

SRE-O/HSO-O bilateral Integral Disposal Options

R. Southworth ESA/ESOC

Integral | | ESA/ESOC | OPS-OA | Page 1

Background

- Orbital Evolution Long Term
 - Orbit, particular the perigee altitude will undergo large natural variations over the next 200 years
 - Perigee altitude will go intermittently below 2000 km (LEO Region), although for a relatively short amount of time
 - Orbit will cross the GEO ring roughly every decade
 - No natural reentry

- Preliminary analysis showed:
 - Controlled re-entry in 2020 not within fuel budget
- More detailed study has now been carried out Integral | Meeting Name (optional) | ESA/ESOC | OPS-OA | Page 2

Perigee Adjustment Manoeuvre

Perigee Lowering Manoeuvre - Using all available fuel

- If done early 2013 would (probably) have lead to uncontrolled reentry in 2020, now too late
- If done in mid 2013, re-entry in 2082 with some uncertainty due to very low perigee in 2020
 - Re-entry location cannot be controlled so long in advance
 - Now too late
- End of Science Mission
- LEO Clearance long term not fully achievable
- Once the manoeuvre is done we are committed
- Not controlled re-entry
- Too late now

Perigee raise Manoeuvre doesn't keep INT out of LEO or reenter Integral | Meeting Name (optional) | ESA/ESOC | OPS-OA | Page 3

Apogee Lowering Manoeuvre

- Done at perigee
 - Much more efficient manoeuvre, effect is to amplify natural orbital perturbations
- Up to mid 2017 manoeuvre possible leading to uncontrolled re-entry in 2029
 - In some cases leaving fuel for further mission extension
 - Tentative Ex: 25m/s early 2015, re-entry in 2029, 5+ years science
 - Possible later trim manoeuvre to finalise re-entry location
- Alternatively many LEO Clearance opportunities Once the manoeuvre is done we are committed
- Station coverage affected
- Not controlled re-entry
- Trade off between end of control and accuracy of re-entry location
- Further study needed to confirm / refine options

Lunar Resonance Delta-V

- Lunar orbit exact multiple of Integral Orbital period
 - Amplifies lunar perturbations, removes randomness
 - Special cases of Apogee adjustment manoeuvre
 - Tentative Ex: 19.0m/s early 2014 to Moon resonance of 10:1 => re-entry in 2029 (*Last chance for this case is mid 2014!*)
 - End of life (fuel) early 2022, worst case
 - Orbital period of 2.8 days (currently 3) => Station coverage affected + Possibly small reduction in science time.
- Not a controlled reentry Trade off between end of control and re-entry location spread
 - Once the manoeuvre is done we are committed
 - Possibility to trim re-entry location later
- Further study needed to confirm / refine options
- 8:1 or 7:1 resonance have best long term LEO clearance

Possible modest fuel advantage wrt Apogee lowering – tbc

Integral | Meeting Name (optional) | ESA/ESOC | OPS-OA | Page 5

Second Manoeuvre Option

- Option of a twin manoeuvre strategy was also analysed
 - 1st manoeuvre 2015, 2nd in 2020
- OR: 1st manoeuvre 2017, 2nd in 2020
 - No realistic options for controlled re-entry in 2020
 - 2nd manoeuvre has no re-entry advantage wrt the options above
 - Could lead to LEO avoidance scenarios, combined with earlier apogee lowering

Sundry

- Some options for uncontrolled re-entry (>2080) much later exist
 - Reliability of such long propagations has some uncertainty
 - Entry location cannot be selected
 - Discard in favour of 2029 options

Next Steps

- Break up Analysis study commissioned, expected XXXXX
- Feasibility study of early re-entry location targeting options and accuracy to be done in parallel, expected XXXXX
- Further study of lunar resonance options (including LEO clearance)
 - 2 mm
- OR: Further study of Apogee lowering options (including LEO clearance)
 - 2 mm (1mm extra for LEO analysis 2 burn strategy)
- Chosen option to be studied after break up analysis available
- Remaining Fuel Uncertainty?

