Population of High-Mass X-ray Binaries in the Milky Way. INTEGRAL Legacy Survey

<u>Lutovinov A.</u>

Revnivtsev M., Tsygankov S., Krivonos R.

Understanding HMXB population:

1)properties of compact objects (NS magn. field, magnetosphere interactions, spin period, etc)

2) Formation and evolution of binaries

3) Application for cosmological surveys (distant galaxies, contribution of HMXBs to observed X-ray luminosities)

Only study of MW can help to answer

9 years Galactic plane survey with INTEGRAL

Dec 2002 – Jan 2011, total exposure 132 Msec, peak sensitivity in 17-60 keV 2.9x10⁻¹² erg/s/cm² (0.2 mCrab) Identification completeness – 91% thanks to efforts of number of groups:Masetti+, Burenin+, Bikmaev+, Nespoli+, Chaty+, Bodaghee+ Rodrigues+, Tomsick+, Landi+, Malizia+, and many others

Complete, flux-limited sample of HMXBs

|b|<5°

Only sources with known distances and spectral class

Exclude BH, gamma-loud binaries (Cyg X-1, Cyg X-3, LSI +61 303, etc)

Exclude transient sources criteria $F_p/F_{mean} > 0.5$

Flux limited 0.7 mCrab (10⁻¹¹ erg/s/cm²)

Final sample includes 37 sources

Wind-fed binaries with NS

Name	$l, \\ deg$	b, deg	$L_{X,17-60keV}, 10^{35} \text{ erg s}^{-1}$	Distance, kpc	$P_{orb},$ days	Class		
Vela X-1	-96.93	3.93	5.868 ± 0.003	1.40	8.960	B0.5Ib		
3U 1022-55	-74.64	1.49	0.311 ± 0.033	5.00	0.000	B0 III-Ve		
Cen X-3	-67.90	0.33	24.51 ± 0.041	5.70	2.090	O6-7II-III		
IGR J11305-6256	-66.05	-1.48	0.299 ± 0.012	3.00	0.000	B0IIIe		
IGR J11435-6109	-65.12	0.68	3.165 ± 0.097	8.60	52.460	B2III or B0V		
A 1145.1-6141	-64.50	-0.02	20.14 ± 0.095	8.50	14.400	B2 Iae		
X 1145-619	-64.38	-0.24	0.271 ± 0.012	3.10	187.500	B1Ve		
1ES 1210-646	-61.13	-2.31	0.105 ± 0.011	2.80	0.000	B2V		
GX 301-2	-59.90	-0.03	31.53 ± 0.016	3.50	41.500	B1Ia+		
1RXP J130159.6-635806	-55.91	-1.12	0.765 ± 0.041	5.50	0.000	O9V or B1III		
4U 1416-62	-46.98	-1.57	0.438 ± 0.048	6.00	42.200	B1Ve		
IGR J14331-61 ¹⁰	48.48	0.50	1.050 1.0.105	10.00	0.000	DIII DV		
4U 1538-522		_						
IGR J16207-51								
!!! IGR J16207-				SO		AS		
IGR J16195-49								
IGR J16283-48								
IGR J16318-48								
IGR J16320-47		n r	not h		KO			
AX J163904-46								
IGR J16418-45								

companions

	-10.02	0.01	0.019 ± 0.200	10.00	0.100	10.510
	-15.63	0.32	48.72 ± 0.058	7.10	10.400	B0-6sg
	-12.24	2.17	12.98 ± 0.004	2.12	3.410	O6.5Iaf+
	-8.50	-0.35	3.996 ± 0.032	6.10	9.740	B0-B1 Ia
	1.58	0.06	3.285 ± 0.128	13.50	0.000	B1-3
	1.70	0.11	2.760 ± 0.137	14.00	0.000	B3
	3.24	-0.32	0.130 ± 0.010	3.60	4.930	O9Ib
	9.43	1.03	10.24 ± 0.140	12.40	4.600	OBsg
3	9.43	1.03	10.24 ± 0.140	12.40	4.600	B1b
	17.67	0.48	1.377 ± 0.076	8.00	0.000	O9I
	26.78	-0.23	0.113 ± 0.011	3.20	0.000	B1Ib
	28.14	-0.66	0.255 ± 0.015	3.60	0.000	O9.5I
	31.07	-2.09	14.44 ± 0.114	10.00	6.070	B0 Iaep
	41.89	-0.81	9.658 ± 0.047	7.00	4.400	O7.5-9.5sg
	43.74	0.47	4.389 ± 0.024	5.00	8.380	O8-9Ia
	44.29	-0.46	1.687 ± 0.012	3.60	13.560	B1I
51	44.29	-0.46	1.687 ± 0.012	3.60	13.560	B0.5I
210	68.98	1.13	2.108 ± 0.092	8.00	0.000	early BV or mid BIII
	100.60	-1.10	0.852 ± 0.010	2.60	9.570	O9.5V
	121.21	-1.42	0.084 ± 0.010	3.00	15.665	BN0.5II-IIIb
	125.71	2.55	6.642 ± 0.063	7.20	11.600	B1Ia
	129.52	-0.80	0.096 ± 0.010	2.50	0.000	B1Ve

IGR J16465-45 !!! IGR J16465-IGR J16479-45 !!! IGR J16479-IGR J16493-4340 OAO 1657-415 4U 1700-377 EXO 1722-363 AX J1749.1-2733 AX J1749.2-2725 IGR J17544-2619 IGR J18027-2016 !!! IGR J18027-2016 IGR J18214-1318 IGR J18410-0535 AX J1845.0-0433 XTE J1855-026 X 1908+075 4U 1907+097 IGR J19140+0951 !!! IGR J19140+095 SWIFT J2000.6+32 4U 2206+543 IGR J00370+6122 1A 0114+650 R J0146.9+6121

Luminosity Function

First step (volume limited): The available luminosity range of HMXBs was divided into two intervals – above $2x10^{35}$ erg/s (for the limit of our survey 10^{-11} erg/s/cm² this sample is complete up to 13 kpc from the Sun) and above $2x10^{34}$ erg/s (complete up to 4.1 kpc from the Sun). For both luminosity intervals we calculate luminosity distribution of sources (ML).

 $\gamma_{\text{faint}} = 1.49 \pm 0.21$ $\gamma_{\text{bright}} = 2.0 \pm 0.3$

Renormalization both samples, using calculated density distribution

Main uncertainty is due to poor knowledge of distances to sources. We have varied around known values with assuming a Gaussian distribution with σ =20% of the source distance. -> Systematical uncertainty

HMXB density distribution vs SFR

Guesten & Mezger 1982; Lyne, Manchester, & Taylor 1985; Chiappini, Matteucci, & Romano 2001.

Vertical distribution of HMXBs

h≈85-90 пк

WR ~45 pc (Conti & Vacca 1990) OB assiciations ~30 pc (Bronfman et al. 2000) Open clusters ~50 pc (Joshi 2005)

Kinematic age

$$\tau \simeq 50 \text{ pc}/(50 - 90) \text{ km } s^{-1} \simeq 0.5 - 1 \text{ Myr}$$

HMXB systemic velocity
(Kaper et al. 1997; Hutoff & Kaper 2002)

Simple model of wind-accreting NS

Formation and evolution

dN/dM_c ~M_c^{-2.35} (Salpeter) dN/dlogP = const

Similar analytic consideration

(Bhattacharia, Ghosh, 2012)

SFXT (Supergiant Fast X-ray Transients)

t ~ hours F_m/F_p ~10⁴⁻⁵ IGR J17544-2619 100 Поток, мКраб IGR J16479-4514 50 Время, дни

SFXT (outbursts mechanisms)

Clumpy wind (Walter et al. 2006, Sidoli et al. 2011)

Inhibition of the Accretion

(Grebenev & Sunyaev 2007, Bozzo et al. 2008)

Flaring activity due to transition from (stable) radiative cooling to (unstable) Compton cooling (K.Postnov talk, L.Sidoli talk)

Surveys perspectives

NuSTAR

Deep over small area. Not large amount of HMXBs

<u>Spectrum XG</u> Large area 1.18x10⁻¹³ erg/s/cm²

130 persistent HMXB in MW

Conclusions

- 1)INTEGRAL Legacy: first complete survey of HMXB in Milky Way (absorption ignorant)
- 2)Dominance of SG systems among persistent sources!
- 3) Curved shape of HMXB LF
- 4)Surface density distribution > SFR
- 5) Emerging of the global picture of HMXB formation
- 6)Clues to mechanism of SFXT outbursts