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Abstract
This is a technical note for astrophysical parameter (AP) estimation using two or three
colors derived from integrated BP/RP flux. We tested two machine learning algorithms
including Support Vector Machine and Gaussian Process to estimate APs. The results
comparing two methods are presented.
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1 Introduction

In this technical note, we present a preliminary results of AP estimation (i.e. extinction and
temperature) using three (or two) color information including GMag - GBP , GMag - GRP and/or
GMag - GRV S . A quick study on this subject is done by Bailer-Jones (2011) with/without prior
on color, parallax, HRD, and extinction. See CBJ-064 and also a presentation pdf from the
meeting. Please contact with Coryn Bailer-Jones or Dae-Won Kim for the results of the work.

The predicted APs would be useful early in mission when there are no BP/RP spectra available.
Only GMag and integrated BP/RP photometry (hereinafter, GBP and GRP ) will be released at
the early stage in the mission (i.e. 28 months after the launch). Thus it would be nice to provide
predicted APs using GMag, GBP , GRP and also GRV S for bright stars (CBJ-064).

1.1 Acronyms

The following table has been generated from the on-line Gaia acronym list:

Acronym Description
AP Astrophysical Parameter
BP Blue Photometer
DSC Discrete Source Classification (Classifier)
GSPPHOT Generalised Stellar Parametriser PHOTometry
HRD Hertzsprung-Russell Ddiagram
MSC Multiple-Star Classifier
QSO Quasi-Stellar Object
RP Red Photometer
SDSS Sloan Digital Sky Survey
SVM Support Vector Machine

2 Method

2.1 Regression Using Machine Learning

To estimate extinction and temperature using colors, we employed two machine learning algo-
rithms including Support Vector Machine (SVM) and Gaussian Process (GP). These algorithms
are capable of training either a classification model or a regression model using input dataset
with known labels or output values.

Technical Note 5
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SVM (Cortes & Vapnik, 1995) has been very popular for many years and successfully solved
lots of classification/regression problems, and also have been used for many astronomical stud-
ies such as redshift estimation of galaxies, QSO selection, variable star classification, morpho-
logical galaxy separation, and etc. It is widely known that SVM is one of the most powerful and
successful machine learning algorithms. Gaia CU8 group is also using SVM for DSC, MSC,
and GSPPHOT (Liu et al., 2012).

GP (Bishop, 2006; Rasmussen & Williams, 2006) is a relatively new technique but it has be-
coming popular since the last decade, and also known to be very successful for classification
and regression. One of the advantages of GP over SVM is that there are fewer kernel parameters
to be tuned. In the case of SVM regression, one should tune three parameters (i.e. C, γ, and
either ε or ν) while in the case of GP, there are two parameters including a length scale of kernel
(l) and the maximum number of basis vector. Moreover, performance of GP is not significantly
varying according to the number of basis vectors thus one actually needs to focus on tuning
only one parameter, l. However GP is rather slower to train a model than SVM.

2.2 Experiments on Prior Application

As we only have a limited number of bands such as GRV S , GMag, GBP , GRP , we do not have
sufficient input parameters to precisely estimate APs. Thus in order to further constrain (or
improve) AP estimation, we applied priors both for extinction and temperature. Details are
given at Section 3.5.

3 Training a Model

In this section, we briefly introduce a dataset and how we tuned parameters in order to optimize
regression models.

3.1 Dataset

We used MainDelivery3 PHOENIX RAN1 G150 library (noise-free) to build a training and
test set. The library is from the cycle8 simulation and in MDB version 11. We first extracted
the entire 14,000 samples from the library and then selected a subset consisting of the samples
whose extinctions are smaller than or equal to 2. The total number of samples in the subset is
6,528.

Note that the extinction map of our galaxy generated using 65,000 M-dwarf spectra from SDSS
has an extinction range between 0 and 2 (see Figure 1).1 Thus, although we constrained our
samples with extinction ≤ 2, trained models based on these samples can be used to estimate

1The work is done by Jones et al. (2011) using the SDSS spectra.
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extinction and temperature for stellar objects that are in fact the dominant sources in our galaxy.

FIGURE 1: Extinction map generated using 65,000 M-dwarf spectra in our galaxy (Figure 6
from Jones et al. (2011))

Figure 2 shows distribution of extinction and temperature of these 6,528 samples. Since we
cut the samples with extinctions ≤ 2, the extinction histogram has a range between 0 and 2.
Temperatures are between 3,000K and 10,000K.
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FIGURE 2: Histogram of extinction and temperature.

Figure 3 shows scatter plots of a relation between GMag - GBP versus extinction (temperature)
color coded with temperature (extinction). As the figures show, temperature and extinction is
highly degenerated in the color space. Thus an accuracy for estimation of extinction and tem-
perature using colors is expected to be low. We also show 3D plots of extinction (temperature)
versus three colors in Figure 4. Each axis is GMag - GBP , GMag - GRP and GMag - GRV S .
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FIGURE 3: Scatter plot of GMag - GBP versus extinction (temperature). Color coded with
temperature (extinction).
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FIGURE 4: 3D plot of extinction (temperature) versus three colors. Each axis is GMag - GBP ,
GMag - GRP and GMag - GRV S .
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In addition, Figure 5 shows a relation between extinction and temperature. As the figure shows,
there is no correlation between the two APs in the entire dataset.
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FIGURE 5: Scatter plot of extinction and temperature.

3.2 Training and Test Set

Using the selected subset including 6,528 samples, we build a training and a test set. The
training set consists of randomly selected 5,222 samples (80%) and the test set consists of the
remaining samples (1,306 samples, 20%). The training set is used to tune the model parameters
of each method (Section 3.3) and the test set is used to estimate the performance (Section 3.4).

3.3 Tuning Parameters

In order to find the best parameter for SVM and GP model training, we used a grid search
technique using 10x10 grid and 10-fold cross validation. Note that we used only the training set
mentioned in the previous section. We did not used the test set at this stage. For the grid search,
we repeated the search using a finer grid until the performance did not improved anymore.
The parameter ranges we tested for each method are shown in Table 2. We used a radial basis
function (rbf) as a kernel for both SVM and GP. In the case of SVM, we used ν-SVM Regression
(ν-SVR), thus we needed to select the best ν parameter as well. We also used a grid search to
select ν showing the best performance.

Figure 6 shows contour maps of performances2 derived during the 10-fold cross validation
2We show the root mean squared (RMSE) error in the case of temperature. RMSE equation is given in the next

section.
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TABLE 2: Parameter ranges for the grid search
SVM

rbf width 0.001 ≤ γ ≤ 2
soft margin 0.1 ≤ C ≤ 1000

GP
length scale 0.01 ≤ l ≤ 1

max. number of basis vector 50 ≤ Nv ≤ 200

processes of each method. The left panel is the performance of SVM in the entire range of the
tuning parameters. The SVM performance still increased after the range of tuning parameters
but the performance gain was negligible. This could happen when a training data is noisy so
that SVM tends to do overfitting the data. In general, γ (C) for either classification or regression
is smaller than 1 (100). Nevertheless we select the maximum γ and C in the parameter range
as the best parameters. The right panel is the performance of GP. Although more basis vectors
give better results, the performance gain was negligible after 200 basis vectors. On contrary to
SVM, GP converges at l ∼ 0.11.
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FIGURE 6: Performance (i.e. normalized root mean squared error) of each method according
to the tuning parameters. left: SVM, right: GP. See the text for details.

3.4 Performance

We applied the trained models to the test set mentioned in Section 3.1. Since we did not used the
test set to train the models, we can derive relatively reliable and unbiased performance. Table
3 shows two performance values derived using the test set. One is the root mean square error
(RMSE) calculated as:
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TABLE 3: Performance using three colors
Method AP RMSE MAE
SVM

extinction 0.34 (mag) 0.27 (mag)
temperature 706 (K) 509 (K)

GP
extinction 0.33 (mag) 0.26 (mag)

temperature 629 (K) 429 (K)

Note that the distribution of temperature (Figure 2) shows that a large portion of samples have temperatures lower than 5,000K. Thus the
performance for temperature could be biased to those samples.

TABLE 4: Prior-only MAE
extinction temperature

0.50 1641

Prior-only MAE which can be understood as the upper limit of errors.

RMSE =

√√√√ 1

N

N∑
i=1

(xTi − xPi )2 (1)

where N is the total number of samples in the test set, i is the index of each sample, xT is the
true value of APs and xP is the predicted value of APs. An another performance value is the
mean absolute error (MAE) calculated as:

MAE =
1

N

N∑
i=1

|xTi − xPi | (2)

As the table shows, GP’s performance is slightly better than SVM’s.

In Table 4 shows prior-only MAE (see Section 5.1 Liu et al. (2012) for details). It gives an idea
of the upper limit of errors. All MAE values in Table 3 are smaller than these upper limit of
errors, which implies the predicted APs are useful.

Figure 7 shows comparing results between the true APs and the predicted APs. For each subplot
in the figure, the top panel is a relation between the true APs versus the predicted APs, and the
bottom panel is residuals (i.e. true - predicted).

In addition, we show performance of AP estimation using only two colors of GMag, GBP and
GRP (Table 5) since GRV S would not be available for faint stars. Although the overall perfor-
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FIGURE 7: A scatter plot of the true APs and the predicted APs. In each subplot, top panel
shows a relation between them and the bottom plot shows residuals (i.e. true - predicted). The
red line in the top panel is a function of y = x and the red line in the bottom panel is function
of y = 0. Top left: extinction estimation using SVM, top right: extinction estimation using
GP, bottom left: temperature estimation using SVM, and bottom left: temperature estimation
using GP.
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TABLE 5: Performance using two colors
Method AP RMSE MAE
SVM

extinction 0.45 (mag) 0.36 (mag)
temperature 769 (K) 578 (K)

GP
extinction 0.43 (mag) 0.34 (mag)

temperature 676 (K) 490 (K)

mances are lower than the performances using three colors, the predicted APs might be still
useful at early in the mission. Neverthtless, hereinafter we will only show three color results.

3.4.1 Experiments Using Noise Added Samples

In this section, we present performances using noise added samples. Except using artifically
added noise samples, all other settings are identical with the experiments shown in the previous
sections.

We performed experiments with each different magnitude of GMag = 15, 18.5 and 20. Table
6 shows the results. Note that we did not optimize the kernel parameters for each cases but
used the same ones selected from the previous section. Nevertheless, it would anyway yield the
potentially best predictions.

As the table shows, the performances are worse at the fainter magnitude. However the perfor-
mance of GMag = 15 is not very different from the performance from Table 3 since the noise
level at GMag = 15 is almost negligible.

3.4.2 Experiments Using Uniformly Distributed Samples

As Figure 2 shows, the distribution of temperatures of samples are not uniform. Thus due to
the nonuniform distribution of the samples, the performance could be affected. Although we do
not know the true distribution of temperatures of samples that the Gaia satellite will observe, it
is worth checking if different distribution of samples affect the performance.

We selected samples so their temperatures are uniformly distributed as shown in Figure 8. Table
7 shows the performance. As the table shows, overall performance are decreased. Table 8 shows
prior-only MAE for these samples.

In Figure 9, we show the comparison results between the true APs and the predicted APs.

Technical Note 13
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TABLE 6: Performance using noise added samples
Method Magnitude AP RMSE MAE
SVM

15
extinction 0.35 (mag) 0.27 (mag)

temperature 706 (K) 508 (K)
18.5

extinction 0.37 (mag) 0.29 (mag)
temperature 708 (K) 511 (K)

20
extinction 0.43 (mag) 0.35 (mag)

temperature 727 (K) 533 (K)
GP

15
extinction 0.33 (mag) 0.26 (mag)

temperature 628 (K) 429 (K)
18.5

extinction 0.36 (mag) 0.28 (mag)
temperature 641 (K) 443 (K)

20
extinction 0.41 (mag) 0.35 (mag)

temperature 685 (K) 493 (K)
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FIGURE 8: Left: histogram of uniformly distributed temperature samples. right: scatter plot
of temperature and extinction.
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FIGURE 9: Test with uniformly distributed samples (see Figure 8). A scatter plot of the true
APs and the predicted APs. In each subplot, top panel shows a relation between them and the
bottom plot shows residuals (i.e. true - predicted). The red line in the top panel is a function of
y = x and the red line in the bottom panel is function of y = 0. Top left: extinction estimation
using SVM, top right: extinction estimation using GP, bottom left: temperature estimation
using SVM, and bottom left: temperature estimation using GP.
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TABLE 7: Performance using uniformly distributed samples
Method AP RMSE MAE
SVM

extinction 0.41 (mag) 0.33 (mag)
temperature 900 (K) 727 (K)

GP
extinction 0.38 (mag) 0.30 (mag)

temperature 787 (K) 595 (K)

TABLE 8: Prior-only MAE
extinction temperature

0.49 1748.70

Prior-only MAE which can be understood as the upper limit of errors.

3.4.3 Extrapolated Application to Samples of Extinction > 2.0 mag and of High Temper-
ature > 10,000K

Although the models were trained on the samples of extinction < 2.0 mag and of temperature
< 10,000 K, we tried to apply the models to the samples of extinction > 2.0 mag and of high
temperature > 10,000 K. It is expected that the predicted APs would not be very useful since
the models are not trained on samples of these AP ranges. Nevertheless, we can at least tell how
badly the trained models would predict for those sources (Table 9). We show the prediction
results for the sample in Figure 10 . As the tables and the figure shows, the predicted APs are
not very useful at all. Therefore in order to properly predict APs of these ranges, new models
should be trained on samples of these ranges. Nevertheless we are not yet trained such models,
which might be done in the near future.

3.5 Application of Prior

In this section, we present preliminary results using extinction and temperature priors. The
priors we used for this test might be incomplete and thus the results could be biased to the
priors. Nevertheless, in the case of insufficient input data such as this work estimating APs
using only three (two) colors, appropriate selection of priors could improve results. Note that
we can always update or even drop the priors when it is necessary. In addition it is worth
mentioning that applying prior means we need to derive a likelihood, which eventually gives
posterior. Note that we can derive uncertainty of the predicted APs using posterior, which is not
available to derive from SVM models themselves.
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FIGURE 10: Extrapolated Results: test with samples of extinction > 2.0 mag and of temper-
ature > 10,000 K, where the train data does not cover at all. A scatter plot of the true APs and
the predicted APs. In each subplot, top panel shows a relation between them and the bottom
plot shows residuals (i.e. true - predicted). The red line in the top panel is a function of y = x
and the red line in the bottom panel is function of y = 0. Top left: extinction estimation using
SVM, top right: extinction estimation using GP, bottom left: temperature estimation using
SVM, and bottom left: temperature estimation using GP.
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TABLE 9: Extrapolated Results: Performance for samples of extinction > 2.0 mag and of
temperature > 10,000K

Method Library AP RMSE MAE
SVM

OB
extinction 3.30 (mag) 2.80 (mag)

temperature 31649 (K) 1774 (K)
A

extinction 3.39 (mag) 2.80 (mag)
temperature 6863 (K) 1774 (K)

GP
OB

extinction 3.46 (mag) 3.49 (mag)
temperature 31454 (K) 2604 (K)

A
extinction 3.74 (mag) 3.49 (mag)

temperature 7026 (K) 2604 (K)

3.5.1 Likelihood

To derive likelihood, we first calculated the mean value and the standard deviation value of
predicted APs for a certain range of the true APs (windows) under the assumption that the
distribution of the predicted APs is a normal distribution. These values are calculated using the
data shown in Figure 7. We then defined Wi using the calculated quantities as:

Wi ≡ N(µi,predicted;σi,predicted) (3)

where i is the index of each window, µi,predicted and σi,predicted are derived from Figure 7. Figure
11 shows 1) the difference between the mean values of true and predicted APs (the blue squares)
for each window, and 2) standard deviation values of predicted APs (the error bars), along the
true APs (x-axis). The interval between data points (the blue squares) are irregular because we
collected at least 50 measurements to calculate the mean and standard deviation values. As the
figure shows, the standard deviation values are quite big (σ∆A0 ∼ 0.33 mag, σ∆Teff

∼ 628 K).

Using Wi, we can determine likelihood, L, for a predicted AP by calculating a score at each Wi

as:

L = P (APpredicted|APtrue) = N(Si) (4)
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FIGURE 11: Likelihood of extinction and temperature.

where i is the index of each window, N is the standard normal distribution, N(0, 1), and the
score, Si, is calculated by:

Si =
APpredicted − µi,predicted

σi,predicted
(5)

Figure 12 shows one example of likelihood, L, (shown in yellow lines) for a given predicted
extinction (left panel) and temperature (right panel). L is scaled so that the integral value in
the AP range is one. As can be expected, L is not exactly normally distributed. For the case of
temperature, it seems that it is normally distributed. The reason for this is because the ∆Teff at
the lower temperature is quite small as shown in the right panel of Figure 11. The blue dashed
line is the predicted value and the red dashed line is the true value. We will get back to this
figure later in the following sections to explain details. We show two more examples at Figure
13 and 14.

3.5.2 Realistic Prior for Extinction and Temperature

To derive the extinction prior, we employed the data from Arenou et al. (1992) that provides a
table of parameters for extinction estimation at a certain position (l, b) in our Galaxy. For this
preliminary test, we assumed that all the stars are located at 1kpc away from the Sun.3 The left
panel of Figure 15 shows the derived extinction map. Using the extinction map and (l, b) of each
star, we can estimate an extinction at a certain position. We then can assume the distribution of
extinction at that position as Gamma distribution which is monotonically decreasing.

In the case of temperature prior, we used a temperature distribution from the Gaia Universe
3 Arenou et al. (1992)’s results are valid up to 1kpc.
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FIGURE 12: Likelihood (L), prior, and posterior distribution.
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FIGURE 13: Likelihood (L), prior, and posterior distribution.

Technical Note 21



CU8

Few Band Astrophysical Parameter Estimation -
Priam: Photometric Estimation of Astrophysical Parameters
GAIA-C8-TN-MPIA-DWK-001

0.0 0.5 1.0 1.5 2.0
A0

0.0

0.5

1.0

1.5

P
r(

x
)

Likelihood
Prior
Posterior
true
pred

3000 4000 5000 6000 7000 8000 9000 10000
Teff

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Likeilhood
Prior
Posterior
true
pred

FIGURE 14: Likelihood (L), prior, and posterior distribution.
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Model Statistics v.10 (XL-028, Robin et al. 2012). For the test, we extracted the distribution of
temperature for stars of G ∼ 15 (right panel in Figure 15). We then interpolated the histogram
using a smoothed spline (red line). We normalized the interpolated line so that the integral is
one.
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FIGURE 15: left: extinction map generated using (Arenou et al., 1992). Right: temperature
prior derived from Gaia Universe Model Statistics (GUMS) v.10 (XL-028, Robin et al. 2012).

3.5.3 Experimental Prior for Extinction and Temperature

Although we could use rather realistic priors for extinction and temperature explained in the
previous section, it does not mean that applying these priors would improve the results because:

• the dataset that we used for this test (i.e. PHOENIX RAN LIB1) randomly gen-
erated extinction for each source regardless of its spatial coordinates (i.e. l and b)
while the extinction prior we introduced in the previous section depends on spatial
coordinates. Thus extinction values of the realistic prior are generally way off from
those of dataset.

• the temperature prior that we extracted from GUMS (XL-028, Robin et al. 2012) is
a distribution for all stellar sources, not only for PHOENIX RAN LIB1.

Therefore we decided to generate alternative priors for this test (hereinafter, experimental pri-
ors). For extinction prior, we used the Gamma distribution. For temperature prior, we used
the distribution of the training data. We first interpolated the histogram of temperature from
the training data using a smoothed spline, and normalized the interpolated function so that the
integral is one. Figure 12 shows the generated priors for each AP (green line in left and right
panel).
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3.5.4 Posterior

Finally, we calculated the posterior using the likelihood and the experimental priors mentioned
in the previous sections as:

P (APtrue|APpredicted) =
1

Z
L P (6)

where L is the likelihood defined in Equation 4, P is the experimental prior introduced in
Section 3.5.3, and Z is a normalization constant. We calculate the normalization constant by
calculating integral value of the posterior through the AP ranges. Figure 12, 13 and 14 show
examples of posteriors for each AP (magenta line). After we applied the priors, we calculated
few statistics using all test data shown in Table 10. MAE in the table is defined as:

• without prior: an average value of MAEs between mean values of likelihood distri-
bution and the true APs

• with prior: an average value of MAEs between mean values of the posterior distri-
bution and the true APs

Precision is defined as

• without prior: an average standard deviation value of likelihood distribution

• with prior: an average standard deviation value of posterior distribution

In addition, we defined an alternative likelihood, Lalt, shown in the left panel of Figure 17.
Lalt is a normal distribution with mean of [predicted Teff , predicted A0] and with a covariance
matrix shown in Figure 16, which thus can be understood as a typical likelihood. To calculate
the covariance matrix, we first derived ∆Teff versus ∆A0 (as shown in Figure 16), we then
fitted the data with multivariate normal distribution. The derived covariance matrix is:

(
394784.77 181.81

181.81 0.11

)

The standard deviation value for ∆Teff is ∼628K and for ∆A0 is ∼0.33 mag. Note that al-
though we assumed the normal distribution to calculate the covariance matrix, the actual dis-
tribution shown in Figure 16 are not really normal distribution. This could degrade the results
when using the covariance matrix. It is worth mentioning that we could improve Lalt as well
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by calculating multiple covariance matrices along the AP ranges (such as how we derived Wi at
Equation 3), which eventually will show similar behavior with L (Equation 4). However note
that deriving posterior using such likelihood is computationally more expensive.
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FIGURE 16: Scatter plot of ∆ Teff versus ∆ A0. The blue plus are data points. The covariance
matrix (contour) was derived by fitting multivariate normal distribution.

Nevertheless, Figure 17 shows one example using Lalt and the realistic priors. The yellow
square is the predicted AP and the yellow diamond is the true AP. The different colored contour
indicates different confidence levels of Lalt. The right panel is the result after applying the
realistic priors for both extinction and temperature. As expected, the overall results are not
improved since the realistic priors do not match very well with the data. Table 11 shows few
statistics. The results are not any better than the results using the experimental priors shown in
Table 10. Let’s examine Table 11 and 10 in a little more details.

• Extinction: the average MAEs without prior are close to each other since mean
values of likelihood of two cases should be similar regardless of which definition
we used to generate the likelihoods. However, showing similar average MAEs does
not mean that the two likelihood are identical. Remember that we use a single
covariance matrix to generate Lalt shown in Figure 17, but the other likelihood (L)
is generated by binned data (Equation 4 and Figure 12). Thus L could show better
performance at some region such as at the lower temperature (see right panel in
Figure 11 and Figure 12) while Lalt will always show averaged performance for the
whole range of AP parameters.

Nevertheless, after applying extinction priors, either the average MAE values or
precision values did not improved at all which indicates our definition of prior is
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FIGURE 17: Left: likelihood distribution. Right: after applying both temperature and extinc-
tion priors.
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TABLE 10: Performance Using Experimental Prior and Likelihood, L shown in Equation 4
AP Without prior With prior

Extinction
MAE 0.28 (mag) 0.28 (mag)

Precision 0.32 (mag) 0.31 (mag)
Temperature

MAE 542 (K) 542 (K)
Precision 606 (K) 587 (K)

TABLE 11: Performance Using Realistic Prior and Likelihood, Lalt introduced in Section
3.5.4

AP Without prior With prior
Extinction

MAE 0.29 (mag) 0.37 (mag)
Precision 0.33 (mag) 0.26 (mag)

Temperature
MAE 522 (K) 671 (K)

Precision 627 (K) 534 (K)

not really practical or effective. Thus it seems that we need more comprehensive
and practical priors for further improvements.

• Termperature: The results can be understood as same as the extinction cases.

4 Implementation

So far, the tests shown in this TN have been done mostly using Python. The implementation
of either partial or full portion of this work into GSP-phot will be made soon and deliver at the
next CU8 software delivery scheduled at the end of May, 2013. Here is brief summary of the
implementation plan:

• MainDelivery3 PHOENIX RAN1 library will be used.

• individual models for different magnitude and different APs (i.e. extinctions and
temperature) will be trained.

• three and two color models will be separately trained.
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• noise will be added to BP/RP spectra..

• hyperparameter tuning will be done using brute-force search.

• to reduce training time, the training processes will be parallelized.

5 Conclusion and Discussion

We tested two machine learning methods to estimate two APs including extinctions and tem-
perature using three color information extracted from MainDelivery3 PHOENIX RAN1 cycle8
library. The three colors are GMag - GBP , GMag - GRP and GMag - GRV S . We also predicted
APs using only two colors (i.e. GMag - GBP and GMag - GRP ), which might be useful for faint
stars that would not have GRV S .

The predicted APs would be useful for the Gaia community when no BP and RP spectra are
available at the early stage after the launch of the Gaia satellite, thus when accurate extinction
or temperature information cannot be provided.

On the basis of these experiments shown in this TN, we will implement a Java package for few
band AP estimation, which we named as: Priam - Photometric Estimation of Astrophysical
Parameters.
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TABLE 12: Performance of AP estimations using BP and RP spectra
Method AP MAE
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Robin, A.C., Luri, X., Reylé, C., et al., 2012, A&A, 543, A100, ADS Link

Appendix

In order to compare our results in Table 3 with the work done by (Liu et al., 2012) which used
BP and RP spectra to estimate APs, we show the MAE of the work in Table 12. As the table
clearly shows, the performance using BP and RP spectra surpasses the performance using three
colors. This is expected results since BP and RP spectra have much more information than three
colors.
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