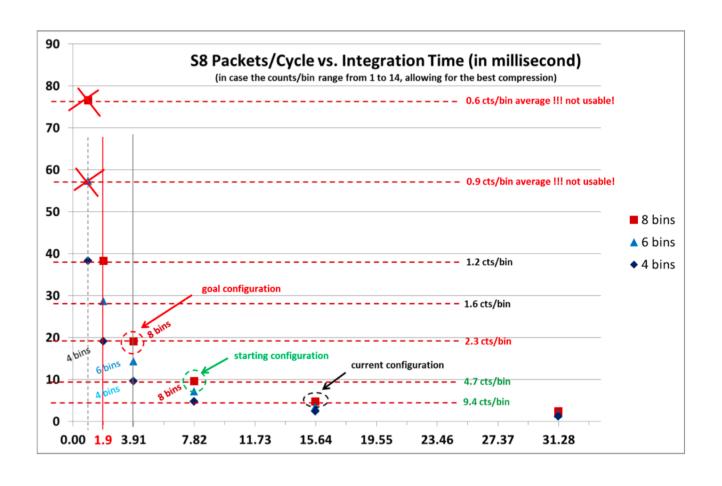
IBIS team @IAPS 17 October 2018+ Bologna, Milano and Palermo

Ugo Zannoni, Lorenzo Natalucci, Pietro Ubertini, Pietro, Teresa Fiocchi, Barbara Vetere, Angela Bazzano, Francesca Panessa, Francesca Onori James Rodi, Silvia Zampieri, Gabriele Bruni, Elia Chiaraluce, and a guest (2 Phd with Tor Vergata University, a shared Postdocs with Ahead and Hemera H2020 programs

Funding and Support

 Calibration (and operations support from INAF-IAPS Roma, IASF-Palermo and OAS/Bologna

Funding INAF + ASI (INAF for Staff members)


INAF/IBIS 7+3.5 Permanent staff, expected to remain for duration of mission +3 postdoc for science ASI/IBIS Funded

Agreement ASI/INAF still on going and expiring in August 2019
contract for people well behind the end 2019

ASI just asked for IBIS request to cover the period 2019-2022, No discussion about post operation ...

IBIS new OCR

Motivated by the recent PiCsIT S8 analysis and to get a better scientific output, the team has analyzed the possibilty to improve the time resolution for Spectral timing data with PiCsIT.

To better follow the time profile of a GRB we need to use a shorter integration time still maintaining 8 bins (energy channels) histograms. We verified with R. Southworth this would be possible to test using a few hours of observation in the new PiCsIT configuration that need only a TC to modify the time resolution from 15.94 ms to 7.82ms.

60000.

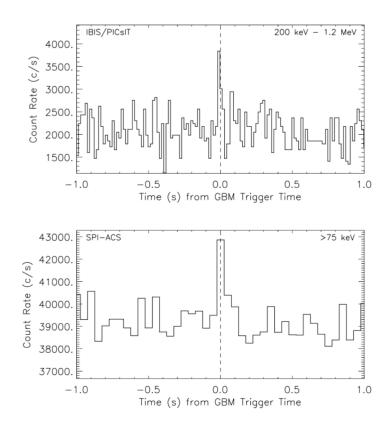
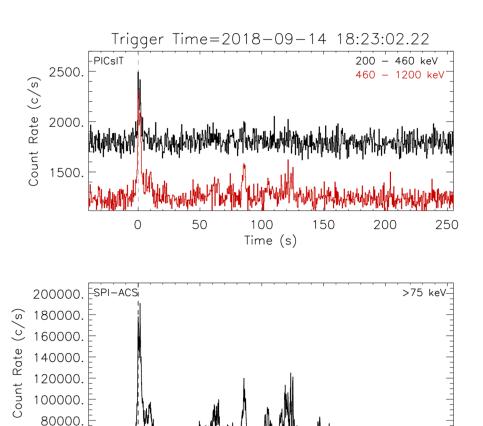



Fig. 1.— INTEGRAL light curves for IBIS/PICsIT (top) in the 200 keV - 1.2 MeV range and SPI-ACS (bottom) above 75 keV.

50

100

Time (s)

150

200

250

GWs related activity @IAPS

- For IBIS/PiCsIT a software has been developed to perform real-time analysis of the Spectral Timing data for detecting GRB in view of joint gravitational wave-electromagnetic events during the upcoming LIGO/VIRGO obseravtion runs
- We have access to telemetry stream and are currently installing the OSA software to generate the standard real-time data packets

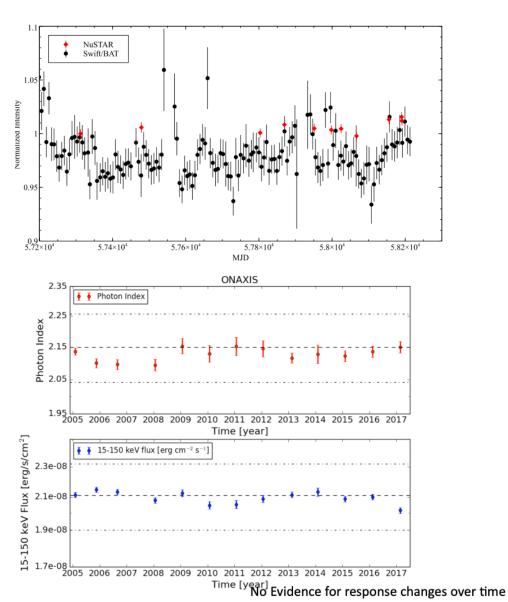
NEW REQUEST

To avoid missing of peculiar events, we should have S8 pkts during slews!

Cross-Calibration/IACHEC

- IACHEC meeting in Avigliano Umbro, Italy 9-12 April 2018
- Presentation by V. Savchenko (IBIS/ISGRI calibration)

Some topics relevant to INTEGRAL:


- Agreed procedure for handling of coordinated observations data analysis
- Crab observation campaigns and data analysis
- 3C273 and Crab cross-calibration papers
- Issues in Swift/NuSTAR joint analysis of bright sources
- IACHEC/AHEAD cross-calibration database
- J. Rodi responsable for the cross-calibration database

Crab calibration analyses [1/2]

NuSTAR results for Crab calibration campaigns:

24 observations, nominal (focused) and straylight (shown) (Kristin K. Madsen)

Swift/BAT long-term gain and response stability (Craig Markwardt)

Crab calibration analyses [2/2]

Update on timing calibration with Crab pulsar (Lucien Kuiper):

- Confirmed that timing signals from the X-ray and gamma-ray instruments are found to be ahead of the radio signal by \sim 0.2-0.4 μ s.
- The distribution of this time difference for a given instrument differs significanly from other instrument's, with a possible energy dependence

Update on spectral calibration (Lorenzo Natalucci):

- Analysis of cross-cal "historical data": 14 nearly simultaneous epochs (2005-2016). Emphasis on the hard band (>10 keV)
- On board:
 - NuSTAR, INTEGRAL/IBIS & SPI, RXTE/PCA, Suzaku/XIS and HXD, Swift/BAT and Fermi/GBM
- Consistent results for all observations, considering the assumptions in the calibration of the different instruments. Cross-cal matrix available
- INTEGRAL data analysis to be upgraded to new OSA-11 release

3C273 campaign

3C273 multi-instrument campaign: performed yearly. Cross-cal paper in progress (K. Madsen lead)

Results IBIS/NuSTAR/XMM (analysis by M.Molina & coll)

Year	Γ	C _{FPMA/ISGRI}	C _{FPMB} /ISGRI	$F_{20-40\text{keV}}^{\text{ISGRI}} \\ (10^{-11}\text{erg cm}^{-2}\text{s}^{-1})$	$F_{20-40\text{keV}}^{\text{FPMA}}$ ($10^{-11}\text{erg cm}^{-2}\text{s}^{-1}$)	$F_{20-40\text{keV}}^{\text{FPMB}}$ $(10^{-11}\text{erg cm}^{-2}\text{s}^{-1})$	$\Delta \chi^2$
2012	1.669±0.003	$0.995^{+0.07}_{-0.06} \ 1.196^{+0.411}_{-0.244}$	$1.024^{+0.07}_{-0.06}$ $1.211^{+0.416}_{-0.247}$	6.49	6.46	6.65	0.994
2015	1.739 ± 0.012	$1.196^{+0.411}_{-0.244}$	$1.211^{+0.416}_{-0.247}$	3.74	4.47	4.53	1.012
2016	1.608 ± 0.005	1.069 ± 0.06	1.087 ± 0.06	11.73	12.54	12.75	1.094
2017	1.677±0.007	$0.861^{+0.09}_{-0.07}$	$0.88^{+0.09}_{-0.08}$	6.62	5.70	5.84	1.055
Year	Γ	C _{FPMA/XMM}		F ^{XMM} _{2-10keV} (10 ⁻¹¹ erg cm ⁻² s ⁻¹)	F ^{FPMA} _{2-10keV} (10 ⁻¹¹ erg cm ⁻² s ⁻¹)	FFPMB 2-10keV (10 ⁻¹¹ erg cm ⁻² s ⁻¹)	$\Delta \chi^2$
Year 2012	Γ 1.667±0.02	C _{FPMA/XMM} 1.095±0.02		<u>'</u>		FFPMB 2-10keV (10 ⁻¹¹ erg cm ⁻² s ⁻¹)	$\Delta \chi^2$ 0.987
2012			C _{FPMB} /XMM	F ^{XMM} _{2-10keV} (10 ⁻¹¹ erg cm ⁻² s ⁻¹)	FFPMA (10 ⁻¹¹ erg cm ⁻² s ⁻¹)		

- IBIS and NuSTAR flux normalisation and slope consistent at ~10% level (uncertainty mostly limited by statistics)
- epic-PN spectra harder than NuSTAR in the 2017 observation
- epic-PN flux normalisation lower than NuSTAR (~10%)

Urgent IBIS related to do list

Implement the 8ms OCR

ESA/ESOC

IAPS

ISDC

IAPS

Full real time data display at IAPS

Implement Advocate GW scientists scheme

To increase the INTEGRAL appeal:

Release to ISDC IBIS Compton Mode SW SACLAY

Release to ISDC PICsIT Timing SW