

SPI Performance Monitoring

MPE Contributions

November 2018

MPE routine monitoring:Spectral Fitting

• Routine decomposition of SPI detector spectra ☆ spectral performance SPI Background Total Model ☆ background situation Individual Compon \rightarrow SPI response database (www) Photon counts 10⁸ 10¹⁰ ₣ Energy [keV] e*+e 1820 1760 171TI 212Bi 71As 184 ²⁰⁶Bi ²⁰⁷At ⁷²Ga ²²⁹Ac 10⁹ Continuum 510 500 520 Energy [keV] Photon Counts 10 SPI Backgro Total Model 10⁷ ŧ Photon counts 10⁷ 10⁶ ⁷Bi2 500 Energy [keV] 450 550 10⁵ Continuum 500 1000 2000 20 50 5000 100 200 Energy [keV] 1760 1780 1800 1820 Energy [keV]

Roland Diehl

SPI Performance Monitoring

ACS Calibration

- Regular calibrations of ACS system: threshold steps
 - Rate reduction with increasing threshold (32 steps, ~50 loops)
 - Compare performance for remaining 89 of
 91 FEE rate outputs among successive calibrations

In-orbit analysis of ACS calibrations (V2)

from meeting 4 Sep 2018 (FS, XZ, TS, AvK, RD)

- Datasets: ~1000 loops through 32 threshold values, for 89 FEE units ^C~10⁷ data points $D_{aiik} = D_{annealing:cycle:threshold:FEE}$
- Model: count rate results from incident particles (& photons) as seen by BGO integrated above a threshold energy
- Assumptions:
 - Incident particle spectrum can be expressed as an analytical formula, e.g. power-law
- $I(E) = a_0 \cdot E^{-a_1}$ Incident particle spectrum remains constant during one ACS calibration
 - Incident particle spectrum does not change shape between ACS calibrations (i.e., only intensity)
- $E_{j,k} = E_k + j \cdot dE_k \text{threshold electronics implements equal-amplitude steps above their minimum value}$ $\varepsilon (E) = \frac{1}{1 + e^{-\tau (E E_j)}} \text{threshold function (i.e. } 0 \rightarrow 1 \text{ transition to a module's efficiency) is characterised by a range } \tau$
 - BGO response has an energy threshold that is not sharp and different for each module
- $R_{k}(E) = \frac{\eta_{k0}}{1 + e^{-\sigma_{k}(E-E_{k0})}}$ BGO light yields have been calibrated pre-launch with radioactive sources $\frac{R_{k}(E)}{R_{l}(E)} = \lambda_{kl} \frac{R_{k0}(E)}{R_{l0}(E)}$ BGO response has weak variations: with temperature, different prelaunch/in-flight, with time
- ACS • Analysis task: incident ACS particles response electronics $m(\overline{a_0,a_1,E_{jk},\sigma_k,\eta_{k0},\lambda_{kl},\tau_k})$ \bigstar Fit data $D_{_{ijk}}$ by a model that minimises residuals for $D_{jk} = \int_{-\infty}^{\infty} \lambda_k R_k \cdot \varepsilon \cdot I \cdot dE$ \rightarrow check if parameters vary among annealings (this could imply variations w temperature, time, or failures)

INTEGRAL User Group Meeting, Nov 2018

- Prelaunch calibration data re-acquired
 - ^{CP} Individual PMTs (disconnect one of 2 and calibrate with 137Cs source; von Kienlin)
 - Spreadsheet of calibration logs digitised
 - Many inconsistencies: Often no peak recognised in spectra; sometimes "negative" gains; Many useful peak-channel/energy data as well.
 - ^CB.Sc. Student project, Felix Schmuckermaier, Aug Dec 2018
- ACS calibration data per annealing fitted for each FEE
 - Algorithm shows inadequacy of single powerlaw function for CR spectrum
 - ☆ Degeneracies between threshold parameters and energy steps
 - ☆ Needed to adopt an initial energy scale

☆ The behaviour does not trace one smooth trend

- Our assumptions are not strictly valid:
 - The 'excitation function' (CRs) may not be a smooth power law
 - The steps in energy per threshold setting may not be linear

☆ Inspect the residuals from the expected behaviour

^{Can} we learn about ACS element groups?

Inspect the residuals from the expected behaviour

Threshold loops: the mean, at one annealing S Can we learn about ACS element groups?

ACS Calibration: Next

- Finalisation of B.Sc. Thesis Felix (Nov'18)
 - ☆ Documentation of ground calibration results
 - ☆ Documentation of calibration method
 - Algorithm, excitation spectrum, threshold functions, ACS AE response
 - ☆ Status of fits per FEE, including residuals
- Finalisation of calibration (Dec/Jan)
 - ☆ Assessment of approximations
 - ☆ Review of absolute energy calibration
 - ☆ Grouping of ACS subunits
 - ☆ Repetition of calibration data fits with constraints
- Comparison/Validation on ACS burst data and simulations

Late-Mission Activities @ MPE

- Review routine procedures (→ automatic; documented)
 - 🖈 Data import
 - ☆ Routine processing
 - ☆ Quality checking
 - ☆ Spectral fitting → response database
 - ☆ Performance validation (incl annealings)
 - ☆ Software maintenance
- Develop multi-instrument analysis software
 - ☆ Model parameter fitting
 - ☆ Instrumental response and background treatment encapsulated
 - ☆ Start with GBM, SPI, LAT, …
 - ☆ Python based
- Prepare handover of MPE-INTEGRAL activities
 - ☆ RD retirement 2019; 2 PhD students till 2020/21; DLR support XZ till 2021