Transients from all sky
observed by INTEGRAL

Volodymyr Savchenko

IUG meeting 2017
ESTEC, Nordwijk



o]

cm

) ) Field of View
Substantial fraction of the i B yes

INTEGRAL mass is detectors 3° v | 7~ zenithangle

>~100 keV - gamma rays are

stopped by substantial mass: they 60"
typically reach active medium: IBIS/ISGRI/
principal detectors or active shields 75° !/ -
IBIS/PICSIT [ "N . \spr-acs
Effective area : :

_00°

——— INTEGRAL/SPI-ACS (75% of the sky)

10000 + Taranis XGRE 4
------ Swift/BAT
Fermi/GBM Nal
= = = Fermi/GBM BGO
1000

e, R

10000




Field of View

Substantial fraction of the i 0 58
INTEGRAL mass is detectors ; -

>~100 keV - gamma rays are

stopped by substantial mass: they 60"

typically reach active medium: IBIS/ISGRI/

principal detectors or active shields 75° fj
IBIS/PICSIT | { X

No Earth shadow!
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Challenges of the all-sky observations

Characterizing the background Field of View
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Background

Owing to very elongated orbit,
INTEGRAL features typically stable
background on scale of 2 days.

Enhanced high particle flux is a mild
disadvantage.
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Background: solar activity in SPI-ACS
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Solar flares introduce various effects
in the SPI-ACS data, contributing to
the background for GRB searches.

Usually stability of the background
around the GRB can be used to
exclude affected regions.

This in the limitation for long burst
detection.



Background: particles in SPI-ACS
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Rau et al 2005

The first catalogue of INTEGRAL all-sky GRB transients in 22 months of SPI-ACS data.

Large number (30/day) of very short events - “the short spikes” was attributed to the
high-energy cosmic ray interaction effects but could not be separated with INTEGRAL alone



Background: particles in SPI-ACS

The expected shape is universal: all the spikes are renormalized template.
This can be used to exclude them.

~100 000 short spikes rejected
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Even rather weak real bursts may not Even very bright events may fit the template.
be rejected. The distribution of the peak count rates is very regular.



Second SPI-ACS trigger catalogue
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The SPI-ACS offline pipeline is regularly used to identify possible transients
independently and in coincidence with various events VS12



SPI-ACS response

Understanding the performance of the
detection pipeline is critical to reliably report
detections

But in order to compare SPI-ACS detections

with other instruments the mass models X
(SPIMM and TIMM) were verified using bright

and hard bursts and then used in a number of
publications.

The mass model
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GW150914: upper limit
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And Fermi/GBM

GBM detectors at 150914 09:50:45.797 +1.024

. Connaughton et al 2016
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Rescaling real GRB with a moderately hard spectrum
assuming best fit fluence of GBM-GW150914,
resulting in 15 sigma detection: good margin!

Some spectra, soft and weak, could be marginally
compatible with SPI-ACS and GBM data, but the
probability is likely very low

But, given that the the excess in Fermi/GBM is
limited to high energy, soft spectrum implies no
detection.

Greiner et al 2016

Fully taking into account statistical and systematic
uncertainties in the GBM parameter estimation is

required. The collaboration is ongoing, useful for
future observations!



And Fermi/GBM (2.9 sigma) I
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Fermi/GBM sGRB with fluence similar to GBM-GW

Typical GRBs of the same fluence are compatible between Fermi/GBM and
INTEGRAL/SPI-ACS: understanding of the intercalibration is encouraging!
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SPI-ACS -

INTEGRAL SPI-ACS response
based on mass model was
calibrated on bright and hard
well-characterized GRBs.

The response was then further
verified with Fermi/GBM GRBs
of a large range of spectral
properties.

The response can be securely
applied to weak bursts of
comparable specitra.
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Cross-calibration
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Status of Fermi/GBM vs INTEGRAL discussion

The original event had a significance of association with GW of 2.9 sigma - because of high
rate of GBM background fluctuations

The SNR of the event reported by Connaughton et al 2016 is ~5, with a fluence of ~2 x 107 erg
cm™in 10 - 1000 keV (not clearly reported) - not too weak, but in an unusual orientation for
Fermi/GBM - from the bottom.

Bursts of this fluence level are securely (up to 28 sigma) detected by INTEGRAL/SPI-ACS,
given the right location and spectrum, compatible with the response model.

GBM-measured properties of the reported excess are not fully known - hard to exclude.

Intercalibration with INTEGRAL, Fermi/GBM and Konus-Wind is progressing, the stability and
consistency has been proven for bright-to-medium events.

Principal activity now is learning how to compare very weak bursts.



LVT151012: SNR of 9.6, FAP of 2%

Rare lucky case: peak of the localization is in the FoV
1 second, a=-0.5, E__ =600 keV
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Depending on the true source location, spectrum, and duration, the best limit
may come from SPI-ACS, IBIS/Veto, ISGRI, PICsIT, SPI, or JEM-X.... Lucky?..



In 8 seconds
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LVT151012: complicated case: all-sky

In 8 seconds

Total INTEGRAL sensitivity

Total sensitivity is within 30% from the best in 95% of the sky, SPI-ACS only - in 75%



All-sky localization

synthetic NS merger event at 200 Mpc, what could be expected of LVT170225, LVT170227

LIGO localization INTEGRAL + LIGO localization

INTEGRAL localization



Background: solar activity: multidetector
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rarely isolated flares could not be

independently distinguished by SPI-ACS
alone from the cosmic bursts due to lack
of spectral and location characterization.

Using all INTEGRAL detectors, the
events can be more efficiently classified,
improving the detection performance.

SPI and JEM-X, sensitive to X-ray and
gamma-ray transients only from the
FoV, allow to pinpoint background
variations caused by particles.



All-sky localization

INTEGRAL localization

LIGO localization
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synthetic NS merger event at 200 Mpc,
what could be expected of LVT170225,
LVT170227

Location dependency of the INTEGRAL detector
response is complex: but since it is understood, it can
be used to derive localization patterns with precise
features.

In principle similar technique is employed by the
Fermi/GBM. However GBM itself is much smaller and
attenuated strongly by the large body of LAT.

Konus-Wind is optimized for all-sky coverage: it
measures the spectra independently on location, but
also is unable to provide any localization.

For INTEGRAL, measurement of the spectrum is
correlated with the location, hence it can benefit from
independent measurement of the spectrum.
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Multi-mission localization: ongoing

Inter-Planetary Network localizes GRBs similarly to LIGO: by measuring the difference in
the arrival time - relying on accurate timing. Often it is the only source of transient location.

GRB 170105A
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Unlike LIGO, currently the IPN does not take into
account the intensity response information, which
would allow to improve localization substantially.

This is comes as natural benefit of the intercalibration
activities.

Right now a number INTEGRAL, Konus-Wind,
Fermi/GBM, AstroSAT, POLAR. CALET,



INTEGRAL SPI-ACS public data service

In 2011, a public service was set up to
promptly provide SPI-ACS data with the best
timing accuracy

It was extensively used for years by IPN and
Konus colleagues

Since 2015, Fermi/GBM team used the
service to verify their detections and
challenge SPI-ACS

Several other groups started to use it. In total
>100 Gb has been served.

IPN format SPI-ACS light curve | Submit |
IPN format INTEGRAL ephemeris | Submit |
Plot SPI-ACS light curve | Submit |
INTEGRAL Attitude | Submit |
INTEGRAL HK light curves | Submit |

Try using the script to access the lightcurves

RESTful service, providing various public
INTEGRAL data as well as auxiliary information



More data availability
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Up to 20% of the localization is in the FoV,
In ~300 seconds 3 orders of magnitude in energy covered.



Perspectives for pointed follow-up
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(Martin-Carillo 2014) and a simple deccelerating jet model (Granot et al 2002)




Perspectives for pointed follow-up
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Fast ToO observations are very benefitial to achieve the detection

Fast ToO observations of known bright GRBs would be very useful to further the possibility of very long
HXR afterglows



Perspectives for pointed follow-up: GRB120711A

Luminous GeV-loud GRB happened in ISGRI FoV (1 in 10 years chance)
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Martin-Carillo 2014

Hard X-ray emission has been observed above 20 keV for 20000 seconds
Hard X-ray afterglow is also seen in GRB130427A, GRB080319B, and few more



Conclusions and outlook

e INTEGRAL strengths in observations of GRB-like transients:
e high duty cycle, uninterrupted 2-day long observations in stable background
e competitive all-sky sensitivity, down to 107 erg cm? s (75 - 2000 keV) with
complementary role of every instrument

e A secure binary NS detection in O2 still not guaranteed or even expected, but it is the
right time to be ready

e \We also perform neutrino follow-up, including the privately distributed multiplets,
same procedure was applied to FRB, constraining the Swift/BAT detection

e In-depth in-flight calibration that was required for INTEGRAL all-sky response opens
new inter-mission possibilities, not previously accessible

e Studying shadows on IBIS detector shadows and Compton imaging are capable of
providing more accurate imaging

e Very fast ToO observations would be incredibly useful



Conclusions and outlook

e Further






Swift counterpart to FRB131104

Swift/BAT image
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“Given its duration (T90 > 100 s), its spectrum, and the absence of a BAT trigger, non-detections of the
source by the Fermi GBM, INTEGRAL SPI-ACS, Konus-Wind, and other Interplanetary Network detectors
are not further constraining of the counterpart’s gamma-ray properties.” - not true!
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Neutrinos follow-up

INTEGRAL also recently made an
agreement with lceCube to follow-up
high-energy neutrino events.

20-40 keV

Pointed follow-up of an IceCube event,
for the same event an optical transient
was reported by MASTER



