failed open shutters in the all-closed simulated exposure (quadrant 4). For
each shutter the center of each detector image is given together with its MSA-id (MSA-
ij indexes).

The png file is also automatically saved in the same directory of the input image and the
values of total-flux and average-flux are saved as comment-lines in the ds9 region file.

Alternatively, the newer program findFailedOpenShutters can be used. It has exactly
the same calling syntax and very similar outputs.

3.3 Detecting failed closed shutters

This tutorial aims at identifying the failed closed MSA shutters in an all-open MSA imag-
ing exposures. In the example we use a simulated all-open exposure located in directory
/JWST/MSAdemo/PREP-MSA-CHKCFG-04_01/ and the MSA-mapping that we derived from the
corresponding simulation of a Checkerboard exposure, saved in files quad_1_transform.fits,
quad_2_transform.fits, etc. , in directory /JWST/MSAdemo/PREP-MSA-CHKCFG-07/ (see Sect.,
3.1).

Step-1 Split the two image files from the all-open exposure into the four MSA-quadrants
by running splitQuadrants.py This creates the MSA-quadrant images (quad_1.fits,
quad_2.fits, etc.) in directory PREP-MSA-CHKCFG-04_01/

8

NTN-2012-004

Figure 5: Plot of total-flux versus average-flux for the detector images of the failed shutters
detected by findFailedShutters.py.

Step-2 Identify failed closed shutters, by providing a threshold in image units (e.g. count/s)
below which shutters are clearly closed. Run (e.g.):

findClosedShutters.py$

PREP-MSA-CHKCFG-04_01/quad_1.fits PREP-MSA-CHKCFG-07/ 50

The program will generate a list of the centers and MSA-id(s) of the failed closed shut-
ters and (if applicable) a list of MSA-id(s) of shutters falling on so many bad pixels
(more than 4) that their (open or closed) status cannot be determined. These lists are
saved in ds9-region files named e.g. quad_1_closed.reg and quad_1_badpix.reg (and
located in the same directory as the input image). Before exiting, the program opens a
ds9-window displaying the identified closed shutters as ds9-regions overlayed over the
input image, as shown in Fig. 6.

9

NTN-2012-004

Figure 6: A zoom into the ds9-window opened by program findClosedShutters.py showing the
failed closed shutters in a simulated all-open exposure. For each shutter the center of
each detector image is given together with its MSA-id (MSA-ij indeces).

10

