Transients from all sky observed by INTEGRAL

Volodymyr Savchenko

IUG meeting 2017 ESTEC, Nordwijk

Substantial fraction of the **INTEGRAL** mass is detectors

>~100 keV - gamma rays are stopped by substantial mass: they typically reach active medium: principal detectors or active shields

Substantial fraction of the **INTEGRAL** mass is detectors

>~100 keV - gamma rays are stopped by substantial mass: they typically reach active medium: principal detectors or active shields

No Earth shadow!

Compare to Fermi/GBM: coverage about 65% at any given moment

Challenges of the all-sky observations

Characterizing the background

Distinguishing various particle effects is vital for **event detection**

Computing, verifying the **response**

the electronics in non-standard modes: thresholds, multiple events, etc.

opacity structure: passive and active media

Non-standard use of the detectors needs verification

cross-calibration in collaboration with other teams is the key to successful event detection and characterization

Background

Owing to very elongated orbit, INTEGRAL features typically **stable background** on scale of 2 days.

Enhanced high particle flux is a mild disadvantage.

2016

Hurley et al

Background: solar activity in SPI-ACS

Solar flares introduce various effects in the SPI-ACS data, contributing to the background for GRB searches.

Usually stability of the background around the GRB can be used to exclude affected regions.

This in the limitation for long burst detection.

Background: particles in SPI-ACS

The first catalogue of INTEGRAL all-sky GRB transients in 22 months of SPI-ACS data.

Large number (30/day) of very short events - "the short spikes" was attributed to the high-energy cosmic ray interaction effects but could not be separated with INTEGRAL alone

Background: particles in SPI-ACS

The expected shape is universal: all the spikes are renormalized template. This can be used to exclude them.

Even rather weak real bursts may not be rejected.

VS12

Even very bright events may fit the template. The distribution of the peak count rates is very regular.

Second SPI-ACS trigger catalogue

The SPI-ACS offline pipeline is regularly used to identify possible transients independently and in coincidence with various events

SPI-ACS response

Understanding the performance of the detection pipeline is critical to reliably report detections

But in order to compare SPI-ACS detections with other instruments the mass models (SPIMM and TIMM) were verified using bright and hard bursts and then used in a number of publications.

The mass model

Electromagnetic Follow-up of GW

The GW events localizations are extended

Only INTEGRAL, and Konus-Wind (albeit with lower sensitivity) have true instantaneous all-sky coverage

GW150914: upper limit

The region was in a very lucky orientation for SPI-ACS! Lucky background conditions too.

10⁻⁶ - ratio of energy in 75-2000 keV to GW

And Fermi/GBM

Rescaling real GRB with a moderately hard spectrum assuming **best fit fluence of GBM-GW150914**, resulting in **15 sigma** detection: **good margin**!

Some spectra, soft and weak, could be marginally compatible with SPI-ACS and GBM data, but **the probability is likely very low**

But, given that the the excess in Fermi/GBM is limited to high energy, soft spectrum implies no detection.

Greiner et al 2016

Fully taking into account statistical and systematic uncertainties in the GBM parameter estimation is required. The collaboration is ongoing, **useful for future observations**!

And Fermi/GBM (2.9 sigma)

Fermi/GBM

Rescaling real GRB with a moderately hard spectrum assuming **best fit fluence of GBM-GW150914**, resulting in **15 sigma** detection: **good margin**!

Note variations of the Fermi/GBM background on all time scales, resulting in large FAR

Fermi/GBM sGRB with fluence similar to GBM-GW

Typical GRBs of the same fluence are compatible between Fermi/GBM and INTEGRAL/SPI-ACS: understanding of the intercalibration is encouraging!

SPI-ACS - Fermi/GBM cross-calibration

INTEGRAL SPI-ACS response based on mass model was calibrated on bright and hard well-characterized GRBs.

The response was then further verified with Fermi/GBM GRBs of a large range of spectral properties.

The response can be securely applied to weak bursts of comparable spectra.

Cross-calibration dependency on spectrum, intensity, time

INTEGRAL/SPI-ACS - Konus-Wind: verification with detailed private Konus spectra reveal consistent picture

Status of Fermi/GBM vs INTEGRAL discussion

The original event had a significance of association with GW of 2.9 sigma - because of high rate of GBM background fluctuations

The **SNR** of the event reported by *Connaughton et al 2016* is ~5, with a fluence of ~2 x 10^{-7} erg cm⁻² in 10 - 1000 keV (not clearly reported) - not too weak, but in an unusual orientation for Fermi/GBM - from the bottom.

Bursts of this fluence level are securely (up to 28 sigma) detected by INTEGRAL/SPI-ACS, given the right location and spectrum, compatible with the response model.

GBM-measured properties of the reported excess are not fully known - hard to exclude.

Intercalibration with INTEGRAL, Fermi/GBM and Konus-Wind is progressing, the stability and consistency has been proven for bright-to-medium events.

Principal activity now is learning how to compare very weak bursts.

LVT151012: SNR of 9.6, FAP of 2%

Depending on the true source location, spectrum, and duration, the best limit may come from SPI-ACS, IBIS/Veto, ISGRI, PICsIT, SPI, or JEM-X.... Lucky?..

T151012: complicated all-sky case:

Relative contribution of PICsIT and ISGRI reverses for very hard bursts

LVT151012: complicated case: all-sky

Total sensitivity is within 30% from the best in 95% of the sky, SPI-ACS only - in 75%

All-sky localization

synthetic NS merger event at 200 Mpc, what could be expected of LVT170225, LVT170227

LIGO localization

INTEGRAL localization

Background: solar activity: multidetector

rarely isolated flares could not be independently distinguished by SPI-ACS alone from the cosmic bursts due to lack of spectral and location characterization.

Using all INTEGRAL detectors, the events can be more efficiently classified, improving the detection performance.

SPI and JEM-X, sensitive to X-ray and gamma-ray transients only from the FoV, allow to pinpoint background variations caused by particles.

All-sky localization

INTEGRAL localization LIGO localization 75° 60° 45° 30° 15° 120° 0° -15° -30 -45 -60 65.0 6.5 $10^{-7} {\rm erg} {\rm cm}^{-2} {\rm s}^{-1}$

synthetic NS merger event at 200 Mpc, what could be expected of LVT170225, LVT170227

Location dependency of the INTEGRAL detector response is complex: but since it is understood, it can be used to derive **localization patterns with precise features**.

In principle similar technique is employed by the Fermi/GBM. However GBM itself is much smaller and attenuated strongly by the large body of LAT.

Konus-Wind is optimized for all-sky coverage: it measures the spectra independently on location, but also is unable to provide any localization.

For INTEGRAL, measurement of the spectrum is correlated with the location, hence it can benefit from independent measurement of the spectrum.

Multi-mission localization: ongoing

Inter-Planetary Network localizes GRBs similarly to LIGO: by measuring the difference in the arrival time - relying on accurate timing. Often it is the only source of transient location.

Unlike LIGO, currently the IPN does not take into account the intensity response information, which would allow to improve localization substantially.

This is comes as natural benefit of the intercalibration activities.

Right now a number INTEGRAL, Konus-Wind, Fermi/GBM, AstroSAT, POLAR. CALET,

INTEGRAL SPI-ACS public data service

In 2011, a public service was set up to promptly provide SPI-ACS data with the best timing accuracy

It was extensively used for years by IPN and Konus colleagues

Since 2015, Fermi/GBM team used the service to verify their detections and challenge SPI-ACS

Several other groups started to use it. In total >100 Gb has been served.

IPN format SPI-ACS light curve	2008-03-19T06:12:46 200 Submit
IPN format INTEGRAL ephemeris	2008-03-19T06:12:46 Submit
Plot SPI-ACS light curve	2008-03-19T06:12:46 200 Submit
INTEGRAL Attitude	2008-03-19T06:12:46 Submit
INTEGRAL HK light curves	SPI_VETOGATE 2008-03-11 Submit
Try using the script to access the light	curves

RESTful service, providing various public INTEGRAL data as well as auxiliary information

More data availability

2.0e+

5/stunoo 1.6e+ 1.4e+

This page contains the list of triggers collected from the GCN notices (Swift and Fermi) and circulars. For every event the link to the IPN-styled INTEGRAL/SPI-ACS lightcurve and the **plot** are provided. The page is updated about every 2 minutes. The SPI-ACS data accessible through this page is available with the delay of couple of hours after the observation.

The of FACO data accessive chrough this page is available with the densy of couple of non-states the of

To access the SPI-ACS data and ephemeries for any time interval, consider using use this

Two the rightmost columns can be used for the indication for the detection in SPIACS and contain the background null-hypothesis probability and number of independently detected components, correspondingly.

For questions please contact <u>Woledymyr Savchenko</u>

IJD	revolution	UTC	duration	messages		links		detection		spike	duration	maxsig
4492.63652991	1162.23	2012-04-19T15:15:30		3	acsisdc	IPN(plot)	Ephs	undef	0	undef		
4492.56883315	1162.21	2012-04-19T13:38:01		з	acsisdc	IPN(plot)	Ephs	undef	0	undef		
4492.03094426	1162.2	2012-04-19T12:56:25	20.09	2	GCNs 1 acsisdc	IPN(plot)	Ephs	undef	0	undef		
4492.52592806	1162.2	2012-04-19T12:36:14		2	acsisdc	IPN(plot)	Ephs	undef	0	undef		
4492.50298509	1162.19	2012-04-19T12:03:10		2	acsisdc	IPN(plot)	Ephs	5.51288-47	0	1.01520-00		
4490.97154148	1161.60	2012-04-17T23:17:55		4	acsisdc	IPN(plot)	Ephs	3.5016e-218	0	0.59038		
4488.95862632	1161	2012-04-15T22:59:19.13		3	fermi-online	IPN(plot)	Ephs	undef	0	undef		
4488.89221278	1160.98	2012-04-15T21:23:41		Б	acsisdc fermi-online	IPN(plot)	Ephs	undef	0	8.2453e-05		
4488.07712019	1160.71	2012-04-15T01:49:57		4	acsisdc fermi-online	IPN(plot)	Ephs	8.8213e-07	0	0.28213	2.625	7.619
4488.08876359	1160.04	2012-04-13T02:06:42.99		1	fermi-online	IPN(plot)	Ephs	undef	0	undef		
4485.92067991	1139.99	2012-04-12T22:04:40.56		3	fermi-online	IPN(plot)	Ephs	undef	0	undef		
4484.92605527	1159.65	2012-04-11T22:12:25		6	acsisdc fermi-online	IPN(plot)	Ephs	1.00006e-50	0	1.05646-31	14.38	14.94
4484.03399461	1139.36	2012-04-11T01:16:38.95		3	swift-online	IPN(plot)	Ephs	0.56771	0	0.76176		
4482.96503905	1159.33	2012-04-10T23:08:33.19		2	swift-online	IPN(plot)	Ephs	0.015512	0	0.047187		
4483.75067238	1159.26	2012-04-10T17:59:51.91		3	swift-online	IPN(plot)	Ephs	0.47442	0	0.82333		
4483.61917007	1109.22	2012-04-10T14:50:30.11		2	fermi-online	IPN(plot)	Ephs	0.10585	0	0.91939		
4482.58548824	1159.21	2012-04-10T14:02:00		5	acsisdc fermi-online	IPN(plot)	Ephs	5.3387e-24	0	0.18955	0.175	20.62

SPI-ACS direct access to the data

Light curves both NRT and Archived, available with a delay of few hours. Now in the IPN format Ephemeries INTEGRAL ephemeries

phemenes INTEGRAL ephemeries

Attitude and Ecliptic to satellite coordinates convertion

Triggers Links to the ACS lightcurves for a list of external triggers

Try using the script to access the lightcurves

For the realtime triggers and overall list of the triggers give a look to ACS triggers page at ISDC

For a nice online graphical interface to SPI-ACS light curves (and much more) check out the HEA/ENS (though, do not search there for the most recent ones) If in doubt contact me

p d

3000.2600

INTEGRAL SPLACS (80keV-8MeV)

Zoom: click and drag to select Unzoom: Click or double click

3000.2595

3000.2590

3000.2605

Near realtime data interface, for prompt reaction on the astrophysical events

Data for the HEAVENS, to be explored in the frame of the rich data base

LVT151012: Field of View

In ~300 seconds

Perspectives for pointed follow-up

Off-axis afterglow at the distance of LVT151012, prediction based on actual hard X-ray afterglow (Martin-Carillo 2014) and a simple deccelerating jet model (Granot et al 2002)

Perspectives for pointed follow-up

Fast ToO observations are very benefitial to achieve the detection

Fast ToO observations of known bright GRBs would be very useful to further the possibility of very long HXR afterglows

Perspectives for pointed follow-up: GRB120711A

Luminous GeV-loud GRB happened in ISGRI FoV (1 in 10 years chance)

Hard X-ray emission has been observed above 20 keV for 20000 seconds Hard X-ray afterglow is also seen in GRB130427A, GRB080319B, and few more

Conclusions and outlook

- INTEGRAL strengths in observations of GRB-like transients:
 - high duty cycle, uninterrupted 2-day long observations in stable background
 - competitive all-sky sensitivity, down to 10⁻⁷ erg cm⁻² s⁻¹ (75 2000 keV) with complementary role of every instrument
- A secure binary NS detection in O2 still not guaranteed or even expected, but it is the right time to be ready
- We also perform **neutrino follow-up**, including the privately distributed multiplets, same procedure was applied to **FRB**, constraining the Swift/BAT detection
- In-depth in-flight calibration that was required for INTEGRAL all-sky response opens new inter-mission possibilities, not previously accessible
- Studying shadows on IBIS detector shadows and Compton imaging are capable of providing more accurate imaging
- Very fast ToO observations would be incredibly useful

Conclusions and outlook

• Further

Swift counterpart to FRB131104

"Given its duration (T90 > 100 s), its spectrum, and the absence of a BAT trigger, non-detections of the source by the Fermi GBM, INTEGRAL SPI-ACS, Konus-Wind, and other Interplanetary Network detectors are not further constraining of the counterpart's gamma-ray properties." - **not true!**

Neutrinos follow-up

INTEGRAL also recently made an agreement with IceCube to follow-up high-energy neutrino events.

Pointed follow-up of an IceCube event, for the same event an optical transient was reported by MASTER