
NTN-2012-004

Figure 3: A zoom onto the ds9-window opened by program refineMSAtransform.py that shows
the MSA-id to detector coordinate mapping as ds9-regions. For each shutter the center
of each detector image is given together with its MSA-ij index. The ds9-regions are
overlayed over the checkerboard image that was used to derive the improved MSA-to-
FPA transform.

Step-2 Identify failed and partially-failed open shutters, by providing a threshold in image units
(e.g. count/s) above which failed shutters are apparent. Note that by providing a low
value for the threshold the program will also identify partially-open shutters. For the
simulated exposure the value of 150.0 counts/s was used. Run:

findFailedShutters.py expdir/quad_1.fits PREP-MSA-CHKCFG-07_01/ 150.0

findFailedShutters.py expdir/quad_2.fits PREP-MSA-CHKCFG-07_01/ 150.0

etc.

The program will generate a list of the centers and MSA-id(s) of the failed shutters
and save it in a ds9-region file named e.g. quad_1_failed.reg and located in the
same directory of the input image. It will also generate a plot of failed-shutters total-
flux vs average-flux that can help in identifying truly partially-failed shutters from the
occasional cluster of hot-pixels (which typically for a given total-flux tends to have
higher average-flux). Before exiting, the program opens a ds9-window showing the
identified failed shutters (Fig. 4) overlayed over the input image, together with a view
of the plot of total-flux vs average-flux for those failed shutters, in png format (Fig. 5).

7



NTN-2012-004

Figure 4: The ds9-window opened by program findFailedShutters.py showing failed and
partially-failed open shutters in the all-closed simulated exposure (quadrant 4). For
each shutter the center of each detector image is given together with its MSA-id (MSA-
ij indexes).

The png file is also automatically saved in the same directory of the input image and the
values of total-flux and average-flux are saved as comment-lines in the ds9 region file.

Alternatively, the newer program findFailedOpenShutters can be used. It has exactly
the same calling syntax and very similar outputs.

3.3 Detecting failed closed shutters

This tutorial aims at identifying the failed closed MSA shutters in an all-open MSA imag-
ing exposures. In the example we use a simulated all-open exposure located in directory
/JWST/MSAdemo/PREP-MSA-CHKCFG-04_01/ and the MSA-mapping that we derived from the
corresponding simulation of a Checkerboard exposure, saved in files quad_1_transform.fits,
quad_2_transform.fits, etc. , in directory /JWST/MSAdemo/PREP-MSA-CHKCFG-07/ (see Sect.,
3.1).

Step-1 Split the two image files from the all-open exposure into the four MSA-quadrants
by running splitQuadrants.py This creates the MSA-quadrant images (quad_1.fits,
quad_2.fits, etc.) in directory PREP-MSA-CHKCFG-04_01/

8



NTN-2012-004

Figure 5: Plot of total-flux versus average-flux for the detector images of the failed shutters
detected by findFailedShutters.py.

Step-2 Identify failed closed shutters, by providing a threshold in image units (e.g. count/s)
below which shutters are clearly closed. Run (e.g.):

findClosedShutters.py$

PREP-MSA-CHKCFG-04_01/quad_1.fits PREP-MSA-CHKCFG-07/ 50

The program will generate a list of the centers and MSA-id(s) of the failed closed shut-
ters and (if applicable) a list of MSA-id(s) of shutters falling on so many bad pixels
(more than 4) that their (open or closed) status cannot be determined. These lists are
saved in ds9-region files named e.g. quad_1_closed.reg and quad_1_badpix.reg (and
located in the same directory as the input image). Before exiting, the program opens a
ds9-window displaying the identified closed shutters as ds9-regions overlayed over the
input image, as shown in Fig. 6.

9



NTN-2012-004

Figure 6: A zoom into the ds9-window opened by program findClosedShutters.py showing the
failed closed shutters in a simulated all-open exposure. For each shutter the center of
each detector image is given together with its MSA-id (MSA-ij indeces).

10


