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Abstract

On-ground attitude processing algorithms for the Planck mission are treated comprehensively. From attitude
telemetry, ESA Flight Dynamics provides daily attitude history files to the Planck data processing centres to re-
construct the inertial pointing of all bolometers as they sweep the sky. The baseline ground-processing algorithm
solely uses star tracker attitude telemetry. Post-launch experience and refined requirements lead to four improved
attitude estimation algorithms:
1. Use Planck’s fibre optic gyro package as spacecraft dynamic model replacement.
2. Use a dynamic model to filter star tracker attitude during routine slews and to estimate thruster pulse torques.
3. Use rigid body dynamic model to filter star tracker attitude during scientific pointings.
4. Use rigid body dynamic model with slowly varying inertia tensor. Estimate the spacecraft inertia tensor with 

a sufficient level of nutation.
Capabilities and estimation accuracy all algorithms are validated with a high-precision simulator and in-flight at-
titude telemetry. Better estimation algorithms result in more accurate CMB maps.
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Notation and Conventions

Following [1], we adopt the following notation and conventions for vectors and quaternions. A 3-vector, , is de-
fined as:-

A quaternion, , and it’s complex conjugate (inverse) are defined as:-

where the quaternion satisfies the norm constraint:-

A 3-vector, , expressed as a quaternion is defined as:-

Quaternion multiplication can be expressed as matrix-vector multiplication as follows:-

where

The vector product of two 3-vectors is given by:-
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The  and  that arise from the quaternion multiplication operation are given by:-
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1 Introduction
On 14 May 2009 the European Space Agency launched two space observatories: Herschel (with a 3.5 m mir-

ror it is the largest space telescope ever) and the cosmic microwave survey mission Planck [2]. [3] describes the
history and main performance elements of the Planck satellite during its first year of life.

The Planck Mission Operations Centre resides at ESA’s European Space Operations Centre ESOC at Darm-
stadt, Germany; it includes the Planck Flight Dynamics System [4]. From Planck attitude telemetry, Flight Dy-
namics provides daily raw and reconstructed attitude history files (AHF) to the Planck Science Office based at the
European Astronomy Centre at Villafranca, Spain, and to and the Planck HFI and LFI data processing centres,
containing the inertial attitudes of the spacecraft attitude control axes frame with a frequency of 4 Hz or 8 Hz. The
data processing centres use these AHFs to reconstruct the inertial direction of each of the 36 HFI radio receiver
feed horns and of the 11 LFI bolometer feed horns at each time instance, from which the all-sky scan maps are
build. The LFI and HFI instrument data processing is described in [5], [6]. The quality of the reconstructed AHFs
therefore directly influences the quality of the reconstructed scan maps.

The baseline ground-processing algorithm (Algorithm#0) essentially consists of a star tracker dynamic model
based filter using frequency domain methods. It was developed and validated by Sener 2003-2006 [7], [8]. The
behaviour of the Planck attitude and orbit control system in commissioning phase is described [9]. Post-launch
experience and refined requirements lead to several improved attitude filtering resp. estimation algorithms.

This article documents the work to provide and assess new star tracker attitude quaternion measurement filter-
ing algorithms. All filters use a batch least squares approach, since this is a postprocessing task for regular daily
intervals. In contrast, for the Wilkinson Microwave Anisotropy Probe WMAP and many other projects, pointing
and beam determination is done with Kalman filters [10].

Also provided are the results of a complete end-to-end validation of the current filtering algorithm, used with-
in the AHF generation software, with the aid of the Planck High Precision Test Data Generator (HPTDG). The
new filters that do not use the fibre optic gyro measurements have also been assessed using the HPTDG.

Chapter 2 gives a high level description of the current baseline algorithms and processing used to support the
Planck mission. Also referenced are related star tracker attitude data processing algorithms, that are used to esti-
mate the spacecraft inertia tensor. Also presented is a formulation of the prediction and measurement models for
the new filtering algorithms, which are listed as follows:-
• Algorithm#1 was the initial motivation for the work and consists of using data from the fibre optic gyro pack-

age as a spacecraft dynamic model replacement. This estimator can be used to filter star tracker attitude
quaternion data when the spacecraft is performing nominal reorientation slews in HCM and stable pointings
in SCM.

• Algorithm#2 makes use of a dynamic model, that can be used to filter star tracker attitude quaternion data
when the spacecraft is performing nominal reorientation slews in HCM. Also estimated are the thruster
torques from the 3 pulses that are commanded in order to carry out the slew manoeuvre.

• Algorithm#3 makes use of a dynamic model of the spacecraft, which is assumed to be a rigid body. This dy-
namic model has also been extended to account for effects observed on the X-axis rotational motion, which
are known to be due to internal disturbances caused by the Sorption cooler. This estimator can be used to fil-
ter star tracker attitude quaternion data during pointings in SCM.

• Algorithm#4 uses a dynamic model of the spacecraft, which is assumed to be a rigid body with a slowly vary-
ing inertia tensor. This estimator can be used to estimate the spacecraft inertia tensor during actuation free
periods in OCM where a sufficient level of nutation is present.
Chapter 3 provides a high level description of the Planck HPTDG test environment, which was used to gener-

ate simulated real world kinematics and dynamics, together with realistic ACMS telemetry [11]. These data were
used to perform a complete end-to-end test of the current AHF generation estimation algorithm and the new SCM
mode STR-dynamic model based estimation algorithm. The commands used to run the simulation were generated
from a complete set of ACMS command parameter files for OD 0390. In addition, the sensitivity of the current
estimator and the new SCM mode STR-dynamic model based estimator, to various types of time varying STR
alignment errors is also presented. A validation of the HCM nominal reorientation slew mode STR-Dynamic
model based estimator has also been performed. Finally, the dynamic model based estimation algorithm, used to
estimate the complete inertia tensor was also tested, the results of which are compared with actual values simulat-
ed within the HPTDG dynamic model and the estimation results achieved using the current spacecraft inertia ten-
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sor estimation algorithm.
Chapter 4 presents the results obtained using in-flight sensor data, together with a comparison between the

current filter and the two new filters. This has been done for single pointings in science mode before and after the
updates to the thermal controller were made, in order to show the positive effect that this has brought to attitude
reconstruction. After the thermal controller updates, agreement between the current filter and the new filters is
very good, including the STR-dynamic model based filter, which also accounts for X-axis disturbances resulting
from internal torques created by the Sorption cooler. In terms of auxiliary results such as disturbance torque and
nutation angle estimation, the results are comparable between all filters. Also shown are the results of frequency
analyses, of star tracker and fibre optic gyro measurement data, which will be used to identify actual effects that
affect the spacecraft dynamics and other effects that are the result of thermoelastic distortions that disturb the
mounting of the star tracker and fibre optic gyro package. These frequency analyses were performed using data
taken from a long pointing (> 2 days) during ODs 0077 to 0079 in the CPV phase, which was prior to updates of
the thermal controller. Also provided for comparison, is an analysis of data taken from a long pointing (~8 hours)
after the thermal controller updates. Also presented are the results of current algorithm and new dynamic model
based algorithm, used to estimate the spacecraft inertia tensor, which also show good agreement. Finally, some
results are presented to show how the filters perform when used to filter star tracker attitude quaternion data taken
during a period where a nominal reorientation slew in HCM has been commanded.

Chapter 5 presents the conclusions of this work, which summarises clearly the advantages and disadvantages
and capabilities of each estimator.
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2 Attitude Data Processing Algorithms
This chapter gives an overview of current algorithms used to filter star tracker attitude quaternion data, which

form part of the current attitude history file (AHF) generation software. A complete description of the AHF con-
tents and their interpretation can be found in [12]. In addition, algorithms to perform periodic calibrations of the
spacecraft inertia tensor are also described.

Also presented is a formulation of new estimation algorithms, that are used to filter star tracker attitude
quaternion measurements and estimate the spacecraft inertia tensor. The first of these new algorithms uses the fi-
bre optic gyro (FOG) angular rate measurements as a dynamic model replacement and the second uses a space-
craft dynamic model, assumed to be a rigid body including a model of the sorption cooler internal disturbance
torques.

2.1 Star Tracker Attitude Quaternion Filter
This section contains a brief outline of the current estimation algorithm used within the operational AHF gen-

eration software. This is well documented in Chapter 5 of [8] and so only a high level description of the steps in-
volved, including some new additional features and details where applicable, will be given here in order to show
the various assumptions that have been made in deriving this algorithm.
1. Compute sequence of raw angular velocities in body axes and corresponding time stamps from the measured 

STR quaternions and associated on-board time labels. The alignment quaternion is used to refer the star track-
er reference frame to the spacecraft body reference frame.

2. Convert the inertial to body transformation represented as a quaternion into a DCM.
3. The raw angular momentum vector in the spacecraft body reference system together with their on-board time 

labels are first computed using the spacecraft body angular rates and an assumed value of the spacecraft iner-
tia tensor. This raw body angular momentum vector is then transformed into the inertial reference system us-
ing the inertial to body transformations (DCMs) computed in step 2.

4. Assuming that the external torques expressed in the inertial reference system are constant, perform a linear 
least squares fit to the inertial angular momentum vectors computed previously in step 3, to compute the iner-
tial angular momentum vector at the time sequence origin together with the slope, which gives a measure of 
the external torques expressed in the inertial reference system.

5. Using the previously obtained linear law for the inertial angular momentum vector, evaluate the linear fit at 
the quaternion measurement on-board time labels and compute a (3-2-1) Euler angle sequence, that can be 
used to construct a DCM that transforms from, the inertial reference system to a rotating angular momentum 
reference system, also taking into account that the spacecraft spin rate increases as a result of the application 
of external environmental disturbance torques. The speed of rotation of this rotating system is at the inertial 
nutation rate.

6. Solve for by least squares, the parameters of a model for the spacecraft body transverse axes angular rates. 
These parameters account for the offset and drift of the principal X-axis with respect to the spacecraft body 
X-axis. In addition, it also takes into account any residual nutation based on an assumed pre-estimated value 
of the nutation to spin rate ratio.

7. Using only the model parameters that account for the offset and drift of the principal X-axis with respect to 
the spacecraft body X-axis, evaluate the model of the spacecraft transverse body axes angular rates, at the 
quaternion measurement on-board time labels. In addition, perform a linear least squares fit to the body x-axis 
angular rate. Then using this, compute a (3-2-1) sequence of Euler angles, that can be used to construct a 
DCM that transforms from the spacecraft body reference system to a rotating pseudo-principal axis reference 
system. The speed of rotation of this pseudo-principal axis reference system is at the body nutation rate.

8. Combine the DCMs computed in steps 2, 5 and 7 above to compute the transformation from the rotating an-
gular momentum reference system to the pseudo-principal axis reference system and convert this DCM to a 
quaternion. The components of this quaternion are processed to ensure that they are continuous without any 
wrap around.

9. Compute a 5th order1 polynomial required to detrend the components of the previously computed quaternion.
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10. Compute the DFT of the components of the previously detrended quaternion and cut the high frequency com-

ponents greater than a user selectable cut-off frequency2 and then perform the Inverse DFT of the resulting 
truncated frequency spectrum. 

11. Reconstruct the filtered rotating angular momentum reference system to pseudo-principal axis reference sys-
tem quaternion transformation by adding back in the detrending polynomial computed in step 9.

12. Convert the quaternion in step 11 to a DCM and combine this with the DCMs computed in steps 5 and 7 
above, to compute the filtered inertial to body transformation matrix (DCM). Convert the resulting DCM 
back to a quaternion.

2.2 Spacecraft Inertia Tensor Calibration
The current spacecraft inertia tensor estimation algorithm is described in Section 3.3.9 (FCP-P-D-MAINT

procedure) of [13]. An alternative derivation is presented in Appendix A.

2.3 STR/FOG Inter-calibration
When FOG angular rate measurements are used as a spacecraft dynamic model replacement, it is necessary to

have the best possible a priori estimate of the transfer function parameters, that relate the FOG angular rate meas-
urements to the angular rates derived from the STR quaternion measurements at 8 Hz in SCM and 4 Hz in OCM.
The calibration algorithm formulation is documented in Chapter 2 of [14]. The analysis and performance assess-
ment of the algorithm is presented in Chapter 3 of [14].

2.4 Fibre Optic Gyro Based Estimation Algorithm
The following section presents the state prediction and measurement models, that are used within a batch least

squares algorithm. This algorithm is used to estimate the state vector at a specified epoch by processing all the star
tracker measurements, rejecting outliers based on thresholds computed using the statistics of the observation re-
siduals. The general implementation of the batch least squares algorithm implementation is described in Appen-
dix C.

This algorithm will be used to filter STR attitude quaternion data during nominal reorientation slews in HCM
as well as data during stable pointing phases in SCM.

2.4.1 State Prediction Model
The state prediction model uses a model of the spacecraft kinematics together with a measurement of the

spacecraft body angular rates provided by processing the measured FOG angular rate data. Referring to Section
2.2 of [14] the spacecraft body angular rates can be computed using the following equation:-

(1)

where the following parameters were estimated by processing data taken during the large Delta-V manoeuvre per-
formed in OD 0035.

 is the gyro scale factor error matrix of dimension 

 is the body-to-gyro sensitive axis transformation matrix of dimension 

 is the pseudo-inverse of  of dimension 

 is the gyro rate biases 4-vector

and

1. During LEOP and Commissioning it was found that the linear detrending suggested in [8] was insufficient to cover the trends 
that were observed during long pointings

2. Set to 0.03 Hz as recommended by industry

ωB TGB 
+ I4 ΔK+( ) 1– ωG bG–( ) b– η– ωB' b– η–= =

ΔK 4 4×

TGB 4 3×

TGB 
+ TGB 3 4×

bG
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 is the true angular rate vector expressed in spacecraft body axes

 is the measured angular rate 4-vector along gyro sensitive axes

 is the FOG derived angular rate vector expressed in spacecraft body axes

 is the residual gyro rate bias vector expressed in spacecraft body reference system

 is the angular rate measurement noise vector expressed in the spacecraft body reference system. As-
sumed zero mean and Gaussian.

In order to account for FOG residual rate biases, the constant 3-vector  is included within the state vector to
be estimated. Also, effects due to uncertainties in the components of the FOG transfer function, (residual scale
factor and misalignment errors), are accounted for by including the constant 3-vector  within the state vector to
be estimated. The justification for this is that one needs to account for spin rate variations scaled by uncertainties
in FOG transfer function parameters. The variation in the spin rate during an actuation free pointing in science
mode, results from external environmental disturbance torques and venting torques acting on the spacecraft. This
variation in the spin rate is approximately linear.

The spacecraft kinematics in terms of quaternions is therefore given as:-

(2)

where  and  are defined earlier in the section on Notation and Conventions.
Taking the expectation of (2), the complete state prediction model can be approximated as follows:-

(3)

For the rest of the formulation we follow the approach detailed in [15]. The covariance matrix for the state
vector in (3) is singular, due to the quaternion norm constraint. For this reason, in order to linearise the system
given by (2), we use the body-fixed covariance representation.

Defining the error quaternion as:-

(4)

and the rate bias error as:-

(5)

It can be shown that:-
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ḃ

q
˜
˙

1
2--Ω ωB' b– η–( )q

˜

1
2--Θ q

˜
( ) ωB' b– η–( ) 1

2--ω
˜

q
˜

⊗= = =

Ω v( ) Θ q
˜

( )

d
dt-----

q̂
˜
b̂

b̂˙

1
2--Ω ω̂( )q̂

˜

b̂˙

0

1
2--Ω ωB' b̂–( )q̂

˜

b̂˙

0

1
2--Ω ωB'( )q̂

˜

1
2--Θ q̂

˜
( )b̂–

b̂˙

0

= = =

δq
˜

q
˜

q̂
˜

1–⊗=

δb b b̂–=

δq̇ ω̂[ ][ ]δq 1
2--δb–=

δq̇4 0=
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(7)

where the sub-matrices in the linearised system in (7) are given as follows:-

(8)

2.4.2 Measurement Model
The measurement model is linear since the star tracker provides directly a measurement of the attitude quater-

nion. Combining this with the alignment of the star tracker with respect to the body reference system yields the
measured inertial to body transformation.

The measured quaternion is then given by:-

(9)

where  is measurement noise represented as a quaternion which can be approximated as:-

(10)

where the measurement errors  are assumed to be zero mean and Gaussian.
The linearised measurement equation in terms of the vector part of the error quaternion defined in (4) is then

given by:-

(11)

where

(12)

2.5 Dynamic Model Based Estimation Algorithm (HCM)
The following section presents the state prediction and measurement models, that are used within a batch least

squares algorithm. This algorithm is used to estimate the state vector at a specified epoch by processing all the star
tracker measurements, rejecting outliers based on thresholds computed using the statistics of the observation re-
siduals. The general implementation of the batch least squares algorithm implementation is described in Appen-
dix C.

This algorithm will be used to filter STR attitude quaternion data during nominal reorientation slews in HCM.
A complete description of the on-board HCM controller is given in Section 5.6 and Annex D of [16].

2.5.1 State Prediction Model
In this case, the general state prediction model uses a model of the spacecraft kinematics and dynamics. The

time evolution of all the state variables is given by:-

d
dt-----

δq
δb

δḃ
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δq
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q
˜
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ν q
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˜
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δqSTR H
δq
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δḃ

δν+ δq δν+= =

H Hq Hb Hḃ I3 03 6×= =
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(13)

where:-

 is the true attitude quaternion

 is the true angular rate vector expressed in spacecraft body axes

 is the true external torque vector expressed in spacecraft body reference system during the ith inter-
val of the nominal HCM reorientation slew timeline (see Figure 1).

 is the spacecraft inertia tensor

and  and  are defined in section Notation and Conventions

Referring to the timeline shown in Figure 1, the nominal values for the applied torques during the various time
intervals are given as follows:-

(14)

It is noted that no assumptions about thrust level repeatability within the estimator formulation have been
made. An independent torque vector, expressed in the spacecraft body reference system, is estimated for each part
of the timeline as identified in (15). The justification for this is due to uncertainties in the applied thruster force,
resulting from time delays (leading and trailing edge of commanded thruster pulse), time response to reach
steady-state thrust and a random impulse bit component.

Taking the expectation of (13), the complete state prediction model can be approximated as follows:-

FIGURE 1: Nominal re-orientation slew in HCM timeline
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(15)

where the matrices  are set according to the HCM nominal reorientation slew timeline (see Figure 1), according
to the following logic:-

(16)

As before, the rest of the formulation follows the approach detailed in [15].
Defining the error quaternion as in (4), then it can be shown that:-

(17)

or in matrix form, the linearised state prediction model can be written:-
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and as already mentioned before, the matrices  are defined according to the HCM nominal slew timeline (see
Figure 1), together with the logic given by (16).

2.5.2 Measurement Model
The measurement model is given by (9) in Section 2.4.2.
The linearised measurement equation in terms of the vector part of the error quaternion, defined in (4), is then

given by:-

(20)

where 

(21)

2.6 Dynamic Model Based Estimation Algorithm (SCM)
The following section presents the state prediction and measurement models, that are used within a batch least

squares algorithm. This algorithm is used to estimate the state vector at a specified epoch by processing all the star
tracker measurements, rejecting outliers based on thresholds computed using the statistics of the observation re-
siduals. The general implementation of the batch least squares algorithm implementation is described in Appen-
dix C.

This algorithm will be used to filter STR attitude quaternion data during stable pointing phases in SCM, also
taking into account periodic internal disturbance torques created by the sorption cooler sub-system. The normal
state operational mode of the sorption cooler sub-system is described in Section 6.2.4.3 of [17].

2.6.1 State Prediction Model
In this case, the general state prediction model uses a model of the spacecraft kinematics and dynamics. The

time evolution of all the state variables is given by:-

(22)

where:-

 is the true attitude quaternion

 is the true angular rate vector expressed in spacecraft principal axes

 is the true external torque vector expressed in spacecraft principal axes
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Planck On-Ground Attitude Estimation Algorithms 13

mass properties.

 is the principal axis inertia tensor, which is obtained from the predicted mass properties.

 is the ith periodic component of the sorption cooler disturbance torque with frequency , i=1…5.

and  and  are defined earlier in the section on Notation and Conventions.
During pointings in SCM, the following states, , are estimated. It is assumed that

the disturbance torques, expressed in the inertial reference system, are constant during pointings in SCM. The es-
timation of the parameter, , is only possible when there is a sufficient level of residual nutation on the space-
craft, which is not the case for SCM pointings. The best possible knowledge of this parameter can only be
obtained from the predicted mass properties.

A frequency analysis of STR attitude quaternion data and FOG integrated angular rate during a long SCM
pointing of OD 0561, revealed that the internal disturbance torques are periodic with frequency components that
are fixed multiples of the compressor cycle frequency. This compressor cycle frequency is the inverse of the com-
manded look up table (LUT) cycle time, which is used to provide an initial estimate for the frequency . From
this analysis, five frequencies have been retained, namely:-

(23)

Taking the expectation of (22), the complete state prediction model can be approximated as follows:-

(24)

As before the rest of the formulation follows the approach detailed in [15].
Defining the error quaternion as in (4), then it can be shown that:-

JP
xi ωi

Ω v( ) Θ q
˜

( )
q
˜

ωP τP ψ ψ̇ xi ẋi ωscs, , , , , , ,

ψ3

ωscs

ω1 ω2 ω3 ω4 ω5
1
6--

1
3--

1
2-- 1 2 ωscs=

d
dt-----

q̂
˜

ω̂P

τ̂P
ψ̂

ψ̇̂
x̂1

x̂̇1

x̂2

x̂̇2

x̂3

x̂̇3

x̂4

x̂̇4

x̂5

x̂̇5

ω̂scs

f q q̂
˜

ω̂, P ψ̂ ψ̂3, ,( )

f ω ω̂P τ̂P x̂ ω̂scs, , ,( )

f τ ω̂P τ̂P,( )

ψ̇̂
0

x̂̇1

ω̂– 1
2x̂1

x̂̇2

ω̂– 2
2x̂2

x̂̇3

ω̂– 3
2x̂3

x̂̇4

ω̂– 4
2x̂4

x̂̇5

ω̂– 5
2x̂5

0

=
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(25)

or in matrix form, the linearised state prediction model can be written:-

(26)

The sub-matrices in the linearised system in (26) are given as follows:-

δq̇ T̂BPω̂P[ ][ ]δq 1
2--T̂BPδωP

1
2--

∂T̂BP
∂ψ̂i
-------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

ω̂P δψi
i 1=

2

∑+ +=

δq̇4 0=

δω̇P JP
1– ω̂P[ ][ ]JP JPω̂P[ ][ ]–( )δωP JP

1– δτP JP
1–

δ– xi
t x̂̇i
ω̂i
------

∂ω̂i
∂ω̂scs
-------------⎝ ⎠

⎛ ⎞ δωscs–
⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

5

∑
0
0

+ +=

δτ̇P τ̂P[ ][ ]– δωP ω̂P[ ][ ]δτP+=

δψ̇̇ 0=

δ ẋ̇i ω̂i
2δxi 2ω̂ix̂i

∂ω̂i
∂ω̂scs
-------------⎝ ⎠

⎛ ⎞ δωscs––=

δω̇scs 0=

d
dt-----

δq
δωP

δτP
δψ

δψ̇

δx1

δ ẋ1

δx2

δ ẋ2

δx3

δ ẋ3

δx4

δ ẋ4

δx5
δ ẋ5

δωscs

FA FB 03 3× FC 03 2× 03 1× 03 1× 03 1× 03 1× 03 1× 03 1× 03 1× 03 1× 03 1× 03 1× 03 1×

03 3× FD FE 03 2× 03 2× FF 03 1× FF 03 1× FF 03 1× FF 03 1× FF 03 1× FI

03 3× FJ FK 03 2× 03 2× 03 1× 03 1× 03 1× 03 1× 03 1× 03 1× 03 1× 03 1× 03 1× 03 1× 03 1×

02 3× 02 3× 02 3× 02 2× I2 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1×

02 3× 02 3× 02 3× 02 2× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1×

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 FL 0 0 0 0 0 0 0 0 0 FM

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 FN 0 0 0 0 0 0 0 FO

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 FP 0 0 0 0 0 FQ

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 FR 0 0 0 FS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 FT 0 FU

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

δq
δωP

δτP
δψ

δψ̇

δx1

δ ẋ1

δx2

δ ẋ2

δx3

δ ẋ3

δx4

δ ẋ4

δx5

δ ẋ5

δωscs

=
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(27)

The analytical expressions for the above partial derivatives are derived in Appendix B.1.

2.6.2 Measurement Model
The measurement model is given by (9) in Section 2.4.2.
The linearised measurement equation in terms of the vector part of the error quaternion defined in (4) is then

given by:-

(28)

where the measurement geometry matrix is given by:-

(29)

2.7 Dynamic Model Based Inertia Tensor Estimation Algorithm
The following section presents the state prediction and measurement models, that are used within a batch least

squares algorithm. This algorithm is used to estimate the state vector at a specified epoch by processing all the star
tracker measurements, rejecting outliers based on thresholds computed using the statistics of the observation re-
siduals. The spacecraft inertia tensor can be reconstructed from some of these parameters in the estimated state
vector. The batch least squares algorithm implementation is described in Appendix C.

This algorithm will be used to filter STR attitude quaternion data and estimate all the required parameters nec-
essary to reconstruct an estimate of the spacecraft inertia tensor.

2.7.1 State Prediction Model
In this case, the general state prediction model uses a model of the spacecraft kinematics and dynamics. The

time evolution of all the state variables is given by:-

FA T̂BPω̂P[ ][ ]=

FB
1
2--T̂BP=

FC
1
2--

∂T̂BP
∂ψ̂1
------------⎝ ⎠

⎛ ⎞ ω̂P
∂T̂BP
∂ψ̂2
------------⎝ ⎠

⎛ ⎞ ω̂P
=

FD JP
1– ω̂P[ ][ ]JP JPω̂P[ ][ ]–( )=

FE JP
1–=

FF J– P
1–

1
0
0

=

FI FF

t ẋi
ωi
------

ωi∂
ωscs∂

------------⎝ ⎠
⎛ ⎞

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

5

∑=

FJ τ̂P[ ][ ]–=

FK ω̂P[ ][ ]=

FL ω̂1
2

–=

FM 2ω̂1x̂1–=

FN ω̂2
2

–=

FO 2ω̂2x̂2–=

FP ω̂3
2

–=

FQ 2ω̂3x̂3–=

FR ω̂4
2

–=

FS 2ω̂4x̂4–=

FT ω̂5
2

–=

FU 2ω̂5x̂5–=

δqSTR H δq δωP δτP δψ δψ̇ δx1 δẋ1 δx2 δẋ2 δx3 δẋ3 δx4 δẋ4 δx5 δẋ5 δωscs
T

δν+ δq δν+= =

H Hq Hω Hτ Hx1
Hẋ1

Hx2
Hẋ2

Hx3
Hẋ3

Hx4
Hẋ4

Hx5
Hẋ5

Hωscs
I3 03 21×= =
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(30)

where:-

 is the true attitude quaternion

 is the true angular rate vector expressed in spacecraft principal axes

 is the true external torque vector expressed in spacecraft principal axes

 is the principal axis to body axis transformation matrix which is a function of the principal
axis tilt angles  and principal axis azimuth angle ψ3

 is the principal axis inertia tensor which is a function of the nutation to spin rate ratio, ,
and the axial imbalance, . See Appendix B.2 to see how they are related to the principal axis moments
of inertias.

Also,  and  are defined earlier in Notation and Conventions.
Taking the expectation of (30), the complete state prediction model can be approximated as follows:-

(31)

As in the previous case, the rest of the formulation follows the approach in [15].
Defining the error quaternion as in (4), then it can be shown that:-

q
˜
˙

1
2--Ω TBP ψ ψ3,( )ωP( )q

˜

1
2--Θ q

˜
( )TBP ψ ψ3,( )ωP f q q

˜
ω, P ψ ψ3,,( )= = =

ω̇P JP
1– νn Δ,( ) τP ωP[ ][ ]JP νn Δ,( )ωP+( ) f ω ωP τP νn Δ, , ,( )= =

τ̇P ωP[ ][ ]τP f τ ωP τP,( )= =

ψ̇̇ 0=

ν̇n 0=

Δ̇ 0=

ψ̇3 0=

q
˜
ωP

τP
TBP ψ ψ3,( )

ψ ψ1 ψ2,( )=

JP νn Δ,( ) νn
Δ

Ω v( ) Θ q
˜

( )

d
dt-----

q̂
˜

ω̂P

τ̂P
ψ̂

ψ̇̂

ν̂n

ν̇̂n

Δ̂
ψ̂3

1
2--Ω TBP ψ̂ ψ̂3,( )ω̂P( )q̂

˜

JP
1– ν̂n Δ̂,( ) τ̂P ω̂P[ ][ ]JP ν̂n Δ̂,( )ω̂P+( )

ω̂P[ ][ ]τ̂P

ψ̇̂

0

ν̇̂n

0
0
0

f q q̂
˜

ω̂, P ψ̂ ψ̂3,,( )

f ω ω̂P τ̂P ν̂n Δ̂, , ,( )

f τ ω̂P τ̂P,( )

ψ̇̂

0

ν̇̂n

0
0
0

= =
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(32)

During routine pointings in SCM mode, the following states, , are estimated. Estimation of the
parameters, , is only possible when there is a sufficient level of residual nutation on the spacecraft. If
this is not the case, these parameters are unobservable. A sufficient level of residual nutation is usually present af-
ter completing a routine station keeping manoeuvre, where the spacecraft is still in OCM mode, just prior to a nu-
tation damping by commanding a manoeuvre in HCM to the same target inertial angular momentum vector. 

Based on the estimated parameters, , together with a knowledge of the X-axis principal moment
of inertia from the predicted mass properties, it is possible to reconstruct the complete spacecraft inertia tensor. 

The current algorithm in use during routine operations for inertia tensor calibration is referenced in Section
2.2.

In matrix form, the linearised state prediction model given by (32) can be written:-

(33)

and the sub-matrices in the linearised system in (33) are given as follows:-

δq̇ T̂BPω̂P[ ][ ]δq 1
2--T̂BPδωP

1
2--

∂T̂BP
∂ψ̂i
------------⎝ ⎠

⎛ ⎞ ω̂P δψi
i 1=

3

∑+ +=

δq̇4 0=

δω̇P JP
1– ν̂n Δ̂,( ) ω̂P[ ][ ]JP ν̂n Δ̂,( ) JP ν̂n Δ̂,( )ω̂P[ ][ ]–( )δωP JP

1– ν̂n Δ̂,( )δτP+=

δτ̇P τ̂P[ ][ ]– δωP ω̂P[ ][ ]δτP+=

δψ̇̇ 0=

δν̇̇n 0=

δΔ̇ 0=

δψ̇3 0=

q
˜

ωP τP ψ ψ̇, , , ,
νn ν̇n Δ ψ3, , ,

ψ ψ3 νn Δ, , ,

d
dt-----

δq
δωP

δτP
δψ

δψ̇

δνn

δν̇n

δΔ
δψ3

FA FB 03 3× FC 03 2× 03 1× 03 1× 03 1× FD

03 3× FE FF 03 2× 03 2× FG 03 1× FH 03 1×

03 3× FI FJ 03 2× 03 2× 03 1× 03 1× 03 1× 03 1×

02 3× 02 3× 02 3× 02 2× I2 02 1× 02 1× 02 1× 02 1×

02 3× 02 3× 02 3× 02 2× 02 2× 02 1× 02 1× 02 1× 02 1×

01 3× 01 3× 01 3× 01 2× 01 2× 0 1 0 0
01 3× 01 3× 01 3× 01 2× 01 2× 0 0 0 0
01 3× 01 3× 01 3× 01 2× 01 2× 0 0 0 0
01 3× 01 3× 01 3× 01 2× 01 2× 0 0 0 0

δq
δωP

δτP
δψ

δψ̇

δνn

δν̇n

δΔ
δψ3

=
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(34)

The analytical expressions for the above partial derivatives are derived in Appendix B.2.

2.7.2 Measurement Model
The measurement model uses exactly the same as that presented in Section 2.4.2.
The linearised measurement equation in terms of the vector part of the error quaternion defined in (4) is then

given by:-

(35)

where

(36)

FA T̂BPω̂P[ ][ ]=

FB
1
2--T̂BP=

FC
1
2--

∂T̂BP
∂ψ̂1
------------⎝ ⎠

⎛ ⎞ ω̂P
∂T̂BP
∂ψ̂2
------------⎝ ⎠

⎛ ⎞ ω̂P
=

FD
1
2--

∂T̂BP
∂ψ̂3
------------⎝ ⎠

⎛ ⎞ ω̂P=

FE JP
1– ν̂n Δ̂,( ) ω̂P[ ][ ]JP ν̂n Δ̂,( ) JP ν̂n Δ̂,( )ω̂P[ ][ ]–( )=

FF JP
1– ν̂n Δ̂,( )=

FG
∂ f ω
∂νn
---------

∂ f ω
∂J2
---------

∂J2
∂νn
---------⋅

∂ f ω
∂J3
---------

∂J3
∂νn
---------⋅+= =
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∂ f ω
∂Δ
---------

∂ f ω
∂J2
---------

∂J2
∂Δ
--------⋅
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∂J3
---------

∂J3
∂Δ
--------⋅+= =

FI τ̂P[ ][ ]–=

FJ ω̂P[ ][ ]=

δqSTR H δq δωP δτP δψ δψ̇ δνn δν̇n δΔ δψ3
T

δν+ δq δν+= =

H Hq Hω Hτ Hψ H ψ̇ Hνn
H ν̇n

HΔ Hψ3
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3 Algorithm End-to-End Testing with Simulated Data
This chapter describes the approach used for the end-to-end testing of the current filtering algorithm, that is

used within the operational AHF generation software. The Planck HPTDG was used to generate the required te-
lemetry data for all end-to-end testing and the “real world” attitude data from its output “dynamics.dat” were used
for the final comparison with filtered attitude data. For a restricted number of slews in HCM and pointings in
SCM, the STR-Dynamic model based filtering algorithms, that can be used to filter data during nominal HCM re-
orientation slews and SCM pointings, have also tested using this approach. An assessment of the STR-FOG based
filtering algorithm was not possible since the HPTDG does not incorporate a model of the FOG.

The results presented for the new STR-Dynamic model filtering algorithm (SCM), clearly show the improve-
ments made when compared to the current filter, in particular with respect to the efficiency of STR spatial biases
filtering. Also analysed are the effects of introducing different types of time varying star tracker alignments.

Also presented are the performances of the current and new STR-Dynamic model based filtering algorithms,
used for spacecraft inertia tensor estimation.

3.1 High Precision Test Data Generator
The Planck HPTDG gives a precise simulation of the Planck ACMS and environment and can be used to gen-

erate representative ACMS telemetry in response to telecommanding. The core components of the test data gener-
ator are listed as follows:-
• Top level control function to process and schedule ACMS command sequences provided by the Planck MPS

sub-system.
• Spacecraft Dynamic Model including a comprehensive model of the external environmental solar radiation

pressure disturbance torques as well as torques generated by the Helium venting. The spacecraft dynamics are
modelled as a rigid body with a slowly varying inertia tensor resulting from the depletion of fuel.

• A comprehensive model of the STR, derived mainly from the industry model described in [18] and [19], with
the basic functionality listed as follows:-

- Use of attitude and Planck STR on-board star catalogue to provide an STR FOV extract.

- Generate measured star positions in the STR frame using the attitude to transform the inertial direc-
tions to stars within the STR FOV.

- Add biases and noises to each star coordinate. The requirements listed in Chapter 5 of [18] that have
been modelled are listed as follows:-

• SIM-STR-341 and 342

• SIM-STR-345 and 346

• SIM-STR-347, 348 and 349

- With the measured and catalogued star positions, use the Davenport algorithm or Q method (Section
12.2.3 of [20]) to estimate the attitude quaternion, from which the angular rates can be derived
through numerical differentiation.

- Compute a time label for the attitude quaternion with an accuracy of ±0.1 ms
• A comprehensive model of the 1N thrusters which are used to reorient the spacecraft when the spacecraft is in

HCM mode.
• The actual ACC ASW code is integrated into the simulator, together with essential parts of the BSW code,

where aspects related to the 1553 communications have been modified.
• Generation of log files that contain the true spacecraft attitude and angular rates as a function of time.
• Generation of all relevant ACC essential housekeeping, ACMS mode specific and diagnostic packets. 
• Generation of time correlation packets.

The approach used to completely end-to-end test the various algorithms is listed as follows:-
• The operational mission planning products (APPL/APF) for OD 0390 were processed by TVA to generate the

required input ACMS command sequences to be executed using the Planck HPTDG.
• Use the Planck TM access subsystem to retrieve the ACMS housekeeping and diagnostic telemetry generated

by the HPTDG. 
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• Use the AHF generation software to generate the AHF products
• Use pre-processing script to extract stable pointing phase data from the high frequency records of the AHF

and store the data for each pointing ID in a dedicated ASCII file.
• Use pre-processing script to extract stable pointing phase data from the “dynamics.dat” file produced by the

HPTDG
• Use a MATLAB script to do a full comparison between the data in the “dynamics.dat” file and the pointing

products extracted from the AHF and produce plots for the 3-axes errors between the 2 data sets as a function
of time. Also provided are histograms of the 3 axes errors.

• Compute the statistics of the 3 axes errors for each pointing.

3.2 AHF Filtering Algorithm Testing
This section presents the results of the comparison between the current AHF filtering algorithm and the new

STR dynamic model based filtering algorithm with the HPTDG ‘dynamics.dat’.
Table 1 summarises the AME requirements and goal requirements from [21]. Table 2 below shows the 3 axes

pointing reconstruction errors for all pointings in OD 0390, which show a very good performance in comparison
to Table 1 .

Requirements (arcsec) Goals (arcsec)

LOS 28.8 9.6

ALOS 60.0 -

TABLE 1: ACMS AME Specifications

Pointing ID
Mean Error (arcsec) Standard Deviation (arcsec)

X-axis Y-axis Z-axis X-axis Y-axis Z-axis

02097460 -0.464  0.015  0.077 0.277 0.354 1.381

02097470    -0.420    -0.006  -0.029 0.276 0.414 1.337

02097480    -0.408     0.021    0.235 0.257 0.360 1.274

02097490    -0.430    -0.014    0.019 0.294 0.395 1.432

02097500    -0.437    -0.002  -0.065 0.285 0.446 1.415

02097510    -0.428    -0.017  -0.099 0.276 0.357 1.389

02097520    -0.449    -0.006  -0.032 0.290 0.456 1.322

02097530    -0.433    -0.002    0.064 0.276 0.424 1.430

02097540    -0.418    -0.005    0.042 0.289 0.396 1.413

02097550    -0.461     0.016  -0.035 0.294 0.446 1.337

02097560    -0.448    -0.018  -0.035 0.286 0.391 1.430

02097570    -0.422    -0.001    0.078 0.281 0.414 1.336

02097580    -0.455    -0.011  -0.157 0.273 0.345 1.369

02097590    -0.462     0.004  -0.044 0.261 0.404 1.330

02097600    -0.437     0.002    0.113 0.285 0.407 1.490

02097610    -0.424     0.003  -0.115 0.285 0.351 1.455

02097620    -0.440     0.002    0.086 0.300 0.346 1.431

02097630    -0.434     0.003  -0.024 0.284 0.371 1.364

02097640    -0.455     0.020  -0.159 0.282 0.423 1.478

02097650    -0.398    -0.011    0.106 0.287 0.417 1.548

TABLE 2: Pointing error statistics for current AHF filtering algorithm



Planck On-Ground Attitude Estimation Algorithms 21

The comparison of the filtered quaternions, , and the actual quaternions from the HPTDG “dynam-
ics.dat” data, , is made by computing the error quaternion. From this error quaternion, the Euler angles can
be computed using a small angle approximation. This can be expressed as follows:-

(37)

For the current AHF filtering algorithm, the errors, , are shown in Figure 5 of Section 3.2.1 and the histo-
grams for these errors are shown in Figure 6 of Section 3.2.1. The PSDs of the errors in Figure 5 are shown in Fig-
ure 7 of Section 3.2.1.

As can be seen from these plots, there are still some residual attitude measurement errors after filtering, which
can be attributed to the star tracker spatial biases.

Similarly, the new STR Dynamic Model based filter described in Section 2.6 was used to filter the same data.
The errors for this case are shown in Figure 11 of Section 3.2.2 and the histograms for these errors are shown in
Figure 12 of Section 3.2.2. The results of the comparison with the current AHF filtering algorithm are shown in
Figure 13 of Section 3.2.2 and the corresponding PSDs of these errors are shown in Figure 14 of Section 3.2.2.
The errors in Figure 13 are practically the same as the results shown in Figure 5. This means that the new filter
provides a more accurate representation of the true spacecraft attitude.

These results clearly show how effective the new filter is at rejecting the STR spatial bias errors. There is a
noticeable error on the transverse axes with spin and nutation frequency components. It is noted that the SCS in-
ternal disturbance states are not estimated in this case. Also that the nutation component in the error could poten-
tially be removed by adding the nutation to spin rate ratio to the estimator state vector.

Finally, in order to see how the new filters respond to time varying thermal distortions of the STR alignment,
3 cases have been considered:-
1. A sinusoidal variation
2. An exponential rise/fall variation (one time constant)
3. An exponential rise/fall variation (two time constants)

The first 2 of these cases have been selected such that the variation is sufficiently high frequency in order to
observe a periodic trend within a single pointing duration of typically 48 minutes. The third case adds a longer
time constant variation to the first time constant whose periodic feature is not observable within a single pointing
duration of typically 48 minutes. 

For the first case, the injected alignment variation, the HPTDG “dynamics.dat” versus current filter, the HPT-
DG “dynamics.dat” versus new STR-dynamic model based filter and the new STR-dynamic model based filter
versus current filter results are shown in Figures 2, 8, 15 and 16 respectively.

For the second case, the injected alignment variation, the HPTDG “dynamics.dat” versus current filter, the
HPTDG “dynamics.dat” versus new STR-dynamic model based filter and the new STR-dynamic model based fil-
ter versus current filter results are shown in Figures 3, 9, 17 and 18 respectively.

For the third case, the injected alignment variation, the HPTDG “dynamics.dat” versus current filter, the HP-
TDG “dynamics.dat” versus new STR-dynamic model based filter and the new STR-dynamic model based filter
versus current filter results are shown in Figures 4, 10, 19 and 20 respectively.

The main conclusions from these 3 cases is that alignment variations, where the period of the variation is less
than the duration of the pointing, can be filtered by the new STR-dynamic model based filtering algorithm. Any
low frequency variation like that injected during case 3 is not filtered as can be seen in the errors of Figure 19. In

02097660    -0.430    -0.024    0.201 0.295 0.358 1.420

02097670    -0.431    -0.010  -0.008 0.284 0.417 1.409

Pointing ID
Mean Error (arcsec) Standard Deviation (arcsec)

X-axis Y-axis Z-axis X-axis Y-axis Z-axis

TABLE 2: Pointing error statistics for current AHF filtering algorithm
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˜
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˜
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˜
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order to deal with long term variations in the alignment in general, it would be necessary to detrend this data using
other means prior to filtering the data.

Finally, results in Section 3.2.3 show the performance of the new STR-Dynamic Model based filter, described
in Section 2.5, used to filter data during nominal re-orientation slews in HCM. The errors, , are shown in Fig-
ure 21 and the histograms for these errors are shown in Figure 22. The actual times of the thruster pulses can be
seen in the plot of the true spacecraft angular rates, which are shown in Figure 23. The main thing that affects the
performance of this filter is the thruster torque estimation accuracy at the various steps in the HCM nominal re-
orientation slew timeline (shown in Figure 1). This is particularly the case for the last thruster pulse of the ma-
noeuvre sequence, where there are fewer attitude measurements compared to the other parts of the HCM timeline.  

FIGURE 3: Body Y-axis exponential rise/fall alignment error on the STR (One time constant: τ=200 s)

δθ
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FIGURE 2: Body Y-axis sinusoidal alignment error on the STR

FIGURE 4: Body Y-axis exponential rise/fall alignment error on the STR (Two time constants: τ1=200 s and
τ2=1000 s)



24 Planck On-Ground Attitude Estimation Algorithms

3.2.1 Current Filter Performance Assessment    

FIGURE 5: 3 axes errors of “dynamics.dat” and current AHF filter output comparison for SCM Pointing 02097460
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FIGURE 6: 3 axes errors of “dynamics.dat” and current AHF filter output comparison for SCM Pointing 02097460
(Histograms computed using data at 8 Hz with 100 bins)



26 Planck On-Ground Attitude Estimation Algorithms

FIGURE 7: PSD of 3 axes errors of “dynamics.dat” and current AHF filter output comparison for SCM Pointing
02097460
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FIGURE 8: 3 axes errors of “dynamics.dat” and current filter output comparison for SCM Pointing 02097460:
Body Y-axis sinusoidal alignment error on the STR
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FIGURE 9: 3 axes errors of “dynamics.dat” and current filter output comparison for SCM Pointing 02097460:
Body Y-axis exponential rise/fall alignment error on the STR (One time constant: τ=200 s)



Planck On-Ground Attitude Estimation Algorithms 29

FIGURE 10: 3 axes errors of “dynamics.dat” and current filter output comparison for SCM Pointing 02097460:
Body Y-axis exponential rise/fall alignment error on the STR (Two time constants: τ1=200 s and τ2=1000 s)
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3.2.2 STR-Dynamic Model based Filter (SCM) Performance Assessment         

FIGURE 11: 3 axes errors of “dynamics.dat” and new STR-Dynamic Model based filter output comparison for
SCM Pointing 02097460
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FIGURE 12: 3 axes errors of “dynamics.dat” and new STR-Dynamic Model based filter output comparison for
SCM Pointing 02097460 (Histograms computed using data at 8 Hz with 100 bins)
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FIGURE 13: 3 axes errors of STR-Dynamic model based filter and current filter output comparison for SCM Point-
ing 02097460
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FIGURE 14: PSD of 3 axes errors of STR-Dynamic model based filter and current filter output comparison for
SCM Pointing 02097460
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FIGURE 15: 3 axes errors of “dynamics.dat” and new STR-Dynamic Model based filter output comparison for
SCM Pointing 02097460: Body Y-axis sinusoidal alignment error on the STR



Planck On-Ground Attitude Estimation Algorithms 35

FIGURE 16: 3 axes errors of new STR-Dynamic Model based filter and current filter output comparison for SCM
Pointing 02097460: Body Y-axis sinusoidal alignment error on the STR
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FIGURE 17: 3 axes errors of “dynamics.dat” and new STR-Dynamic Model based filter output comparison for
SCM Pointing 02097460: Body Y-axis exponential rise/fall alignment error on the STR (One time constant:
τ=200 s)
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FIGURE 18: 3 axes errors of new STR-Dynamic Model based filter and current filter output comparison for SCM
Pointing 02097460: Body Y-axis exponential rise/fall alignment error on the STR (One time constant: τ=200 s)
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FIGURE 19: 3 axes errors of “dynamics.dat” and new STR-Dynamic Model based filter output comparison for
SCM Pointing 02097460: Body Y-axis exponential rise/fall alignment error on the STR (Two time constants:
τ1=200 s and τ2=1000 s)



Planck On-Ground Attitude Estimation Algorithms 39

FIGURE 20: 3 axes errors of current filter and new STR-Dynamic Model based filter output comparison for SCM
Pointing 02097460: Body Y-axis exponential rise/fall alignment error on the STR (Two time constants: τ1=200 s
and τ2=1000 s)
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3.2.3 STR-Dynamic Model based Filter (HCM) Performance Assessment  

FIGURE 21: 3 axes errors of “dynamics.dat” and new STR-Dynamic Model based filter output comparison for
nominal HCM Slew 02097490
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FIGURE 22: 3 axes errors of “dynamics.dat” and new STR-Dynamic Model based filter output comparison for
nominal HCM Slew 02097490 (Histograms computed using data at 8 Hz with 100 bins)
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3.3 Dynamic Model Based Inertia Tensor Estimation Algorithm Testing
This section presents the results of the end-to-end test of the current spacecraft inertia estimation algorithm

described in Section 2.2 and the new algorithm described in Section 2.7. Three cases have been considered to test

FIGURE 23: HPTDG Body angular rates for the nominal HCM reorientation slew 02097490
Note: The jitter in the upper figure is not representative of real dynamics.
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these two algorithms, that correspond to various configurations of the transverse axes moments of inertia and are
listed as follows:-
1. (Jyy < Jzz). 5 iterations to converge on final state estimates
2. (Jyy > Jzz). 4 iterations to converge on final state estimates
3. (Jyy = Jzz). 4 iterations to converge on final state estimates

The following tables present the actual mass properties simulated within the HPTDG as well as the values es-
timated by the current algorithm (Section 2.2) and the new STR-Dynamic Model based algorithm(Section 2.7).

There are no specific requirements on how accurately to estimate the spacecraft inertia tensor, but it is impor-
tant to estimate it as accurately as possible. This is because it is used in the computations performed by the on-
board attitude control laws in all ACMS modes. In particular orbit and attitude manoeuvres in OCM and routine
scanning law attitude manoeuvres in HCM.

As can be seen in the following tables, the accuracy achieved in the parameter estimation is very good and
comparable for both the current algorithm and the new estimation algorithm..  

Parameter
HPTDG Simu-

lated
Current Calibra-
tion Algorithm

New Calibration 
Algorithm

Principal Moments of In-
ertia

J1 (kg m2) 3114.541734 3114.541734 3114.541734

J2 (kg m2) 2615.994489 2616.008219 2615.989437

J3 (kg m2) 2654.122777 2654.132633 2654.117487

Nutation to Spin Ratio νn (-) 0.181823847 0.181818582 0.181826169

Axial Imbalance Δ (-) -0.01710345 -0.01710156 -0.01710341

Principal Axis Tilt Angles ψ1 (arcmin) -2.2344243 -2.2424724 -2.2425282

ψ2 (arcmin) -13.6631194 -13.6600520 -13.660376

ψ3 (degree) -31.7742616 -31.7836174 -31.7740864

Moments of Inertia Jxx (kg m2) 3114.534 3114.534 3114.534

Jyy (kg m2) 2626.567 2626.58523 2626.56178

Jzz (kg m2) 2643.558 2643.56335 2643.55288

Jxy (kg m2) -0.385 -0.386119 -0.386139

Jxz (kg m2) 1.883 1.882599 1.882685

Jyz (kg m2) 17.067 17.068034 17.066838

TABLE 3: Inertia Tensor Calibration Testing: Case 1 (Jyy < Jzz)

Parameter
HPTDG Simu-

lated
Current Calibra-
tion Algorithm

New Calibration 
Algorithm

Principal Moments of In-
ertia

J1 (kg m2) 3115.008396 3115.008396 3115.008396

J2 (kg m2) 2654.722177 2655.192880 2654.710546

J3 (kg m2) 2615.269427 2615.793789 2615.263774

Nutation to Spin Ratio νn (-) 0.182019467 0.181796561 0.182023391

Axial Imbalance Δ (-) 0.017701130 0.017670378 0.017698563

TABLE 4: Inertia Tensor Calibration Testing: Case 2 (Jyy > Jzz)
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Principal Axis Tilt Angles ψ1 (arcmin) -2.4212186 -2.4295119 -2.4295743

ψ2 (arcmin) -13.9472990 -13.9446135 -13.9447474

ψ3 (degree) 29.7635233 29.7618034 29.7622415

Moments of Inertia Jxx (kg m2) 3115.0 3115.0 3115.0

Jyy (kg m2) 2645.0 2645.48495 2644.99060

Jzz (kg m2) 2625.0 2625.51011 2624.99211

Jxy (kg m2) -0.4 -0.400682 -0.401124

Jxz (kg m2) 2.0 1.997572 1.999707

Jyz (kg m2) 17.0 16.976274 16.996972

Parameter
HPTDG Simu-

lated
Current Calibra-
tion Algorithm

New Calibration 
Algorithm

Principal Moments of In-
ertia

J1 (kg m2) 3115.008472 3115.008472 3115.008472

J2 (kg m2) 2646.997265 2647.038046 2646.993929

J3 (kg m2) 2612.994263 2613.027635 2612.983693

Nutation to Spin Ratio νn (-) 0.184306290 0.184289537 0.184309376

Axial Imbalance Δ (-) 0.015313856 0.015316760 0.015317195

Principal Axis Tilt Angles ψ1 (arcmin) -2.3411985 -2.3492251 -2.34928928

ψ2 (arcmin) -14.0938843 -14.0909430 -14.0912065

ψ3 (degree) 44.9934013 44.9838540 44.9916636

Moments of Inertia Jxx (kg m2) 3115.0 3115.0 3115.0

Jyy (kg m2) 2630.0 2630.04275 2629.99408

Jzz (kg m2) 2630.0 2630.03140 2629.99201

Jxy (kg m2) -0.4 -0.401104 -0.401147

Jxz (kg m2) 2.0 1.999499 1.999697

Jyz (kg m2) 17.0 17.003697 17.003612

TABLE 5: Inertia Tensor Calibration Testing: Case 3 (Jyy = Jzz)

Parameter
HPTDG Simu-

lated
Current Calibra-
tion Algorithm

New Calibration 
Algorithm

TABLE 4: Inertia Tensor Calibration Testing: Case 2 (Jyy > Jzz)
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4 Algorithm Testing with In-Flight Data
In this chapter a performance assessment of the new filters has been made, by comparing the results with

those obtained with the current filter used to generate the AHF pipeline products. For the algorithms used to filter
data during nominal slew manoeuvres in HCM, this comparison is made with the unfiltered data, because the cur-
rent filter can not be used to filter data during slew manoeuvres.

In addition, results have been correlated with data from the thermal sub-system. After changes made to the
thermal control, whereby certain heaters known to perturb the alignment of the operational star tracker, the atti-
tude reconstruction performance has been significantly improved. However, there is still some uncertainty as to
how much the FOG performances are affected by the thermal environment prior to the thermal controller updates,
but there are indications that the FOG is not affected as much as the STR.

It is now understood that the current filter algorithm is sensitive to a number things, in particular low frequen-
cy thermal distortions where the frequencies are within the filter pass band. In addition, there are problems to de-
trend data, which is required prior to filtering, mainly due to the piecewise continuous nature of the attitude data
at the instants of heater switching. The new filters are less sensitive to this and can also tolerate data outages3 as
well. However, they are sensitive to deficiencies in the fidelity of the prediction model, which could be circum-
vented by introducing a series of smaller batch intervals, where the batch size is chosen such that the unmodelled
low frequency errors can be better tracked.

An assessment of both filtering algorithms described in Sections 2.4 and 2.6 has been made. In Section 4.1,
results are shown for a single pointing in science mode (SCM) prior to the thermal controller updates and in Sec-
tion 4.2, similar results are shown for a single pointing in SCM after the thermal controller updates were made.
Results also show improvements when the SCS internal disturbances torques are estimated within dynamic model
based filters.

In Section 4.3, results are shown for a nominal re-orientation slew in HCM, performed in OD 0561. The as-
sessment of both filtering algorithms described in Sections 2.4 and 2.5 has been made, where a comparison of fil-
tered data versus unfiltered data has been performed.

In Section 4.4, results are shown for a single pointing in OCM after the station keeping delta-V manoeuvre
performed in OD 0247. This was prior to the thermal controller updates and in Section 4.5, similar results are
shown for a single pointing in OCM after the station keeping delta-V manoeuvre performed in OD 0568. This was
after the thermal controller updates were made.

The comparison of the filtered quaternions of the current filter, , and the new filter, , is made by
computing the error quaternion, from which the Euler angles can be computed using a small angle approximation.
This can be expressed as follows:-

(38)

4.1 Pre Thermal Control Updates - Science Mode Pointings

4.1.1 Fibre Optic Gyro Based Estimation Algorithm
The errors, , are shown in below Figure 24 and the corresponding PSDs are shown in Figure 25. The PSDs

show a modulation of the spin frequency with a low frequency term. The on-board filter estimates of the principal
axis tilt angles,  and , with the non-zero offset subtracted, are shown in Figure 26. A comparison of the er-
rors  and  in Figure 24 with the principal axis tilt angles  and  in Figure 26 shows a weak correla-
tion. Therefore the low frequency alignment variations of the star tracker mounting are passed by the current
filter, but they are partially rejected4 by the new STR-FOG based filter. In order to quantify these effects, various
examples with different alignment variations injected onto the measured STR attitude quaternion are shown,
which clearly show which components are rejected. It is noted however that it is not possible to comment on how
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much the FOG alignment and biases are affected by the thermal control, although as mentioned, it is not affected
as much as the STR. Also it is not clear on how much the angle errors in Figure 24, are due to star tracker meas-
urement errors. It is however clear from Figures 24 and 25, that spin frequency components are pre-dominant in
the error angle plots of the STR-FOG based filter, which is less so in the case of the STR-dynamic model based
filter, which will be presented later.

If the FOG can be considered to be an accurate replacement of the spacecraft dynamics model, this is a good
result for removing these low frequency distortions. The downside is that the effect of alignment variations will
vary from pointing to pointing depending on the signature of the thermal distortions.

In order for the STR-FOG based filter to better track low frequency errors and distortions, it is necessary to
split the complete interval into smaller sub-intervals.

The plot of the FOG angular rates expressed in the spacecraft body reference system are shown in Figure 28.
Also shown is a least squares fit of a model of the spacecraft angular rates to the star tracker derived angular rates.
Referring to Figure 28, it can be seen from the Z-axis rate that there is a change in the trend which could indicate
a shift of the principal axis not incorporated within the model of s/c angular rates.

A histogram of the estimated nutation angle is shown in Figure 27 which shows a peak value approximately at
2.2 arcsec. This is comparable to the values obtained using the current filter.

The estimation process is an iterative process5 and in all cases run, the algorithm rapidly converged with two
iterations. A further iteration was required to reduce the norm of the state vector correction to below a specified
threshold of 1.0E-10. In no cases were there any poorly observable cases where the estimation process diverged.

4. Actually the low frequency errors are combined and affect the state estimate at the specified single epoch. This results from us-
ing the linearised system to refer all the observations back to this specified epoch as required to solve the batch least squares 
problem. As shown in Section 3.2, only the higher frequency components of the alignment variation are rejected. The low fre-
quency terms are not rejected.

5. See Appendix C for description of the algorithm implementation
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FIGURE 24: Current filter versus STR-FOG based filter comparison



48 Planck On-Ground Attitude Estimation Algorithms

FIGURE 25: Current filter versus STR-FOG based filter comparison PSDs
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FIGURE 26: On-board principal axis tilt estimate evolution (non-zero offset removed)

FIGURE 27: STR-FOG based filter nutation angle histogram, computed using data at 8 Hz with 200 bins
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4.1.2 Dynamic Model Based Estimation Algorithm
The errors, , for this case are shown in below Figure 29 and the corresponding PSDs are shown in Figure

30. As with the STR-FOG comparison results in Figures 24 and 26, but to a lesser extent which is unclear why,
the PSDs in Figure 30 show a modulation of the spin frequency with a low frequency term. There is also a compo-
nent at the nutation frequency in  and  and two X-axis frequency components, that will be discussed in

FIGURE 28: STR derived and FOG angular rates

δθ

δθy δθz
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the following paragraph. A comparison of  and , with the on-board filter estimates of the principal axis
tilt angles,  and , shown in Figure 26, with non-zero offsets removed, shows a slightly better correlation in
relation to the STR-FOG based filter. As with the STR-FOG based filter, this allows us to infer that the low fre-
quency alignment variations of the star tracker mounting are passed by the current filter and partially rejected by
the new STR-Dynamic model based filter.

As mentioned previously, referring to Figures 29 and 30, there is a periodic signal remaining in the  error
angle, which is not present in the STR-FOG based filter results of Figures 24 and 25. In the STR-FOG intercali-
bration work of [14], these low frequency components in the X-axis angular rate PSD plot of Figure 9 of [14] are
not discernible. This was addressed for a more recent long pointing where the spacecraft is in SCM and the results
of this clearly show these frequencies in the processed STR and FOG data. These effects have now been correlat-
ed with the compressor cycle time and are due to internal disturbances created by the sorption cooler. Other ef-
fects are thermoelastic distortions that affect the STR and to a lesser extent the FOG as shown in the Z-axis rate
PSD of Figure 33. The PSDs were created from data taken during a long pointing during the CPV phase in ODs
0077 to 0079 and are shown in Figure 33. Also, the X-axis integrated rate PSD shown in Figure 34. Table 6 gives
a complete list of the frequencies observed in the rate PSDs of Figure 33 and where possible the source of the dis-
turbance and which sensors are affected is identified.

Since the rigid body dynamic model does not account for internal disturbances caused by the sorption cooler,
it was for this reason that the filter described in Section 2.6 was modified to include an estimation of these extra
state variables. The result of the updates to the filter can be seen in Figure 32, which shows that the error, ,
has been significantly reduced with these updates.

Another way to look at this is that if we numerically differentiate , the resulting rate, , correlates
quite well with the low pressure side of the sorption cooler (P8). An estimate of how much the X-axis moment of
inertia varies as a result of mass migration has been computed from this rate variation using (39) and is shown in
Figure 31.

(39)

The mean nutation angle derived from the principal axis rates and the assumed moment of inertia tensor is
1.29 arcsec. 

The algorithm rapidly converged with four iterations. A further iteration was required to reduce the norm of
the state vector correction to below a specified threshold of 1.0E-10. In no cases were there any poorly observable
cases where the estimation process diverged.
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FIGURE 29: Current filter versus STR-Dynamic model based filter comparison: sorption cooler internal distur-
bances not estimated
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FIGURE 30: Current filter versus STR-Dynamic model based filter comparison PSDs: sorption cooler internal dis-
turbances not estimated
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FIGURE 31: Estimate of variation in the principal X-axis moment of inertia
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FIGURE 32: Current filter versus STR-Dynamic model based filter comparison: sorption cooler internal distur-
bances estimated.
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FIGURE 33: STR/FOG Angular Rate PSDs
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FIGURE 34: STR/FOG X-Axis Integrated Angular Rate PSD

Source Frequency (mHz) Sensors affected

DPU-2 (fundamental) 0.15614 STR only

SCS (fundamental) 0.1773 STR+FOG

REBA (fundamental) 0.2809 STR+FOG

DPU-2 (2nd harmonic) 0.31136 STR only

SCS (2nd harmonic) 0.3546 STR+FOG

DPU-2 (3rd harmonic) 0.4684 STR only

REBA (2nd harmonic) 0.56182 STR+FOG

DPU-2 (4th harmonic) 0.62456 STR only

DPU-2 (5th harmonic) 0.7807 STR only

REBA (3rd harmonic) 0.8433 STR+FOG

DPU-2 (6th harmonic) 0.93684 STR only

Compressor cycle (fundamental) 1.0638 STR+FOG

Compressor cycle (2nd harmonic) 2.1276 STR+FOG

Unidentified frequency 3.012 STR+FOG

Nutation frequency 3.07 STR+FOG

Compressor cycle (3rd harmonic) 3.1914 STR+FOG

TABLE 6: Modes identified from the rate PSDs in Figure 33
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4.2 Post Thermal Control Updates - Science Mode Pointings

4.2.1 Fibre Optic Gyro Based Estimation Algorithm
The errors, , are shown in below Figure 35 and the corresponding PSDs are shown in Figure 36. The PSDs

show a modulation of the spin frequency with a low frequency term. The on-board filter estimates of the principal
axis tilt angles,  and , with the non-zero offset subtracted, are shown in Figure 37. 

It can be seen from the results in Figure 37 that the changes to the thermal controller have resulted in a signif-
icant improvement in the stability of the principal axis tilt estimates. This has also been confirmed in the principal
axis tilt estimates that are provided in the routine AHF products. As a result, this has also had a positive impact in
the angle error comparisons between current and new filters, as shown in Figure 35 for the STR-FOG based filter.
There is still a spin frequency component observable in the errors, but the performances of the 2 filters are quite
similar. The results shown in Figure 35 are also quite similar to the results of the HPTDG versus current filter out-
put comparisons shown in Figure 5, where it was concluded in Section 3.2 that the new filters were efficient in re-
jecting STR spatial bias errors.

The plot of the FOG angular rates expressed in the spacecraft body reference system are shown in Figure 38.
Also shown is a least squares fit of a model of the spacecraft angular rates to the star tracker derived angular rates.

A histogram of the estimated nutation angle is shown in Figure 39 which shows a peak value approximately at
1.8 arcsec. This is comparable to the values obtained using the current filter and slightly less than the value ob-
tained prior to the thermal controller updates.

The sensitivity of the STR-Dynamic Model based filter to variations in the STR alignment was already ana-
lysed previously in Section 3.2. The same analysis performed here for STR-FOG based filter, shows similar re-
sults for the comparisons made with the current filter output. As with analysis performed in Section 3.2, 3 cases
have been considered:-
1. A sinusoidal variation shown in Figure 40
2. An exponential rise/fall variation (one time constant) shown in Figure 42
3. An exponential rise/fall variation (two time constants) shown in Figure 44

For the first case, the results for the Y-axis angle error shown in Figures 16 and 41 are quite similar. Likewise
for the second case, the results shown in Figures 18 and 43 and finally for the third case, the results shown in
Figures 20 and 45. This implies that similar conclusions to those reached in Section 3.2 can be reached.

The algorithm rapidly converged with two iterations. A further iteration was required to reduce the norm of
the state vector correction to below a specified threshold of 1.0E-10. In no cases were there any poorly observable
cases where the estimation process diverged.

δθ

ψ2 ψ1
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FIGURE 35: Current filter versus STR-FOG based filter comparison
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FIGURE 36: Current filter versus STR-FOG based filter comparison PSDs
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FIGURE 37: On-board principal axis tilt estimate evolution (non-zero offset removed)
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FIGURE 38: STR derived and FOG angular rates
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FIGURE 39: STR-FOG based filter nutation angle histogram, computed using data at 8 Hz with 200 bins

FIGURE 40: Low frequency sinusoidal alignment error injected on the Y-axis
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FIGURE 41: Current filter versus STR-FOG based filter comparison with a star tracker low frequency sinusoidal
alignment error injected on the Y-axis
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FIGURE 42: Low frequency exponential rise/fall alignment error injected on the Y-axis. One time constant (τ =
200 s)
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FIGURE 43: Current filter versus STR-FOG based filter comparison with a star tracker low frequency exponential
rise/fall alignment error injected on the Y-axis. One time constant (τ = 200 s)



Planck On-Ground Attitude Estimation Algorithms 67

FIGURE 44: Low frequency exponential rise/fall alignment error injected on the Y-axis. Two time constants (τ1 =
200 s and τ2 = 1000 s)
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4.2.2 Dynamic Model Based Estimation Algorithm
The errors, , for this case are shown in below Figure 46 and the corresponding PSDs are shown in Figure

47. The PSDs in Figure 47 show a component at the spin frequency and at twice the spin frequency that is modu-
lated with a low frequency term. As with the pre-thermal controller updates case, referring to Figure 46, there is a

FIGURE 45: Current filter versus STR-FOG based filter comparison with a star tracker low frequency exponential
rise/fall alignment error injected on the Y-axis. Two time constants (τ1 = 200 s and τ2 = 1000 s)

δθ
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trend in the  error angle, which is not observed in the STR-FOG based filter results of Figure 35. 
Again, if we numerically differentiate , the resulting rate, , correlates quite well with the low pres-

sure side of the sorption cooler (P8). Using (39), an estimate of how much this rate variation translates into a var-
iation of the X-axis moment of inertia, is shown in Figure 48. These estimates are comparable to the estimates
obtained in the pre-thermal controller updates case.

In ODs 560 and 561, there were some tests to check the STR alignment stability resulting from a switchover
to the redundant star tracker and back. During the switchover periods there were long duration pointings with the
spacecraft in SCM. A frequency analysis of the FOG and STR derived angular rates was performed to see if the
low frequencies present in the X-axis rotational dynamics are discernible in the angular rate PSD. Since the errors
are present in the X-axis attitude data, it is necessary to look at the integrated angular rate PSD when deciding on
what the dominant frequencies in the error signal are. 

These pointings are long enough to provide sufficient resolution at low frequencies. The errors, , for part
of this pointing are shown in Figure 49. The PSD of the angular rates, computed using the complete data set, are
shown in Figure 51. The PSD for the integrated X-axis angular rate is shown in Figure 52. It is clear from
Figures 51 and 52, that there are peaks at 1.09 mHz, 2.18 mHz and 3.27 mHz in the X-axis rate PSD, for both
STR and FOG data. The dominant frequency being due to the sorption cooler compressor cycle, which is com-
manded regularly by the flight control team to update a lookup table (LUT). On the transverse axes, one also sees
a peak at 0.15 mHz, which is the whole cooler cycle period. The reader is referred to section 6.2.4.3 of [17] for an
explanation. It is also noted that some frequencies observed in Figure 33, Figure 34 and Table 6, in particular the
DPU-2 ones, are significantly reduced.

It can be concluded that the rigid body dynamic model does not account for these perturbations. Due to the pe-
riodic nature of the error, , the dynamic model has been modelled as a rigid body with an X-axis internal dis-
turbance torque, modelled as a multiple mode pendulum. The estimator in Section 2.6 is then used to estimate the
amplitude and amplitude rate of change to account for these effects. Optionally, the filter has been formulated to
estimate the compressor cycle frequency as well, but this could also be simply fixed at the reciprocal of the com-
manded cycle time. The errors, , for part of this pointing, when the sorption cooler internal torques are estimat-
ed, are shown in Figure 50.

The mean nutation angle derived from the principal axis rates and the assumed moment of inertia tensor is
1.29 arcsec. In Figure 51, one can see the nutation mode at about 3.05 mHz, in the transverse axes angular rate
PSD plots.

The algorithm rapidly converged with four iterations. A further iteration was required to reduce the norm of
the state correction to below a specified threshold of 1.0E-10. In no cases were there any poorly observable cases
where the estimation process diverged.
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FIGURE 46: Current filter versus STR-Dynamic model based filter comparison: sorption cooler internal distur-
bances not estimated
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FIGURE 47: Current filter versus STR-Dynamic model based filter comparison PSDs: sorption cooler internal dis-
turbances not estimated
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FIGURE 48: Estimate of variation in the principal X-axis moment of inertia
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FIGURE 49: Current filter versus STR-Dynamic model based filter comparison: sorption cooler internal distur-
bances not estimated



74 Planck On-Ground Attitude Estimation Algorithms

FIGURE 50: Current filter versus STR-Dynamic model based filter comparison: sorption cooler internal distur-
bances estimated.
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FIGURE 51: STR/FOG Angular Rate PSDs
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4.3 Nominal Re-orientation Slews - Angular Momentum Control Mode
In this section, the performances of the STR-FOG filter (Section 2.4) and STR-dynamic model based filter

(Section 2.5) are assessed based on data processed during a nominal re-orientation slew in OD 0561. Now the cur-
rent filter can only be used to filter star tracker attitude quaternion data during periods where there are no thruster
actuations and so it is not possible to perform the same comparisons of Sections 4.1 and 4.2. It is only possible to
make a comparison of filtered versus unfiltered attitude data and a comparison of STR-FOG filter and STR-dy-
namic model based filter.

The errors between the STR-FOG based filtered and unfiltered data are shown in Figure 53. Also shown in
this figure are the 4σ thresholds computed using these residuals.

Figure 54 shows the evolution of the body angular rates that have been determined using calibrated FOG an-
gular rate data.

The errors between the STR-Dynamic Model based filtered and unfiltered data are shown in Figure 55. Also
shown in this figure are the 4σ thresholds computed using these residuals.

Figure 56 shows the evolution of the body angular rates that have been determined using raw STR attitude
quaternion measurements and calibrated FOG angular rate data.

Finally, a comparison between both STR-FOG and STR-Dynamic Model based filters is shown in Figure 57,
which shows that both methods can be used to provide filtered data during nominal slews in HCM.

The algorithm rapidly converged with two iterations, but the dynamic model based filter is quite sensitive to
the value of the spacecraft inertia tensor that is used. A further 2 iterations were required to reduce the norm of the
state vector correction to below a specified threshold of 1.0E-10. In no cases were there any poorly observable
cases where the estimation process diverged.

FIGURE 52: STR/FOG X-Axis Integrated Angular Rate PSD



Planck On-Ground Attitude Estimation Algorithms 77

    

FIGURE 53: STR-FOG based filter versus raw STR attitude quaternion data comparison
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FIGURE 54: Body axis angular rates derived from calibrated FOG angular rate data
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FIGURE 55: STR-Dynamic Model based filter versus raw STR attitude quaternion data comparison
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FIGURE 56: Body axis angular rates derived from STR and calibrated FOG angular rate data
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4.4 Pre Thermal Control Updates - Post Delta-V Manoeuvres in OCM
In this section, the performances of the STR-FOG filter from Section 2.2 and the STR-dynamic model based

filter from Section 2.7 are assessed based on data processed during free running mode in OCM after the delta-V
manoeuvre in OD 0247. This corresponds to a period prior to the thermal controller updates.

FIGURE 57: STR-FOG based filter versus STR-Dynamic Model based filter comparison
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4.4.1 Fibre Optic Gyro Based Estimation Algorithm
The errors, , are shown below in Figure 58. As presented previously for the science mode pointing, it can

be seen from these results that the thermal environment of the star tracker affects the consistency between the cur-
rent filter and the STR-FOG based filter. Again, as for the science mode pointings, it is unclear how much the
thermal environment affects the FOG in this case.

4.4.2 Dynamic Model Based Estimation Algorithm
The errors, , for this case are shown in below Figure 59 and as before for the science mode pointing, a sim-

ilar periodic signal in the  error angle, which is not observed in the STR-FOG based filter results is present.
There is a weak correlation observable between the angle errors in Figures 58 and 59. As mentioned for the

STR-FOG based filter case of processing the science mode pointing prior to the thermal control updates, that spin
frequency components are pre-dominant in the error angle plots of the STR-FOG based filter, which is less so in
the case of the STR-dynamic model based filter. This could be due to the fact that the thermal environment is af-
fecting the FOG as well.

A plot of the nutation angle evolution for this case is shown in Figure 60. The variation is due to the fact that
we have asymmetric transverse inertias. The relationship between the minimum and maximum nutation angle is
given in Appendix A.

The main results of this section are to compare the inertia tensor calibration algorithms. Table 7 shows the in-
itial estimates based on prediction prior to the manoeuvre along with estimated quantities using the current algo-
rithm described in Section 2.2 and estimated quantities based on the algorithm described in Section 2.7. It can be
seen that reasonable agreement is achieved between the two methods.

The algorithm rapidly converged with two iterations. A further 5 iterations were required to reduce the norm
of the state vector correction to below a specified threshold of 1.0E-10. In no cases were there any poorly observ-
able cases where the estimation process diverged.

δθ

δθ
δθx
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FIGURE 58: Current filter versus STR-FOG based filter comparison
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FIGURE 59: Current filter versus STR-Dynamic model based filter comparison
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FIGURE 60: OD 0247: Post Delta-V Free Running Mode Nutation Angle

Parameter
Mass Properties 

Prediction
Current Calibra-
tion Algorithm

New Calibration 
Algorithm

Principal Moments of In-
ertia

J1 (kg m2) 3028.6352 3028.6356 3028.6356

J2 (kg m2) 2579.9910 2577.4007 2577.1821

J3 (kg m2) 2536.8377 2537.8872 2538.4704

Nutation to Spin Ratio νn (-) 0.1836068 0.1839940 0.1839158

Axial Imbalance Δ (-) 0.0199687 0.0182952 0.0179214

Principal Axis Tilt Angles ψ1 (arcmin) 4.513627 4.526050 4.535492

ψ2 (arcmin) -28.334129 -28.296014 -28.269451

ψ3 (degree) 25.9219 22.5052 24.1241

Moments of Inertia Jxx (kg m2) 3028.602 3028.6022 3028.6024

Jyy (kg m2) 2571.745 2571.6120 2570.7159

Jzz (kg m2) 2545.117 2543.7092 2544.9698

Jxy (kg m2) 0.460 0.4866 0.4854

Jxz (kg m2) 3.963 3.9731 3.9583

Jyz (kg m2) 16.971 13.9775 14.4449

TABLE 7: Inertia Calibration Comparisons - Pre Thermal Controller Updates
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4.5 Post Thermal Control Updates - Post Delta-V Manoeuvres in OCM
In this section, the performances of the STR-FOG and STR-dynamic model based filters are assessed based

on data processed during free running mode in OCM after the delta-V manoeuvre in OD 0568. This corresponds
to a period after the thermal controller updates.

4.5.1 Fibre Optic Gyro Based Estimation Algorithm
The errors, , are shown in below Figure 61. As presented previously for the science mode pointing, it can

be seen from these results that updates to the thermal controller has improved the consistency between the current
filter and the STR-FOG based filter.

4.5.2 Dynamic Model Based Estimation Algorithm
The errors, , for this case are shown in below Figure 62.
As presented previously for the science mode pointing, a similar periodic signal in the  error angle, which

is not observed in the STR-FOG based filter results is present. 
A plot of the nutation angle evolution for this case is shown in Figure 63. The variation is due to the fact that

we have asymmetric transverse inertias. The relationship between the minimum and maximum nutation angle is
given in Appendix A.

The main results of this section are to compare the inertia tensor calibration algorithms. Table 8 shows the in-
itial estimates based on prediction prior to the manoeuvre along with estimated quantities using the current algo-
rithm described in Section 2.2 and estimated quantities based on the algorithm described in Section 2.7. It can be
seen that reasonable agreement is achieved between the two methods.

The algorithm rapidly converged with two iterations. A further 5 iterations were required to reduce the norm
of the state correction to below a specified threshold of 1.0E-10. In no cases were there any poorly observable
cases where the estimation process diverged.

δθ

δθ
δθx
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FIGURE 61: Current filter versus STR-FOG based filter comparison
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FIGURE 62: Current filter versus STR-Dynamic model based filter comparison
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FIGURE 63: OD 0568: Post Delta-V Free Running Mode Nutation Angle

Parameter
Mass Properties 

Prediction
Current Calibra-
tion Algorithm

New Calibration 
Algorithm

Principal Moments of In-
ertia

J1 (kg m2) 3022.469 3022.4693 3022.4689

J2 (kg m2) 2574.532 2576.3553 2576.7422

J3 (kg m2) 2533.489 2529.6264 2529.66260

Nutation to Spin Ratio νn (-) 0.1832505 0.1836733 0.1835717

Axial Imbalance Δ (-) 0.0190187 0.0216713 0.0218303

Principal Axis Tilt Angles ψ1 (arcmin) 4.533130 4.554814 4.536182

ψ2 (arcmin) -28.257155 -28.240129 -28.257358

ψ3 (degree) 27.4958 31.4670 31.5633

Moments of Inertia Jxx (kg m2) 3022.436 3022.4365 3022.4361

Jyy (kg m2) 2565.784 2563.6225 2563.8432

Jzz (kg m2) 2542.270 2542.3921 2542.5944

Jxy (kg m2) 0.464  0.4370  0.4325

Jxz (kg m2) 3.925 3.9162 3.9168

Jyz (kg m2) 16.813 20.8102 21.0021

TABLE 8: Inertia Calibration Comparisons - Post Thermal Controller Updates
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5 Conclusions
New batch filtering algorithms have been proposed, developed and tested. The first of these is an STR-FOG

based filter, the second and third are STR-dynamic model based filters, that can be used to filter data during nom-
inal re-orientation slews in HCM and stable pointings in SCM, respectively. 

The current filter used by the operational AHF generation subsystem and the new filters, have all been proto-
typed in MATLAB and end-to-end tested. The test data was generated for a complete OD using the Planck HPT-
DG. Commands were extracted from the APPL/APF for OD 0390. The new filters are able to filter out STR
spatial biases significantly better than the current filter. The current filter passes all low frequency STR alignment
variations that are within the filter passband. The new filters reject this provided that the period of the variation is
less than the period of the stable pointing period in SCM, for the data that is being filtered. If this is not the case,
the variations are not filtered by the new filters either. The new STR dynamic model based filter used to filter data
during a nominal re-orientation slew in HCM has also been validated using data generated by the HPTDG. The
accuracy achieved using this is very good and can be used to provide filtered data during the periods where the
spacecraft is performing nominal scanning law slews. Finally a complete end-to-end validation of the current al-
gorithm and the new dynamic model based algorithm, used to estimate the spacecraft inertia tensor, has been per-
formed using HPTDG data. The results obtained for the current and new algorithms are comparable.

The current filtering algorithm and new filters have also been tested using in-flight STR and FOG telemetry
data. Due to the similarity of the results obtained by processing simulated and in-flight data, when comparing the
current filter with the STR dynamic model based filter (SCM) outputs, it is concluded that certain alignment vari-
ations can be filtered out using the new filters. Also, the new filters provide excellent performances with respect
to the filtering of STR spatial biases. The new filters have been assessed using data from two science mode point-
ings, data taken before and after the thermal controller updates. In the case prior to the thermal controller updates,
it has been demonstrated that the new filters partially reject the low frequency errors, that result from changes in
the STR alignment. The results from the 3 alignment variation cases considered, show similar results to those ob-
tained with the HPTDG simulated data. However, for the STR-FOG based filter, it remains unclear how much the
FOG is affected by the pre thermal controller update environment. From the frequency analysis of the angular
rates and integrated angular rates, one can see all the attitude disturbances on both transverse and spin axes, with
the main frequency correlated to the sorption cooler compressor cycle period. All other frequencies observed are
simple multiples of this basic frequency. The variations on the X-axis error, that result from these disturbances,
correspond roughly to a variation of 6 gram•m2 in the X-axis principal moment of inertia. The updates made to
the STR dynamic model based filter (SCM), for internal disturbance torque estimation due to the sorption cooler
subsystem, show a significant improvement with regards attitude estimation about the spacecraft X-axis. Results
are now comparable to those obtained with the STR-FOG based filter. Also shown are the results for nutation an-
gle reconstruction performance, which are completely in line with those obtained using the current filter results.

In the case after the thermal controller updates, there are clear improvements to attitude reconstruction in gen-
eral. It is also noted that the current filter performances are now comparable with the two new filters and vice-ver-
sa. 

Also tested using in-flight data are the STR-FOG and STR dynamic model (HCM) based filters by processing
data during a nominal re-orientation slew in HCM. Similar performances are achieved to those obtained using the
simulated data.

Finally, it has been demonstrated that the dynamic model based spacecraft inertia tensor estimator provides
consistent results with the current algorithm used to estimate the spacecraft inertia tensor. This has been tested us-
ing in-flight data collected in OCM after a delta-V has been performed. As with the science mode examples, two
cases have been considered prior to (OD 0247) and one after (OD 0568) the thermal controller updates. Results
with the new filter are close to those obtained using the current algorithm, that is used operationally.

Table 9 gives a summary of the capabilities and deficiencies of each filtering method in turn.
At the time of writing, the new algorithms are being integrated into the operational Planck Flight Dynamics

attitude history file generation. If a unified post mission attitude history reconstruction is agreed, it is highly rec-
ommended to use the refined algorithms instead of the baseline algorithm for improved science data quality.
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TABLE 9: Summary of the capabilities and deficiencies of Planck attitude filtering methods on a scale + ± – 0
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Appendix A     Current Inertia Tensor Calibration Algorithm

This appendix presents an alternative derivation of the current algorithm used to estimate the spacecraft iner-
tia tensor, that is described in Section 3.3.9 (FCP-P-D-MAINT procedure) of [13]. Annex A of [12] also gives
several relevant definitions and conventions.

In the principal axis reference system, it can be shown that for an asymmetric rigid body spinning about it’s
major principal axis of inertia (X-axis), that the momentum ellipse under torque free motion is given by:-

(A.1)

where

(A.2)

and

 are the spacecraft principal axis moments of inertia.

 are the true angular rates expressed in the principal axis system.

 are the true angular momenta in the principal axis reference system.

The angular momenta expressed in the principal axis reference system are given by:-

(A.3)

Substituting (A.3) into (A.1) yields:-

(A.4)

where

(A.5)

The angular rates expressed in the principal axis reference system are related to the pseudo principal axis an-
gular rates as follows:-

(A.6)

where  is the principal axis azimuth angle. Substituting (A.6) into (A.4) yields:-

(A.7)
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where

(A.8)

The algorithms in Chapter 5 of [8] are then to compute the pseudo principal axis angular rates, from which the
principal axis tilts  can be computed. Then, using (A.7), an over-determined linear system is constructed,
which is then solved to determine the coefficients . 

Then from (A.8), the principal axis azimuth angle  can be determined as follows:-

(A.9)

and it can be shown that:-

(A.10)

where the parameters (A,B) are related to the semi-major/minor axes of the momentum ellipse. So it follows from
(A.5) that:-

(A.11)

Also using the algorithm described in Section 3.3.9.4.2 of [13], the nutation to spin rate ratio is estimated,
which can be expressed as a function of the principal axis moments of inertia as:-

(A.12)

So the transverse principal axis moments of inertia can be obtained from:-

(A.13)

where

(A.14)

The mass properties prediction is used to provide an estimate of the major axis principal moment of inertia .
The complete inertia tensor can then be recovered using the estimated principal axis tilts  and the prin-

cipal axis azimuth angle , as follows:-
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(A.15)

where the transformation from the body axis reference system to the principal axis reference system can be repre-
sented as a (3-2-1) Euler rotation sequence [ψ1, ψ2, ψ3], where:-
• ψ1, ψ2 are the tilt angles of the spin axis w.r.t. the nominal spin axis (XB)
• ψ3 is the azimuth angle

The transformation from the body axis reference system to the principal axis reference system can be per-
formed using the following transformation matrix:-

(A.16)

From which, the direction of the spin axis (principal X-axis with the absence of nutation) in the body axis refer-
ence system is therefore given by:-

(A.17)

In the absence of nutation, this is aligned with the angular momentum vector.
For a nutating spacecraft, the nutation angle is given by:-

(A.18)

where the relationship between the minimum and maximum nutation angles is given as follows:-

(A.19)

and

(A.20)

From which

(A.21)

It follows from (A.21), that for an axisymmetric spacecraft, , the nutation angle is constant.

JB TPB
1– JPTPB TPB

T
J1 0 0
0 J2 0
0 0 J3

TPB= =

TPB

1 0 0
0 ψ3cos ψ3sin
0 ψ3sin– ψ3cos

ψ2cos 0 ψ2sin–

0 1 0
ψ2sin 0 ψ2cos

ψ1cos ψ1sin 0
ψ1sin– ψ1cos 0

0 0 1

=

XP

ψ2 ψ1coscos
ψ2 ψ1sincos

ψ2sin–

=

θsin
H2

2 H3
2+

H------------------------=

θminsin
J1J3
J1 J3–
---------------⎝ ⎠

⎛ ⎞ 2E
H2------- 1

J1
----–⎝ ⎠

⎛ ⎞=

θmaxsin
J1J2
J1 J2–
---------------⎝ ⎠

⎛ ⎞ 2E
H2------- 1

J1
----–⎝ ⎠

⎛ ⎞=

θmaxsin
J2 J1 J3–( )
J3 J1 J2–( )
------------------------- θminsin=

J2 J3=( )



96 Planck On-Ground Attitude Estimation Algorithms

Appendix B     Spacecraft Dynamic Models

This appendix contains a description of the spacecraft dynamic models used within the dynamic model based
estimation algorithms. Appendix B.1 describes the model used for the estimation scheme described in Section 2.6
and B.2 describes the model used for the estimation scheme described in Section 2.7.

B.1 Dynamic Model Based Estimation Algorithm (SCM)
In this case, the Planck spacecraft is modelled as a rigid body with a periodic internal torque about the princi-

pal X-axis. The equations of motion in the principal axis reference system are given as:-

(B.1)

where:-

 true angular rate vector expressed in spacecraft principal axes.

 true external torque vector expressed in spacecraft principal axes.

 is the principal axis inertia tensor.

 is the ith periodic component of the sorption cooler disturbance torque with frequency, ,
i=1…5.

 is the compressor cycle frequency.

The sorption cooler disturbance torque periodic components can be expressed as follows:-

(B.2)

Linearising (B.1) yields:-

(B.3)

where the partial derivatives are computed analytically as:-

(B.4)
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1– ωP[ ][ ]JP JPωP[ ][ ]–( )=

∂f ω
∂τP
--------- JP

1–=
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(B.5)

A set of constants  have been retained from the frequency analysis of FOG data during a long duration pointing
in SCM.

B.2 Dynamic Model Based Inertia Tensor Estimation Algorithm
The Planck spacecraft is modelled as a rigid body with a slowly varying inertia tensor. The equations of mo-

tion in the principal axis reference system are given as:-

(B.6)

where:-

 true angular rate vector expressed in spacecraft principal axes

 true external torque vector expressed in spacecraft principal axes

 is the principal axis inertia tensor which is a function of the nutation to spin rate
ratio, , and the axial imbalance, .

(B.6) can therefore also be written:-

(B.1)

The nutation to spin rate ratio is given by:-

(B.2)

and the axial imbalance, Δ, is a measure of the degree of asymmetry between the two spacecraft transverse princi-
pal moments of inertia and is defined as:-

(B.3)

In the general case of a nutating asymmetric spacecraft, the spin rate will not be constant, whereby, , is the
maximum spin rate. In the absence of nutation, the spin rate is constant.

The inertia ratios  and  in (B.2) and (B.3) are positive quantities and are defined as:-

∂f ω
∂xi
--------- J– P

1–
1
0
0

=

∂xi
∂ωi
-------- tAi ωit ϕi+( )cos t

ωi
----- ẋi= =

∂ωi
∂ωscs
------------ ki=

ki

ω̇P JP
1– νn Δ,( ) τP ωP[ ][ ]JP νn Δ,( )ωP+( ) f ω ωP τP νn Δ, , ,( )= =

ωP ω1 ω2 ω3, ,( )=

τP τ1 τ2 τ3, ,( )=

JP diag J1 J2 J3, ,( )=
νn Δ

ω̇1 J1
1– τ1 ω2ω3 J3 J2–( )–( )=

ω̇2 J2
1– τ2 ω1ω3 J1 J3–( )–( )=

ω̇3 J3
1– τ3 ω1ω2 J2 J1–( )–( )=

νn
ωn
ωs
------

J1
J2
---- 1–⎝ ⎠

⎛ ⎞ J1
J3
---- 1–⎝ ⎠

⎛ ⎞ α2α3= = =

Δ
J1
J3
----

J1
J2
----– α3 α2–= =

ωs

α2 α3
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(B.4)

From (B.2) and (B.3), we obtain the following quadratic equation:-

(B.5)

Solving (B.5) for , where the root ensuring that  is positive quantity will be taken.

(B.6)

Rearranging (B.3), it follows that  can be obtained from:-

(B.7)

Rearranging (B.4) and assuming that we know the spin axis principal moment of inertia, , we can solve for the
transverse principal moments of inertia as follows:-

(B.8)

The axial imbalance is zero for an axial symmetric spacecraft, since the transverse principal moments of inertia
are equal.

Linearising (B.6) yields:-

(B.9)

where the partial derivatives are computed analytically as:-

(B.10)

Also

(B.11)

where

α2
J1
J2
---- 1–=

α3
J1
J3
---- 1–=

α2
2 Δα2 νn

2–+ 0=

α2 α2

α2
Δ
2---–

1
2-- Δ2 4νn

2++=

α3

α3 Δ α2+=

J1

J2
J1

1 α2+
---------------

2J1

2 Δ– Δ2 4νn
2+( )+( )

------------------------------------------------------= =

J3
J1

1 α3+
---------------

2J1

2 Δ Δ2 4νn
2+( )+ +( )

------------------------------------------------------= =

ω̇P ω̇̂P
∂f ω
∂ωP
----------⎝ ⎠

⎛ ⎞ δωP
∂f ω
∂τP
---------⎝ ⎠

⎛ ⎞ δτP
∂f ω
∂νn
---------⎝ ⎠

⎛ ⎞ δνn
∂f ω
∂Δ
---------⎝ ⎠

⎛ ⎞ δΔ+ + + +=

∂f ω
∂ωP
---------- JP

1– νn Δ,( ) ωP[ ][ ]JP νn Δ,( ) JP νn Δ,( )ωP[ ][ ]–( )=

∂f ω
∂τP
--------- JP

1– νn Δ,( )=

∂f ω
∂νn
---------

∂f ω
∂J2
---------⎝ ⎠

⎛ ⎞ ∂J2
∂νn
---------⎝ ⎠

⎛ ⎞ ∂f ω
∂J3
---------⎝ ⎠

⎛ ⎞ ∂J3
∂νn
---------⎝ ⎠

⎛ ⎞+=

∂f ω
∂Δ
---------

∂f ω
∂J2
---------⎝ ⎠

⎛ ⎞ ∂J2
∂Δ
-------⎝ ⎠

⎛ ⎞ ∂f ω
∂J3
---------⎝ ⎠

⎛ ⎞ ∂J3
∂Δ
-------⎝ ⎠

⎛ ⎞+=
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(B.12)

and

(B.13)

∂f ω
∂J2
---------

J1
1– ω2ω3

J– 2
2– τ2 ω1ω3 J1 J3–( )–( )

J– 3
1– ω1ω2

=

∂f ω
∂J3
---------

J1
1–– ω2ω3

J2
1– ω1ω3

J– 3
2– τ3 ω1ω2 J2 J1–( )–( )

=

∂J2
∂νn
---------

8J1νn–

2 Δ– Δ2 4νn
2+( )+( )

2
Δ2 4νn

2+( )
---------------------------------------------------------------------------------------=

∂J3
∂νn
---------

8J1νn–

2 Δ Δ2 4νn
2+( )+ +( )

2
Δ2 4νn

2+( )
---------------------------------------------------------------------------------------=

∂J2
∂Δ
--------

2J1 Δ Δ2 4νn
2+( )–( )–

2 Δ– Δ2 4νn
2+( )+( )

2
Δ2 4νn

2+( )
---------------------------------------------------------------------------------------=

∂J3
∂Δ
--------

2J1 Δ Δ2 4νn
2+( )+( )–

2 Δ Δ2 4νn
2+( )+ +( )

2
Δ2 4νn

2+( )
---------------------------------------------------------------------------------------=
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Appendix C     Batch Estimator Implementation

This appendix contains an overview of how the batch estimation algorithms have been implemented to filter
the measured star tracker attitude quaternion on Planck spacecraft.

Appendix C.1 gives a general overview on how the estimators have been implemented. A flow chart shows
exactly the steps and calculations performed.

Appendix C.2 presents the state transition matrices for the various batch estimation algorithms. For purposes
of numerical efficiency and speed, the state transition matrices have been partitioned in order to exploit the sparse
system dynamics matrix, thereby allowing significant reductions in the order of the matrix differential equations
that must be solved using numerical integration. This is important mainly due to the high measurement frequency
and hence the small integration step size required to propagate the reference state and the corresponding state
transition matrices.

C.1 Generalities
The approach used to implement all batch estimation algorithms described in this article, follows the approach

presented in Chapter 4 of [22]. The construction of the coefficient matrix and observation vector is different,
which allows the use of numerically superior orthogonalisation methods for the least squares solution of the state
vector [23] at a single state epoch, instead of using the method of normal equations.

In general, the dynamics are represented by the following set of non-linear differential equations:-

(C.1)

and the observations are represented by the following set of non-linear equations:-

(C.2)

where  are the measurement errors.
Given a reference state  that follows reasonably close to the actual state vector , then it is possible to

expand the actual state as a Taylor series about the reference state. With the state deviation vector and observation
deviation vector defined as follows:-

(C.3)

Then, assuming the following condition to be satisfied:-

(C.4)

and

(C.5)

where (C.4) is used to propagate the reference state trajectory throughout the selected batch interval and (C.5) is
used to compute the predicted measurements.

Also neglecting terms higher than first order in the Taylor series expansion, then the linearised system dynam-
ics can be found as:-

(C.6)

where

dX
dt------- f X t,( ) X tk( ), Xk= =

Yi h Xi ti,( ) εi+= i 1 … l, ,=,

εi
Xref X

x t( ) X t( ) Xref t( )–=

yi t( ) Yi t( ) Yi
ref t( )–=

dXref

dt------------- f Xref t,( ) Xref tk( ), Xk
ref= =

Yi
ref h Xi

ref ti,( ) εi+= i 1 … l, ,=,

dx
dt------ F t( )x t( )=
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(C.7)

and the linearised observation equation for the ith observation can be found as:-

(C.8)

where

(C.9)

Now (C.6) is a system of first order linear differential equations with time dependant coefficients. The general
solution of this system of equations can be expressed as follows:-

(C.10)

where  is the state transition matrix, which satisfies the following matrix differential equation:-

(C.11)

where (C.11) is used to propagate the elements of the state transition matrix throughout the selected batch inter-
val.

The state transition matrix can therefore be used to reference the measurements back or forward to some arbi-
trary reference epoch , using (C.8) as:-

(C.12)

A flow chart implementation of the batch processing algorithm, taken from Figure 4.6.1 of [22] with slight ad-
ditions, is shown in Figure C.1:

F t( )
f∂

x t( )∂
-------------

X Xref
=

=

yi H̃ ixi εi+=

H̃i
h∂

x ti( )∂
--------------

Xi Xi
ref

=
=

x t( ) Φ t tk,( )xk=

Φ t tk,( )

d
dt-----Φ t tk,( ) F t( )Φ t tk,( )=

tk

yi H̃ ixi εi+ H̃iΦ t tk,( )xk εi+= =
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Figure C.1:   Batch Estimation Algorithm Implementation

(B) Read in next observation Yi and time ti

Compute linearised observation equation

Compute observation deviation vector

Refer linearised observations to single state epoch

1

(A) Initialise for this iteration

Add linearised observation matrix to linear system

Add observation deviation vector to the overall
linear system observation vector N

Integrate reference trajectory from ti-1 to ti

i 1 ti 1–, to Xi 1–
ref, X0

ref Φ ti 1– t0,( ), Φ t0 t0,( ) I= = = = =

Ẋ
ref

f Xref t,( )=

Compute linearised dynamics

F t( )
∂ f
∂X-------

X Xref=
=

Integrate state transition matrix from ti-1 to ti

Φ̇ t t0,( ) F t( )Φ t to,( )= with initial condition Φ t0 t0,( ) I=

H̃i
∂h
∂X-------

Xi Xi
ref

=
=

yi Yi h Xi
ref ti,⎝ ⎠

⎛ ⎞–=

Hi H̃iΦ ti t0,( )=

data matrix Λ
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C.2 State Transition Matrix Structure
For the estimation problems formulated in this article, the sparse structure of the system dynamics matrix,
, given in (C.6) and (C.7), allows partitioning of the state transition matrix. This partitioning results in a sig-

nificant reduction in the number of differential equations, that require numerical integration over the selected
batch interval. This structure exploitation is recommended in Section 4.2.2 of [22]. The structure of the state tran-
sition matrix and the sub-matrix differential equations, that require numerical integration, are presented for the

Figure C.1:   Batch Estimation Algorithm Implementation

1

Has Process Converged? STOP

Iterate:

i=i+1. Thus:

If ti < tfinal

ti becomes ti-1

Goto (C) and solve system of linear equations

If ti >= tfinal

Goto (B) and read in the next observation 

Goto (A) and use the new value of 

Update single Epoch reference state vector

(C) From observation deviation vectors, compute
the mean and standard deviations (σ)
Set outlier removal thresholds to ±6σ

Xref ti( )  becomes Xref ti 1–( )

Φ ti t0,( )  becomes Φ ti 1– t0,( )

Replace  X0
ref with X0

ref x̂0+

Solve system of linear equations Λx̂0 N=

No

Yes

F t( )
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various estimators in the following sections of this Annex.

C.2.1 STR-FOG based Filter
The system dynamics matrix for this estimator is given by (7) and (8). The state transition matrix for this esti-

mator is therefore given as:-

(C.13)

and submatrix differential equations to be numerically integrated are given as follows:-

(C.14)

The number of differential equations to be numerically integrated is therefore reduced from 81 to 36, as a result of
the partitioning. The partitions of the system dynamics matrix, , are defined in (8).

C.2.2 STR-Dynamic Model based Filter (HCM)
The system dynamics matrix for this estimator is given by (16), (18) and (19). The state transition matrix for

this estimator is therefore given as:-

(C.15)

and the submatrix differential equations to be numerically integrated are given as follows:-

Φ
Φ11 Φ12 Φ13

03 3× I3 Φ23

03 3× 03 3× I3

=

Φ̇11 FAΦ11 FBΦ21+= Φ̇23 I3=

Φ̇12 FAΦ12 FBΦ22+=

Φ̇13 FAΦ13 FBΦ23+=

FA FB,( )

Φ

Φ11 Φ12 Φ13 Φ14 Φ15 Φ16 Φ17 Φ18 Φ19

Φ21 Φ22 Φ23 Φ24 Φ25 Φ26 Φ27 Φ28 Φ29

03 3× 03 3× I3 03 3× 03 3× 03 3× 03 3× 03 3× 03 3×

03 3× 03 3× 03 3× I3 03 3× 03 3× 03 3× 03 3× 03 3×

03 3× 03 3× 03 3× 03 3× I3 03 3× 03 3× 03 3× 03 3×

03 3× 03 3× 03 3× 03 3× 03 3× I3 03 3× 03 3× 03 3×

03 3× 03 3× 03 3× 03 3× 03 3× 03 3× I3 03 3× 03 3×

03 3× 03 3× 03 3× 03 3× 03 3× 03 3× 03 3× I3 03 3×

03 3× 03 3× 03 3× 03 3× 03 3× 03 3× 03 3× 03 3× I3

=
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(C.16)

The partitions of the system dynamics matrix, , are defined in (19) and the matrices  are de-
fined according to the HCM nominal slew timeline, as given in Figure 1 and the logic in (16). The number of dif-
ferential equations to be numerically integrated is reduced from 729 to 162, as a result of the partitioning.

C.2.3 STR-Dynamic Model based Filter (SCM)
The system dynamics matrix for this estimator is given by (26) and (27). The state transition matrix for this

estimator is therefore given as:-

(C.17)

and the submatrix differential equations to be numerically integrated are given as follows:-

Φ̇11 FAΦ11 FBΦ21+= Φ̇21 FCΦ21=

Φ̇12 FAΦ12 FBΦ22+= Φ̇22 FCΦ22=

Φ̇13 FAΦ13 FBΦ23+= Φ̇23 FCΦ23 F1+=

Φ̇14 FAΦ14 FBΦ24+= Φ̇24 FCΦ24 F2+=

Φ̇15 FAΦ15 FBΦ25+= Φ̇25 FCΦ25 F3+=

Φ̇16 FAΦ16 FBΦ26+= Φ̇26 FCΦ26 F4+=

Φ̇17 FAΦ17 FBΦ27+= Φ̇27 FCΦ27 F5+=

Φ̇18 FAΦ18 FBΦ28+= Φ̇28 FCΦ28 F6+=

Φ̇19 FAΦ19 FBΦ29+= Φ̇29 FCΦ29 F7+=

FA FB FC, ,( ) Fi

Φ

Φ11 Φ12 Φ13 Φ14 Φ15 Φ16 Φ17 Φ18 Φ19 Φ1A Φ1B Φ1C Φ1D Φ1E Φ1F Φ1G

Φ21 Φ22 Φ23 Φ24 Φ25 Φ26 Φ27 Φ28 Φ29 Φ2A Φ2B Φ2C Φ2D Φ2E Φ2F Φ2G

Φ31 Φ32 Φ33 Φ34 Φ35 Φ36 Φ37 Φ38 Φ39 Φ3A Φ3B Φ3C Φ3D Φ3E Φ3F Φ3G

02 3× 02 3× 02 3× I2 Φ45 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1×

02 3× 02 3× 02 3× 02 2× I2 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1× 02 1×

0 0 0 0 0 Φ66 Φ67 0 0 0 0 0 0 0 0 Φ6G

0 0 0 0 0 Φ76 Φ77 0 0 0 0 0 0 0 0 Φ7G

0 0 0 0 0 0 0 Φ88 Φ89 0 0 0 0 0 0 Φ8G

0 0 0 0 0 0 0 Φ98 Φ99 0 0 0 0 0 0 Φ9G

0 0 0 0 0 0 0 0 0 ΦAA ΦAB 0 0 0 0 ΦAG

0 0 0 0 0 0 0 0 0 ΦBA ΦBB 0 0 0 0 ΦBG

0 0 0 0 0 0 0 0 0 0 0 ΦCC ΦCD 0 0 ΦCG

0 0 0 0 0 0 0 0 0 0 0 ΦDC ΦDD 0 0 ΦDG

0 0 0 0 0 0 0 0 0 0 0 0 0 ΦEE ΦEF ΦEG

0 0 0 0 0 0 0 0 0 0 0 0 0 ΦFE ΦFF ΦFG

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

=
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(C.18)

The partitions of the system dynamics matrix,

are defined in (27). The number of differential equations to be numerically integrated is reduced from 576 to 246,

Φ̇11 FAΦ11 FBΦ21+=

Φ̇12 FAΦ12 FBΦ22+=

Φ̇13 FAΦ13 FBΦ23+=

Φ̇14 FAΦ14 FBΦ24 FC+ +=

Φ̇15 FAΦ15 FBΦ25 FCΦ45+ +=

Φ̇16 FAΦ16 FBΦ26+=

Φ̇17 FAΦ17 FBΦ27+=

Φ̇18 FAΦ18 FBΦ28+=

Φ̇19 FAΦ19 FBΦ29+=

Φ̇1A FAΦ1A FBΦ2A+=

Φ̇1B FAΦ1B FBΦ2B+=

Φ̇1C FAΦ1C FBΦ2C+=

Φ̇1D FAΦ1D FBΦ2D+=

Φ̇1E FAΦ1E FBΦ2E+=

Φ̇1F FAΦ1F FBΦ2F+=

Φ̇1G FAΦ1G FBΦ2G+=

Φ̇21 FDΦ21 FEΦ31+=

Φ̇22 FDΦ22 FEΦ32+=

Φ̇23 FDΦ23 FEΦ33+=

Φ̇24 FDΦ24 FEΦ34+=

Φ̇25 FDΦ25 FEΦ35+=

Φ̇26 FDΦ26 FEΦ36 FFΦ66+ +=

Φ̇27 FDΦ27 FEΦ37 FFΦ67+ +=

Φ̇28 FDΦ28 FEΦ38 FFΦ88+ +=

Φ̇29 FDΦ29 FEΦ39 FFΦ89+ +=

Φ̇2A FDΦ2A FEΦ3A FFΦAA+ +=

Φ̇2B FDΦ2B FEΦ3B FFΦAB+ +=

Φ̇2C FDΦ2C FEΦ3C FFΦCC+ +=

Φ̇2D FDΦ2D FEΦ3D FFΦCD+ +=

Φ̇2E FDΦ2E FEΦ3E FFΦEE+ +=

Φ̇2F FDΦ2F FEΦ3F FFΦEF+ +=

Φ̇2G FDΦ2G FEΦ3G FI+ +=        

+FF Φ6G Φ8G ΦAG ΦCG ΦEG+ + + +( )

Φ̇31 FJΦ21 FKΦ31+=

Φ̇32 FJΦ22 FKΦ32+=

Φ̇33 FJΦ23 FKΦ33+=

Φ̇34 FJΦ24 FKΦ34+=

Φ̇35 FJΦ25 FKΦ35+=

Φ̇36 FJΦ26 FKΦ36+=

Φ̇37 FJΦ27 FKΦ37+=

Φ̇38 FJΦ28 FKΦ38+=

Φ̇39 FJΦ29 FKΦ39+=

Φ̇3A FJΦ2A FKΦ3A+=

Φ̇3B F JΦ2B FKΦ3B+=

Φ̇3C FJΦ2C FKΦ3C+=

Φ̇3D FJΦ2D FKΦ3D+=

Φ̇3E F JΦ2E FKΦ3E+=

Φ̇3F F JΦ2F FKΦ3F+=

Φ̇3G FJΦ2G FKΦ3G+=

Φ̇66 Φ76= Φ̇76 FLΦ66=

Φ̇67 Φ77= Φ̇77 FLΦ67=

Φ̇88 Φ98= Φ̇98 FNΦ88=

Φ̇89 Φ99= Φ̇99 FNΦ89=

Φ̇AA ΦBA= Φ̇BA FPΦAA=

Φ̇AB ΦBB= Φ̇BB FPΦAB=

Φ̇CC ΦDC= Φ̇DC FRΦ2G=

Φ̇CD ΦDD= Φ̇DD FRΦ2G=

Φ̇EE ΦFE= Φ̇FE FTΦEE=

Φ̇EF ΦFF= Φ̇FF FTΦEF=

FA FB FC FD FE FF FI FJ FK FL FM ,FN FO FP FQ FR FS FT FU, , , , , , , ), , , , , , , , , ,(
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as a result of the partitioning.

C.2.4 Dynamic Model Based Inertia Tensor Estimation Algorithm
The system dynamics matrix for this estimator is given by (33) and (34). The state transition matrix for this

estimator is therefore given as:-

(C.19)

and the submatrix differential equations to be numerically integrated are given as follows:-

(C.20)

The partitions of the system dynamics matrix, , are defined in (34).
The number of differential equations to be numerically integrated is reduced from 289 to 158, as a result of

the partitioning.

Φ

Φ11 Φ12 Φ13 Φ14 Φ15 Φ16 Φ17 Φ18 Φ19

Φ21 Φ22 Φ23 Φ24 Φ25 Φ26 Φ27 Φ28 Φ29

Φ31 Φ32 Φ33 Φ34 Φ35 Φ36 Φ37 Φ38 Φ39

02 3× 02 3× 02 3× I2 Φ45 02 1× 02 1× 02 1× 02 1×

02 3× 02 3× 02 3× 02 2× I2 02 1× 02 1× 02 1× 02 1×

01 3× 01 3× 01 3× 01 2× 01 2× 1 Φ67 0 0
01 3× 01 3× 01 3× 01 2× 01 2× 0 1 0 0
01 3× 01 3× 01 3× 01 2× 01 2× 0 0 1 0
01 3× 01 3× 01 3× 01 2× 01 2× 0 0 0 1

=

Φ̇11 FAΦ11 FBΦ21+=

Φ̇12 FAΦ12 FBΦ22+=

Φ̇13 FAΦ13 FBΦ23+=

Φ̇14 FAΦ14 FBΦ24 FC+ +=

Φ̇15 FAΦ15 FBΦ25 FCΦ45+ +=

Φ̇16 FAΦ16 FBΦ26+=

Φ̇17 FAΦ17 FBΦ27+=

Φ̇18 FAΦ18 FBΦ28+=

Φ̇19 FAΦ19 FBΦ29 FD+ +=

Φ̇21 FEΦ21 FFΦ31+=

Φ̇22 FEΦ22 FFΦ32+=

Φ̇23 FEΦ23 FFΦ33+=

Φ̇24 FEΦ24 FFΦ34+=

Φ̇25 FEΦ25 FFΦ35+=

Φ̇26 FEΦ26 FFΦ36 FG+ +=

Φ̇27 FEΦ27 FFΦ37 FGΦ67+ +=

Φ̇28 FEΦ28 FFΦ38 FH+ +=

Φ̇29 FEΦ29 FFΦ39+=

Φ̇31 FIΦ21 FJΦ31+=

Φ̇32 FIΦ22 FJΦ32+=

Φ̇33 FIΦ23 FJΦ33+=

Φ̇34 FIΦ24 FJΦ34+=

Φ̇35 FIΦ25 FJΦ35+=

Φ̇36 FIΦ26 FJΦ36+=

Φ̇37 FIΦ27 FJΦ37+=

Φ̇38 FIΦ28 FJΦ38+=

Φ̇39 FIΦ29 FJΦ29+=

Φ̇45 I2=

Φ̇67 1=

FA FB FC FD FE FF FG FH F, , I F J ), , , , , , ,(
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Appendix D     Glossary of Terms

ACA: Planck Attitude Control Axes

ACC: Attitude Control Computer

ACMS: Attitude Control and Measurement System

AHF: Attitude History File

ALOS: About Line Of Sight of the STR

AME: Absolute Measurement Error

APF: Attitude Parameter File

APPL: Augmented Programmed Pointing List file

ASW: ACC Application Software

BSW: ACC Basic Software

CPV: Commissioning and Performance Verification Phase

DCM: Direction Cosine Matrix

DFT: Discrete Fourier Transform

DPU: HFI Data Processing Unit

DTCP: Daily Telecommunications Contact Period

ESOC: European Space Operations Centre

FD: Flight Dynamics

FDDB: Flight Dynamics Database

FOG: Fibre Optic Gyro

FOV: Field Of View

HCM: Planck Angular Momentum Control Mode

HPTDG: Planck High Precision Test Data Generator developed by FD TVA

ICD: Interface Control Document

LOS: Line Of Sight of the STR

LSQ: Least Squares

LUT: Look-Up Table

OBDB: ACC On-board Database

OCM: Planck Orbit Control Mode

OD: Operational Day (counted from launch L=2009-05-14T13:12Z)

PSD: Power Spectral Density

REBA: Radiometer Electronics Box Assembly

SCM: Planck Science Mode

SCE: Sorption Cooler Electronics

SCS: Sorption Cooler Sub-system

STR: Star Tracker

TV: Test and Validation section of the Flight Dynamics division

TVA: Test and Validation (Attitude)
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