

Integral EO

Feasibility of EO pre-perigee

INTEGRAL MOC

Integral | | ESA/ESOC | OPS-OA | Page 1

Content

- Operational effort for an EO
- Problems with post-perigee EOs in 2012
- The proposal: pre-perigee EOs
 - Risk assessment
 - Results of preliminary analysis of feasibility of pre-perigee EO
- Open issues / way to go ahead (?)

Operational effort for EO

- EOs from operational point of view: highly "non-standard"
 - Earth inside the star tracker's & instruments' FoVs
 - Attitude constraint violated (angular separation between STR & Earth <15°)
 - Duration of operation of an EO post perigee:
 - Before perigee of rev. EO-1: 5 hours
 - After perigee of rev. EO: 20 hours
 - Operational success ensured by careful planning of EO and lots of effort on all sides (ISOC, FD, FCT):
 - Planning starts 7 weeks before the EO & consists of 38 steps
 - Preliminary planning, final planning, detailed sequence of events, careful review of sequence, TN with all the relevant information
 - Regular meetings, telecons and emails to follow up of status
 - Execution of EO: dedicated EO shifts (software support on-call, FD & FCT on site), ISDC on call, ISDC activities

Background

Earth occultation observations in 2006:

- In total: 4 EOs executed within 2 weeks
- EO post perigee
- Close to sol. minimum
- More manpower
- Test the non-standard observation technique

Earth occultation observations 2012 onwards:

- Up to now: 5 EOs (EO 2.6 cancelled due to G/S issues)
- Same strategy as in 2006
- Benefit from both
 - Reduced contamination by foreground sources
 - Reduced emission of the Earth's atmosphere itself above ~70 keV due to the increase of solar activity
- But: effects due to orbital evolution

Differences between EOs in 2006 & 2012

V

- Orbital & belt exit evolution
 - Lower perigee height
- Different
 - Illumination
 - Radiation environment
 - Position in solar cycle
 - Activation of S/C after perigee

	Perigee height [km]	Rad belt exit alt. [km]	Duration of STR blinding (15°) [hours]	STR blinding actual
EO 1.1	12730	40000	08:20	04:15
EO 1.2	12578	40000	08:24	04:15
EO 1.3	12654	40000	08:24	04:07
EO 1.4	12648	40000	08:25	04:08
EO 2.1	3285	53000	16:09	08:02
EO 2.2	3780	50000	15:31	05:50
EO 2.3	3648	50000	16:42	06:14
EO 2.4	3575	50000	15:47	06:43
EO 2.5	4166	56000	15:03	05:33

Integral | Meeting Name (optional) | ESA/ESOC | OPS-OA | Page 5

BUT: Problems with post-perigee EOs in 2012

Analysis performed by Marc Türler

- Fast change in flux needed & ideally have full detector light curve available
- Mainly IBIS data, additional JEM-X
- Difference to EOs in 2006 due to INT orbit evolution
 - Late rad. belt exit \rightarrow Earth already half way within IBIS FoV at observation start (close to max. occultation). This will not change for the next years.
 - Low perigee → satellite is charged/activated from belts passage → count rates decay until half way through EO and overlay EO modulation
 - Observations are ~2x longer than in 2006

⇒ not possible to extract the occultation signals

INTEGRAL Julian Date (day)

4624.5

4624

4624.

4624

4624.5 4624

The proposal: EO pre-perigee

Proposal was already made in the past

- Considered possibly risky in case of instrument failure pre-perigee \rightarrow too little reaction time
- But: non standard observation now tested; lots of experience with EOs \rightarrow new assessment of original proposal possible

Advantages of pre-perigee EO

- Lower instrument's internal background: background not biased following belts passage → better data quality → possible to extract EO modulation
- Whole light curve / transit of Earth through FoV available within IBIS window possible
- EO at lower altitude
 - Critical alt. at belts entry is much lower than at belts exit 2006 this was not the case) \rightarrow larger Earth apparent (4-8°)
 - Earth moves faster \rightarrow duration of EO is (potentially) shorter
 - Easier to meet the off-on-off pointing requirement
 - Less manpower shifts

Analysis of pre-perigee EO operations

- SVM operations analysis
 - Only affected subsystem during EO: AOCS \rightarrow star tracker blinding
 - AOCS designed to cope with STR blinding \rightarrow no impact in this config. (esp. during rad. belts)
 - Necessary for implementation of pre-perigee EO
 - Before EO: period of stable pointing for IMU calibration before EO
 - After EO: enough time for attitude reconstruction pre LOS at perigee, potentially CGS (impact of perigee passage without Guide Star, attitude drift of about 1DEG in yaw)
- PLM operations analysis
 - Nominal operation from T/L identical to nominal rev. (belts entry & instr. deactivation)
 - Added protection for PLM
 - Protection against high rad. environment: internal (JEM-X) & IREM O/P (OMC & IBIS)
 - Standard procedures for commanding instruments in a safe configuration if necessary
 - Leave radiation monitor flag (DRMC) in BCPKT enabled. This might lead to an increased risk of interrupting EO due to IREM crash (OMC, IBIS only).
 - G/S: Use of Maspalomas gives more flexibility LOS is ~20min later than KIRUNA
 - Possible further safety measures
 - Create contingency sequences for each instrument to switch PLM safe quickly
 - Double G/S coverage during 1st pre-perigee EO (TBD)
 - Perth G/S to cover period around perigee (TBD)
 - → no foreseeable additional risks and safety issues

Analysis of pre-perigee EO

- Analysis for EO-midpoints at 3-8 hrs before perigee
 - Pointing constraints, apparent Earth angular radius, EO duration,...
- Main trade off
 - EO as close as possible to perigee, BUT end of STR blinding at around LOS_CHECK window -30min (time to recover STR Ops.)
 - Use of Maspalomas would give more flexibility since LOS at MSP is about 20min later than at REDU or KIRUNA

EO post-perigee: EO duration (STR boresight aligned with Earth disc centre)

with STR boreside

Earth Observation Duration - STR Boresight Aligned With Earth Disk Centre 6.5 Hours After Perigee, Revolution 1197 (EO 2.2) 30 Fields of View Sizes: ----- Earth Radius SPI Zero response, Min. 16deg, max 17.5deg STR constraint: 15deg from Earth Disk 25 ---- Angle Earth Disk to STR Boresight SPI Fully Coded, Min 7deg, max 8deg IBIS Fully Coded, Min 4deg, Max 5.8deg INSTRUMENT OPEN (20:54:20Zwith perigee crossing: 16:42:17Z, i.e. 4:11:57h after perigee) 20 for rad belt exit @ 50000km 17.5 17.5 Angle (deg) STR constrained 16 15 15 10 Earth angular size as seen from INT during EO 5 0 06.00 00:00 02:00 04:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 perigee Earth center coincides \rightarrow midpoint of the observation ~6.5

EO pre-perigee: EO duration (STR boresight aligned with Earth disc centre)

Earth Observation Duration - STR boresight aligned with Earth disk centre 5.5 hours before perigee, Revolution 1259

Results: EO pre-perigee

Dependency of Earth apparent radius on time of alignment of STR boresight with Earth (before perigee of rev. 1259)

EO pre-perigee: Our proposals

Results

- EO dates have to be re-scheduled
- The Earth position relative to the galactic plane is different wrt to the post perigee case. The galactic coordinates of the EO pointings are in the range:
 - 302°-330° longitude
 - 2°-18° latitude

Our Proposals

- Additional requirement: Earth transit fully within IBIS FoV
- EO executed with midpoint of observation **5.5hrs before perigee** (example EO: rev 1259):
 - Duration of Earth within IBIS FoV ("on-pointing"): 6 hrs
 - Duration of STR constraint: 12.25 hrs
 - Off-pointing before EO with STR being constrained: 5.25 hrs
 - Short off pointing until perigee & shortly after perigee (but S/C activated)

Results: EO pre-perigee Instrument Earth occultation times

Pre-perigee EO: Proposed sequence of operation CSA

Last part of revolution EO

- Adjust PST load for pre-perigee EO before or after slew to EO
- PREQ to EO attitude as science slew (OSL + corrective CSL) TL (at EOA: off-pointing performed before on-pointing)
- Disable timeline commanding to
 - AOCS until after the exit from STR constraint in rev. 1169
 - OBDH until perigee
- IMU switch on and calibration (>2h thermal stability and 1h calibration) (not needed in case performed recently)
- INSTRUMENT_CLOSE (CRIT_INST_ALT_DESC) TL

Results of first assessment:

- The current EO strategy works for planning of pre-perigee EOs

Differences wrt EO post-perigee:

- STR blinding is pre-perigee
- EO will extend to a lower altitude
- Operations may be slightly simplified
 - Leave DRMC enabled \rightarrow no tricks with Broadcast Group 1 parameters needed
 - No group 1 load during EO

Execution of EO pre-perigee:

 Slew back to EO attitude post perigee will be executed below the belts → reduced science time for EO

κενοιαποη ΕΟ+1

- AOS TC
- Return STR to AOCS Control Loop Manual, reconfiguration of SVM: 1.5h
- Execute Recover schedule to EO attitude to compensate for drift Manual
- PREQ to Earth observation attitude not to be executed TL
- Return BCPKT OTF to automatic control (remove OTF override) Manual
- In parallel: start of nominal instruments calibration and activation TL
- RWB
- PREQ to next science attitude

Conclusions & recommendations to IUG

MOC's recommendations: Perform pre-perigee EO

- Post-perigee EO strategy works for pre-perigee EOs (needs to be adapted)
- Science outcome probably better
- No obvious risks or problems associated with pre-perigee EO
- Operations possibly slightly less complex
- Transfer TM allocation from SPI to IBIS? (SPI data used at all?)
- Lower rad. belt entry altitude (conservative) \rightarrow later instr. Close \rightarrow later EO
 - Belts entry altitude is kept artificially high to allow MOC to react in case of failure of instruments to go to safe mode at belts entry. Recommendation: reduced this for individual EOs

Scheduling of pre-perigee EOs: Proposed revolutions for EOs in 2013

Old proposed dates

- EO 2.6: Rev 1260 (starting 06.02.2013) \rightarrow cancelled
- EO 2.7: Rev 1286 (starting 24.04.2013) \rightarrow constrained
- EO 2.8: Rev 1316 (starting 23.07.2013)
- EO 2.9: Rev 1323 (starting 13.08.2013) \rightarrow partly constrained
- EO 2.10: Rev 1349 (starting 30.10.2013) \rightarrow constrained
- Possible revolutions selected for the EOs in 2013 (preperigee case):
 - EO 3.1: Rev 1306 (EO: 25./26.06.)
 - EO 3.2: Rev 1315 (22./23.07.)
 - EO 3.3: Rev 1322 (12./13.08.)
 - EO 3.4: Rev 1364 (16./17.12.)
- Constraints:
 - SPI annealing

Integral | Meeting Name (optional) | ESA/ESOC | OPS-OA | Page 17

Scheduling of pre-perigee EOs: Constraints

Open issues

Open issues to be decided by IUG/scientists

- Who is analyzing the EO data? → PK to write email to scientists
- Transfer TM allocation from SPI to IBIS? (SPI data used at all?) \rightarrow No
- Reduction of belts entry to decrease observation duration (but not for 1st pre-perigee EO)
- Use of different mode for PICsIT during EO? \rightarrow No

Open issues to be analysed by ISOC

 G/S handover during EO: constraints due to ISOC mission planning (OMC)? → check offline with ISOC

Open issues to be resolved by MOC

- Reduce effort of planning of EO necessary
- G/S issues: Planning of KIR > 3 weeks in advance, reliable G/S for long passes
- Double G/S coverage during 1st pre-perigee EO (TBD)
- Perth G/S to cover period around perigee (TBD)

Note

EO would work with all slews as OSLs

Ground Station Situation

Ground Stations configured to support Integral

- **REDU:** prime station \rightarrow use of REDU by GALILEO from 22/01/13
- **VIL2:** main prime station in case
- **MSP:** main back-up station in case of unavailability of VIL2
- **Perth:** can provide visibility close to perigee, hardly used
- Weilheim: back-up in case of unavailability of European ESA station, use should be avoided / only in emergency/contingency – Non ESA Station
- Kiruna 1: back-up station; prime station in the future after GOCE de-orbit
- Gaps from VIL2, MSP, (WHM) are in same part of orbit no combination of these stations can compensate
- Kiruna 1: prime station of GOCE until ~09/2013; close to full Integral visibility (entire usable part of revolution)

Ground Stations Visibility – VIL2

- Current gap in coverage duration increases, maximum 7 hours
 - ^{2nd} gap opens in early 2014, maximum 7 hours

Integral | Meeting Name (optional) | ESA/ESOC | OPS-OA | Page 22

Ground Stations Visibility – MSP

Current gaps in coverage duration increases, maximum 2 x 10 hours

Integral | Meeting Name (optional) | ESA/ESOC | OPS-OA | Page 23