

# estec

European Space Research

and Technology Centre Keplerlaan 1

> 2201 AZ Noordwijk The Netherlands

Tel. (31) 71 5656565 Fax (31) 71 5656040

www.esa.int



NIRSpec Technical Note NTN-2012-011

Authors: M. Sirianni Date of Issue: 10-10-2012 Revision: 1.0

# **PREP-DET-CHECK Data analysis and result evaluation**

# Abstract:

This brief technical note will guide the reader through the step necessary for the analysis of the data acquired with the PREP-DET-CHECK procedure during the TV2 NIRSpec campaign. It also provides figures, plots and statistics to compare the results with the performance measured during DCL and TV1 testing.

# **1 INTRODUCTION**

Add some bla bla here on prep-det-check All the example shown here are derived with same software and number of input exp (10)

Section 2 : PREP-DET-CHECK part 1 – Bias & Dark Measurements Section 3: PREP-DET-CHECK part 2 – Gain Measurement

# 2 PREP-DET-CHECK – BIAS MEASUREMENT

The present section will guide you through the measurement of the detector system performance with data acquired as part of the PREP-DET-CHECK (part 1) procedure. The data consist of ten dark exposures of 88 groups.

STEP-1 -create a working directory mkdir TEST\_BIAS cd TEST\_BIAS

**STEP-2**- start IDL in NIRSpec mode start\_nirspec

STEP-3- check if the REF\_DATA is defined and point to the proper location

print,getenv('REF\_DATA')

the result should look something like:

/Users/msiriann/Library/Software/JWST\_C/var/FPA104\_T3850/

If REF\_DATA is not a variable, define it as in the following example (changing path where appropriate):

setenv,'REF\_DATA=/Users/msiriann/Library/Software/JWST\_C/var/FPA104
\_T3850/'

If you are not 100% sure to have the proper set of reference files, move to the proper location and download the most recent set of reference files for the proper FPA and TEMP

cd,getenv('REF\_DATA'),current=here
copy\_reference\_files, 104, 38.5

be sure to return to the working directory by typing:

cd,here

**STEP-4**- Run create dark cube on the 10 exposure. This assume you have access to the archive and can use the NID to point to the exposure raw file.

Let's assume that the 10 dark exposures have NID from 4536 and 4545, we can create the dark cube and associated files with :

create\_darkcube,indgen(10)+4536,REFDATA=getenv('REF\_DATA'),/verbose
,/nodelete

Should the archive not be accessible, and you have already copied the raw files of the exposures in a temporary directory (for example called ./RAW\_DARKS) you can process the files using the following sintax:

create\_darkcube,DIRLIST='./RAW\_DARKS/',REFDATA=getenv('REF\_DATA'),/
verbose,/nodelete

In both cases the script will create in the working directory:

- one countrate file (\*.cts.fits) for each exposure used as input
- a superbias : BIAS\_49X\_001.fits for each SCA
- a dark cube: DRKC\_49X\_001.fits for each SCA
- other intermediate files

**STEP-5**- once the selected exposures have been processed (note, both SCA 491 and SCA 492 are processed) you can run the following script:

prep\_det\_bias\_part1

it will assume the files are in the working directory, if this is not the case you can specify the path with :

prep\_det\_bias\_part1,wdir="path\_to\_the\_superbias\_and\_darkcube"

The script perform the statistics on the superbias, map of how and warm pixels, and dark count rate image. He will produce and save in the working directory several plots (with maps or histograms) and save text files with the statistics. The complete list of outputs for a single SCA is:

491\_1h\_dark\_stat.txt 491\_bad\_ref\_pixel\_dist\_.png 491\_bad\_ref\_pixels\_stat.txt 491\_dark\_hist.png 491\_dark\_ima.png 491\_dark\_quad\_hist 491\_dark\_quad\_hist.png 491\_high\_total\_noise\_pixel\_mask.png 491\_high\_total\_noise\_pixels\_stat.txt 491\_hot\_pixel\_mask.png 491\_hot\_pixels\_stat.txt 491\_superbias\_hist 491\_superbias\_hist.png 491\_superbias\_ima.png 491\_superbias\_stat.txt 491\_total\_noise\_hist 491\_total\_noise\_hist.png 491\_total\_noise\_ima.png 491\_totalnoise\_stat.txt 491\_unreliable\_bias\_pixel\_mask.png 491\_unreliable\_bias\_pixels\_stat.txt 491\_warm\_pixel\_mask.png 491\_warm\_pixels\_stat.txt

# 2.1 Superbias frame

#### 2.1.1 SCA491

Compare the 491\_superbias\_ima.png with the figures below.



> Compare 491\_superbias\_hist.png with the figures below.



### 2.1.2 SCA492

> Compare the 492\_superbias\_ima.png with the figures below.



> Compare the 492\_superbias\_hist.png with the figures below.



# 2.2 Total Noise

### 2.2.1 SCA491

Compare 491\_total\_noise\_ima.png with the figures below.



Compare 491\_total\_noise\_hist.png with the figures below.



### 2.2.2 SCA492

Compare the 492\_total\_noise\_ima.png with the figures below.



Compare 492\_total\_noise\_hist.png with the figures below.



# 2.3 Dark Current

### 2.3.1 SCA491

> Compare **491\_dark\_ima.png** with the figures below.



Compare 491\_dark\_hist.png with the figures below.



Compare 491\_dark\_quad\_hist.png with the figures below.



### 2.3.2 SCA492

Compare 492\_dark\_ima.png with the figures below.



Compare 492\_dark\_hist.png with the figures below.



Compare 492\_dark\_quad\_hist.png with the figures below.



# 2.4 Hot Pixels

#### 2.4.1 SCA491

Compare 491\_hot\_pixel\_map.png with the figures below.



Compare 491\_hot\_pixels\_stat.txt with the table below. The files \*\_hot\_pixesl\_stat.txt have two numbers, the one on the top is the total number of hot pixels, the one on the bottom is the percentage.

| Environment      | % of hot pixels |
|------------------|-----------------|
| DCL Data 38.50 K | 2.4             |
| FM Data 38.50 K  | 3.0             |

Table 1 Percentage of hot pixels in 492 data

#### 2.4.2 SCA492

Compare 492\_hot\_pixel\_map.png with the figures below.



Compare 492\_hot\_pixels\_stat.txt with the table below. The files \*\_hot\_pixesl\_stat.txt have two numbers, the one on the top is the total number of hot pixels, the one on the bottom is the percentage.

| Table 2 Per | rcentage of | hot pixels | in 492 | data |
|-------------|-------------|------------|--------|------|
|-------------|-------------|------------|--------|------|

| Environment      | % of hot pixels |
|------------------|-----------------|
| DCL Data 38.50 K | 0.99            |
| FM Data 38.50 K  | 1.58            |

### **3 PREP-DET GAIN MEASUREMENT -**

The present section will guide you through the measurement of the detector system gain with data acquired as part of the PREP-DET-CHECK (part 2) procedure.

- STEP-1 -create a working directory mkdir TEST\_GAIN cd TEST\_GAIN
- **STEP-2** start IDL in NIRSpec mode start\_nirspec

the result should look something like: /Users/msiriann/Library/Software/JWST\_C/var/FPA104\_T3850/

If REF\_DATA define it as in the following example:

setenv,'REF\_DATA=/Users/msiriann/Library/Software/JWST\_C/var/FPA104
\_T3850/'

If you are not 100% sure to have the proper set of reference files, move to the proper location and download the most recent set of reference files for the proper FPA and TEMP

cd,getenv('REF\_DATA'),current=here
copy reference files, 104, 38.5

be sure to return to the working directory by typing:

cd,here

**STEP-4**- if you do not know already the range of exposure to use , start <code>nar\_find</code> to identify the range of NIDs needed

"TOOL DAY" example: OBS\_ID=PREP-DET-CHECK-3 and be sure to select 3 identical exposures, for example NID:4555-4557

prep\_det\_gain\_part1,4555,4557,/verbose

the program will:

create a subdirectory DATA and a subdirectory RESULTS

- copy the raw files from the archive to the directory DATA
- run the pipeline and save the process data cube in the directory DATA

**STEP-5**- once the selected exposures have been processed (note, both SCA 491 and SCA 492 are copied and processed) you can execute the second part of the script.

prep\_det\_gain\_part2,sca=sca[,region=region,ngroup=ngroup,,/man
u,/verbose]

- SCA must be either =1 for 491 or =2 for 492
- ➢ If region is not specified and the /manu(al) keyword is not set the full frame will be used for the photon-transfer test. This is applicable only to uniform illuminated exposures, and this is not generally the case for NIRSpec level data.

Therefore a region should be selected. Either providing it at the command line (CASE A), or inspecting the image end then entering the coordinate of the region at the prompt (CASE B)

CASE A) selecting a known good region (shown here, fixed slit that worked well for FM1)

prep\_det\_gain\_part2, sca=491,region=[960,970,1285,1918],/verbose
prep\_det\_gain\_part2, sca=492,region=[1029,1060,1200,1700],/verbose

CASE B) inspecting the image with DS9 and entering region's coordinate at the prompt

prep\_det\_gain\_part2, sca=491,/manu,/verbose
prep\_det\_gain\_part2, sca=491,/manu,/verbose

in this case DS9 will be opened and the countrate image of one of the input exposures will be displayed for inspection. Select a region fairly clear from many cosmetic defects and insert the coordinates of the corners of the region as prompted.

#### > NGROUP=

The script will use by default all the group in the exposures. If however saturation is reached a smaller number of groups should be used. The keyword ngroup should be used to specify the maximum number of groups to be used.

## **3.1 OUTPUTS:**

The gain will be displayed on the terminal output:

```
Wed Oct 10 09:56:51 2012 *** PREP_DET_GAIN_PART2.PRO - RESULTS
- SCA 492
REGION: 1029 1060 1200 1700
measured GAIN (e-/DN): 1.51405
GAIN Corrected for IPC (e-/DN) :1.38853
results saved in :/Users/msiriann/Desktop/PREP_DET_SCRIPTS/GAIN/RESULTS/ :
Gain_SCA_492_20121010095651.txt
Gain_SCA_492_20121010095651.png
```

Figure 33 – screen output of PREP\_DET\_GAIN\_PART2.pro

and the linear fit will be displayed in a graphical window:



The results are saved in two files as indicated in the text on the termina. They are located in the ./RESULTS subdirectory of the working directory and their name have a time stamp: Gain\_SCA\_492\_20121010095651.txt Gain\_SCA\_492\_20121010095651.png

#### What to expect:

DATA from DCL have been used to determine the GAIN with the photon transfer test both temporally (pixel-to-pixel) gain or spatially (standard gain). The results are in good agreement. There is however indication of spatial variation in the gain (see figures 3 and 4) and therefore you may have different results depending on where you select your region.

For the propose of this test, you should expect agreement with DCL results at levels of 15-20 % .



Figure 35. Gain Measurements for SCA 491 from DCL data.



Figure 36. Gain Measurements for SCA 491 from DCL data.