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Abstract

The task First Look Preprocessing (FLP) provides a daily check of the functioning of GAIA on

the basis of the scienti�c measurements of the satellite. Within this task, the Ring Solution is a spe-

cial algorithm with some resemblances to the Great-Circle Reduction of ESA's astrometry satellite
HIPPARCOS. The observed stars are connected by their astrometric, attitude and calibration param-

eters so they form a ring on the celestial sphere. Here, the special interest of the Ring Solution is the

estimability and the accuracy of an appropriate set of parameters describing all quantities in question.
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1 Introduction to GAIA First Look Preprocessing

The scienti�c data analysis of the GAIA observations consists of a very complex and time consuming
data reduction chain. Within a period of about �ve years approximately one to two hundred people will
be active in di�erent tasks. Probably, the success of GAIA becomes clear in the middle of the working
time span only, unless special tasks clarify the functioning of the satellite at the beginning of the data
analysis and constantly thrughout the mission. In order to accomplish this task di�erent checks of the
GAIA original measurements are foreseen. These checks are split in two levels: the Science Quick Look
and the Detailed First Look (Biermann and Bastian 2005). The latter implies the necessity of a high
precission auto-calibrating parameter adjustment which is the task FLP.

In parts, the GAIA FLP shows similarities to the Quick Look and the RGC Reduction tasks of
HIPPARCOS (ESA-SP).

2 Details of the Ring Solution

In order to accomplish the GAIA FLP, several methods are conceivable. Regarding the observed stars
of a measurement period of one day, all objects lie on a ring on the celestial sphere. The so-called Ring
Solution combines the measurements of the observed stars within one day for a �rst high precission esti-
mation of astrometric source, attitude and instrument calibration parameters. The main goal here is not
the calculation of the most sophisticated values of these parameters, but the estimability and an accept-
able error budget. This should show the proper functioning of GAIA. The Ring Solution accomplishes
this analysis in a compact parameter adjustment without any iteration process. Nevertheless, the Ring
Solution allows a star-by-star treatment of the measurements. The solution of the normal equations is
a rigorous algorithm focused on the attitude and calibration parameters rather than on the astrometric
source parameters. Here, the stars are used in a purely geometric way without any astrophysical meaning.
The estimability of the parameter determination will be analysed during the calculation of the solution
using a complete eigenvalue decomposition. So this method works almost independently from the number
of used stars, which allows a comfortable treatment of the data.

2.1 The Observations

The location of a star in question in the focal plane at a certain time instant can be described by the
corresponding �eld coordinates η and ζ. With the knowledge of the attitude and the instrument calibration
parameters, one can derive the astrometric parameters of the observed stars. So, the �eld coordinates
are the observations within the GAIA FLP task. As far as a priori values are available, η and ζ must be
corrected concerning aberration, parallax and light bending e�ects, which is known as a full astrometric
modelling, see (Lindegren 2001).

According to the observational principle of GAIA, the set of observations contains measurements of
both �elds of views of the instrument. Concerning observations of a star in question, we have double
measurements, separated by the basic angle of GAIA and, with a spin rate of 60′′/s, 1.65 hours apart of
each other.

First of all, GAIA delivers one-dimensional information along scan. The star mapper CCDs and the
AF1 CCDs (object con�rmation) deliver observations across scan in addition with a reduced accuracy.

2.2 Quantities of the First Look Preprocessing

Normally, the positions of stars are described in equatorial or ecliptic coordinates (α, δ or λ, β). Since
we limit our part of the celestial sphere to the mentioned ring, it is reasonable to use the spherical RGC
coordinates υ and r based on an arbitrary reference great circle within the ring (Bastian 2004). The
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timespan in question is about one day, so we neglect the proper motion, the parallax and the radial
velocity as unknowns in the adjustment.

The attitude of GAIA will be described by quaternions at a dense grid of time instants and by B-
splines between these time instants. In short, we summarize all these parameters in a part of the vector
of unknowns denoted by a = (a1, a2, . . . , ak), consisting of B-spline coe�cients. In a similar way we treat
the calibration parameters c = (c1, c2, . . . , cl), not exactly speci�ed at this stage of the work.

2.3 Modelling the Observations

In general, all unit vectors from the center to the celestial sphere's surface are connected by a more or
less simple rotation matrix. So it is easy to get a mathematical relationship between our measurements
and the three groups of unknowns. Observations and astrometric soure parameters form two of those
unit vectors, while attitude and calibration parameters deliver a composed rotation matrix. Let a the
vector of the attitude unknowns, s the vector of the astrometric source parameters of all sources and c
the vector of the calibration parameters we get the following generalized observation equation using, see
(Lindegren 2001): (

η − η◦
ζ − ζ◦

)
=
(

∂η/∂a
∂ζ/∂a

)
∆a +

(
∂η/∂s
∂ζ/∂s

)
∆s +

(
∂η/∂c
∂ζ/∂c

)
∆c +

(
εη

εζ

)
(1)

where, η, ζ are the observed �eld angles and η◦, ζ◦ are the ones computed from a priori approximations
of a, c and s, and e.g. (

∂η/∂a
∂ζ/∂a

)
=
(

∂η/∂a1 ∂η/∂a2 . . . ∂η/∂ak

∂ζ/∂a1 ∂ζ/∂a2 . . . ∂ζ/∂ak

)
.

εη and εζ are the observational noise components. The vector a consists of several 103, s of several
107, and c of several 102 unknowns. In the following we denote these numbers of unknowns as na, ns,
and nc. Their sum, the total number of unknowns, will be denoted u. The handling of s is one of the
central problems of GAIA FLP.

2.4 Least Squares Approach and Direct Elimination of Unknowns

The character of the available information leads to the estimation of the unknowns using a least squares
approach with constraints and directly observed parameters. We condense all (a priori) unknowns in a
vector x and all observed minus computed values of (ηi− η◦i) and (ζi− ζ◦i) in a vector l and the directly
observed parameters in the vector lx. One starts with the following two sets of observational equations
and a set of constraints whereat the coe�cient matrices A, B and C are containing the corresponding
partial derivatives:

v = Ax− l, vx = Bx− lx and Cx + w = 0.

v, vx and w are the residual vectors of these two sets of observational equations and the set of
constraints. Searching for an extremum with constraints, this least squares approach focusses on the
minimisation of the following functional:

L = vT Q−1
ll v + vT

x Q−1
xx vx + 2kT (Cx + w) = Min

k is the vector of Lagrange multipliers. We need the following partial derivatives
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∂L
∂vl

= 2Q−1
ll vl = 0, (a)

∂L
∂vx

= 2Q−1
xx vx = 0, (b)

∂L
∂kT

= 2(Cx + w) = 0, (c)

∂L
∂x

= 2kT C = 0. (d)

From (a) and (b) one gets:

AT Q−1
ll Ax = AT Q−1

ll l,

BT Q−1
xx Bx = BT Q−1

xx lx,

summarized to

(AT Q−1
ll A + BT Q−1

xx B)x = AT Q−1
ll l + BT Q−1

xx lx.

With (c) and (d) one gets the normal equations:(
AT Q−1

ll A + BT Q−1
xx B CT

C 0

)(
x
k

)
=
(

AT Q−1
ll l + BT Q−1

xx lx
−w

)
(2)

In this least squares approach Qll is the covariance matrix of the measurements and Qxx is the
covariance matrix of the directly observed parameters. In general we expect non-vanishing correlations
between the di�erent measurements, but we estimate the correlation coe�cients smaller than 0.1. So we
treat Qll as a diagonal covariance matrix:

Q−1
ll =



σ2
◦

σ2
η11

0 . . .

0
. . . 0 . . .

... 0
σ2
◦

σ2
ηi1

0 . . .

... 0
σ2
◦

σ2
ζ11

0 . . .

... 0
. . . 0 . . .

... 0
σ2
◦

σ2
ζi1

0 . . .

... 0
. . . 0 . . .

... 0
σ2
◦

σ2
ηj1

0 . . .

... 0
. . . 0 . . .

... 0
σ2
◦

σ2
ηjn

0 . . .

... 0
σ2
◦

σ2
ζj1

0 . . .

... 0
. . . 0

... 0
σ2
◦

σ2
ζjn
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The rms of unit weight σ2
◦ can in principle be set to any value. This simple weighting model could

be changed during the execution of the ring solution. In general, it is possible to take larger correlation
coe�cients into account, see (Höpcke 1980) after the execution of the estimation process in an additional
correction term to the unknowns and the corresponding rms values. Our treatment of the measurements
requires uncorrelated observations between di�erent sources. The arrangement of the measurements can
be done in two blocks (the η measurements and the ζ measurements) per source, which allows a simple
method of inversion of the covariance matrix of the observations, see (Bernstein 1993), when the o�di-
agonal elements between η and ζ of the same star do not vanish. For each source j, Qjj denotes the
corresponding part of the covariance matrix Qll and lj is the corresponding part of the l vector.

Qxxis considered also as a diagonal matrix and will be discussed later.

The arrangements of the unknowns in the corresponding vectors and matrices is as follows:

x =



υ1

r1

...
υn

rn

−
a1

...
ak

−
c1

...
cl



=

 xs

xa

xc

 , l =



(η − η0)11

...
(η − η0)i1

(ζ − ζ0)11

...
(ζ − ζ0)i1

...
(η − η0)j1

...
(η − η0)jn

(ζ − ζ0)j1
...

(ζ − ζ0)jn



, A =

( ∂lm
∂xu

, . . .
...

. . .

)
(3)

Due to the value of u, Equation (2) cannot be used directly to solve the FLP problem. It is noteworthy
that the inversion of Equation (2) is an u3-process. So, one needs a di�erent strategy to get x. Our strategy
is to split up x into several groups and to estimate the unknowns of these groups in such a way as to
accomplish Equation (2) directly. Our working strategy utilizes the technique of the direct elimination of
unknowns using the Gaussian elimination process in connection with an adjustment of di�erent groups
of unknowns and pro�ting from the addition theorem of normal equation matrices. Those algorithms
are well established in geodesy for the uni�cation of several originally separate parts of a network, see
(Wolf 1975) and (Groÿmann 1975). In the FLP the astrometric parameters are eliminated directly while
the full set of all attitude and calibration parameters are common unknowns for all stars. It is remarkable
that for each star the full set of all attitude and calibration parameters and eventually, the needed
constraints must be taken into account, even those parameters, where the observations are not sensitive.
This leads to an overwhelmingly large part of zero elements of the normal equation parts. However,
after the direct elimination of the astrometric parameters this part changes into a non zero part, which
is a consequence of the Gaussian algorithm. As mentioned, we split x in a source part, containing the
astrometric parameters of all sources in question, and in a so-called satellite part containing the attitude
and calibration parameters. Shown in Figure 1, we get the corresponding structure of the Jacobian matrix.

The corresponding observation equations for all stars n read as follows:
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star 1

star 2

A A A

n n n s a c

s a c

m

star n

Figure 1: Structure of the Jacobian matrix. White areas contain zeros.

v1 = As1xs1 + Aaxa + Acxc − l1,
v2 = As2xs2 + Aaxa + Acxc − l2,
...

...
vn = Asnxsn + Aaxa + Acxc − ln.

(4)

So far, we have source, attitude and calibration parameters located along the same RGC without
�xing a zero point and the basic RGC plane. In general, one can rotate the RGC plane in space. So we
have three degrees of freedom within our adjustment problem. This leads to a rank de�cient problem. In
order to overcome this problem one has several possibilities:

First, one could introduce the approximate values of the source coordinates as directly observed
unknowns with their corresponding accuracy. This would not disturb our strategy of the direct elimination
of the astrometric parameters because this would not change the structure of the resulting normal equation
matrix. The in�uence of those observational equations is like a 'weak constraint' which leads to an
appropriate treatment of the approximate values with their rms errors. So every equation in (4) could
get two more entries than the number of measurements of a star in question: one for υ and one for r:

υobs. + vυ = xυ and robs. + vr = xr. (5)

The design matrices Asj would be enlarged by two rows, the �rst one contains the number 1 for υ
and the second row contains the number 1 for r all the other elements are zero. The covariance matrix
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of the observations would be enlarged by two diagonal elements m∗2
0 /m2

υj
and m∗2

0 /m2
rj
, the o�-diagonal

elements are zero. m∗2
0 is a free parameter and the subject of the �ne tuning of the data analysis. The

introduction of υobs. and robs. with their corresponding accuracy is equivalent to the localization of the
source network of a ring in question on the a priori known astrometric source parameters of reference. A
disadvantage are the possible sytematic errors within the a priori used star catalogue which could lead
to distortions in the attitude determination.

Secondly, one could stop those rotations during the utilization of the Moore-Penrose pseudoinverse.
So one would get a mean location of the ring as a consequence of the minimal trace property of the
Moore-Penrose pseudoinverse.

Thirdly, three rotation angles could be introduced as global parameters describing these global ro-
tations. External information or additional constaints concerning these global rotations could determine
the corresponding values.

At this stage of the work, we choose the second possibility, because the Moore-Penrose pseudoinverse
will be used for other reasons within the parameter estimation process.

Furthermore, it is clear that one can move all stars along scan and one can change the CCD location
parameters in the same way with the opposite sign, so we have a rotation about the RGC pole axis. In
order to stop these rotations we suggest to introduce the following constraint:∑

along scan

xc = 0. (6)

In addition, one can tilt the basic RGC plane by a joint shift of the CCD location parameter across
scan and one can change the attitude parameters correspondingly. In order to avoid those rotations, one
needs two constraints in addition, one for each instantaneous �eld of view (IFOV):∑

across scan
IFOV = 1

xc = 0 and
∑

across scan
IFOV = 2

xc = 0. (7)

Perhaps, a more sophisticated calibration model needs to distiguish short and long (time) scale cali-
bration parameters and the number and form of these constraints will then change. At the present stage
of the work we are dealing with large scale calibration parameters only.

Another group of constraints could be set up concerning the attitude parameters which consists of
sixteen B-spline coe�cients per time instant. The B-spline coe�cients represent the four quaternion
components q = (q1, q2, q3, q4) at the same time instants. It is well known that those quaternions are not
independent of each other. In general we have the constraint

q2
1 + q2

2 + q2
3 + q2

4 = 1
∣∣
t
. (8)

Since these constraints do not contain any astrometric source parameters we could add these con-
straints directly to the reduced normal equation matrix, However, we ought to add those equations to
each attitude parameter concerning to the same time instant. This means that the reduced normal equa-
tion matrix would be exhausted and we could not tackle such a matrix with our computer facilities. Much
more convenient is the introduction of so-called 'weak constraints'. One can reformulate the quaternion
constraint as an additional observation equation with a reasonable weight at each time instant. Such a
procedure allows the separate treatment of these equations and one must add this resulting part of the
normal equation matrix to the reduced (and accumulated) normal equation matrix of the attitude and
calibration parameters. A reasonble weigth for these observational equations is the largest eigenvalue of
the original reduced normal equation, which can be calculated easily.

The constraints concerning the calibration enter our adjustment problem using the Lagrange multi-
pliers kc. With wc containing the contradictions from Equations (6) and (7) before estimation of xc we
get the following constraints:
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CT
c xc = −wc, (9)

where CT
c is the corresponding coe�cient matrix projecting xc along scan or across scan. Equation (8)

contains no astrometric source parameters, so one can add these constraints after the elimination of υj

and rj .
The reformulation of equation (8) as an observation equation leads to

lx =


1
1
...
1

 , B =

 2q1,t1 2q2,t1 2q3,t1 2q4,t1 0 0 0 0 . . .
0 0 0 0 2q1,t2 2q2,t2 2q3,t2 2q4,t2 . . .
...

...
...

... 0 0 0 0
. . .


and BT Q−1

x,xB = Na,a. (10)

After some algebra one gets the normal equations containing the corresponding blocks:


xs

xa

xc

kc

 =


Ns,s Ns,a Ns,c 0

Na,s Na,a +Na,a Na,c 0

Nc,s Nc,a Nc,c Cc

0 0 CT
c 0


+

·




AT
s1

AT
s2

. . . AT
sn

0

AT
a1

AT
a2

. . . AT
an

BT

AT
c1

AT
c2

. . . AT
cn

0


 Q−1

ll l

Q−1
xx lx


−wc

 .

(11)
Since the normal equation matrix is symmetric, we have
Na,s = NT

s,a, Nc,s = NT
s,c and Nc,s = NT

a,c.
Equation (11) deals with the Moore-Penrose pseudoinverse of the normal equation matrix, indicated

by the superscript (+). In spite of the introduction of constraints like Equation (8), we expect a rank
de�cient problem since one does not know whether all reasonable and actually needed parameters of the
full functional model are well represented in our data or not. This topic will be discussed in section 2.5 in
more detail. The utilization of the Moore-Penrose pseudoinverse allows one to overcome those problems
in general.

The matrix Ns,s is a very large block diagonal matrix, where each block is a 2× 2 symmetric matrix
and all o�diagonal blocks are zero matrices. So, one gets the structure of the full normal equation matrix
as shown in Figure 2. This structure and the large number of blocks, perhaps 2.5 × 106, in connection
with the main goal of this task as described in the introduction leads to the direct elimination techniques
using the Gauss algorithm eliminate the astrometric source parameters from Equation (11). We expect
to cope with the reduced normal equation matrix using all well known features of linear algebra.

Figure 3 shows the structure of the reduced normal equations.
The distances of the diagonal lines in Fig. 3 and the increasing size of the interuptions are consequences

of the scanning law. The rough border of the diagonal lines, seen in Figure 4, as the �ne structure of
Fig. 3, shows the interactions between the scanning law and the source distribution remarkably. The last
column in the pattern of Fig. 3 is due to the calibration parameters and the constraints (6) and (7).

This leads to the following working scheme illustrated on Figure 5:

1. starting a loop running over all objects in question,

2. setup of the normal equations for the current object with all needed constraints,

(a) condition test and, if necessary, reduction of the number of unknowns or cancellation of the
current object,
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n

n

star 1 star 2 star n

star 1

star 2

star n

a n cn s n

n c

a

 s

Figure 2: Structure of the original normal equation matrix. White areas contain zeros.

3. elimination of the astrometric parameters from these normal equations,

4. accumulation of the remaining parts of normal equations,

5. terminating this loop and solving the �nal part of the normal equation matrix, which is the part of
a and c,

6. estimation of the astrometric parameters in a subsequent loop over all objects by back-substitution
of the parts of the normal equations,

7. calculation of the corresponding error budget.

Using this scheme, equation (7) reduces to a new equation for all parameters, apart the source un-
knowns. For each star j, we get the corresponding normal equation part:

(
AT

sj
Q−1

jj Asj

)
xs + AT

sj
Q−1

jj

(
Aaj ,Acj

) xa

xc
= AT

sj
Q−1

jj lj . (12)

Qjj is the block diagonal part of Qll for a current source j. Direct elimination of the xsj from all
equations (12) delivers a new normal equation part for each star:
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Figure 3: Structure of the reduced normal equation matrix based on dataset DSL. Black dots show the
non-zero elements of the matrix.

(
Aaj ,Acj

)T
Q−1

jj

(
Aaj ,Acj

)∣∣∣∣
2×red.

xa

xc
=
(
Aaj ,Acj

)T
Q−1

jj lj

∣∣∣∣
2×red.

. (13)

This is a new equation for each star with exactly the same unknowns in common. The accumulation
delivers the �nal normal equation for these unknowns but still without the constraints:

n∑
j=1

(
Aaj ,Acj

)T
Q−1

jj

(
Aaj ,Acj

)∣∣∣∣
2×red.

xa

xc
=

n∑
j=1

(
Aaj ,Acj

)T
Q−1

jj lj

∣∣∣∣
2×red.

. (14)

According equation (2) the constraints change equation (14) to the border matrix structure: ∑n
j=1(Aaj ,Acj )

T Q−1
jj (Aaj ,Acj )

∣∣∣∣
2×red.

CT

C 0

 xa

xc

k

 =

 ∑n
j=1(Aaj ,Acj )

T Q−1
jj lj

∣∣∣∣
2×red.

−w

 . (15)



12 GAIA: First Look Preprocessing March 7, 2006

Figure 4: The four plots are magni�ed parts of the reduced normal equation matrix showing the �ne
structure of �gure 3. Black dots and crosses mark the non-zero elements. The lower right panal shows
the lower right corner of the matrix with the diagonal band of the attitude unknowns, the horizontal and
vertical bands the calibration unknowns and the last three rows and columns the constraints.

The set up of equation (15) is the �rst number crunching subtask within the GAIA FLP. Equation (15)
has approximately 5000 unknowns. In order to calculate the xa and xc from equation 15) we expect to
tackle this equation directly, as described in the next chapter.

The astrometric parameter estimation for each star j is then given by

xsj =
(
AT

sj
Q−1

jj Asj

)−1
[
AT

sj
Q−1

jj lj −AT
sj

Q−1
jj (Aaj ,Acj )

(
xa

xc

)]
, (16)

obtained from (Wolf 1975).
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Loop over sources

equation contribution

normal equations

Solve accumulated

equations, perform
eigenvalue analysis

Loop over sources

source unknowns
Compute

Compute residues

design matrix (source)
differences vector (source)

attitude and calibration unknowns

contribution (source),

Residues

source unknowns

accumulated pre−reduced normal 

pre−reduced normal equation 

pre−reduced right−hand−side (source)

original normal eqn. contribution (source)
right−hand−side contribution (source)

pre−reduced normal

Accumulate pre−reduced

parameters
Eliminate source

Set up normal−

Set up observation
equations
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Figure 5: Illustration of the working scheme.

2.5 The Estimation and Estimability of the Attitude and Calibration Param-

eters

The inversion of the normal equation in (15) is a central problem in the GAIA FLP. In spite of the
constraints (6) and (7) we consider equation (15) as a rank de�cient problem. One can not be sure that
the functional models of the attitude and the calibration will be full established in the approximately
one day of measurements of the GAIA FLP. In addition, basic observations are done along scan, while
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the across scan information from the star mapper CCDs and the AF1 CCDs show much lower accuracy.
This is the reason why we denoted the inversion in equation (11) as a Moore-Penrose pseudoinverse. In
the case of a regular, positiv de�nite reduced normal equation matrix, the Moore-Penrose pseudoinverse
equals a classical inverse by Gauÿ or Cholesky. The rank of a Moore-Penrose pseodoinverse is the same as
the original reduced normal equation matrix. In practice we solve the complete eigenvalue problem with
the modal matrix M containing the eigenvectors and the diagonal matrix Λ containing the eigenvalues: ∑n

j=1(Aaj ,Acj )
T Q−1

jj (Aaj ,Acj )
∣∣∣∣
2×red.

CT

C 0

 = MΛMT (17)

The inverse is then: (
MΛMT

)+ = MΛ+MT . (18)

Solving the complete eigenvalue problem allows the detection of over-stressing of the used functional
model with respect to the short time span of data accumulation. A high-pass �lter will be used to truncate
Lambda for the rank partitioning. The needed treshold parameter is subject of some investigations and
depends on the numerical condition of the reduced normal equation matrix. Using M and the zero
subspace of Lambda we can detect whether certain parameters in the functional models are estimable
or not. Under some circumsdances a reformulation of the functional model could be necessary. A rerun
of the data analysis is then the consequence. This procedure shows some similarities to the well known
truncated singular value decomposition in so-called "schlecht gestellte Probleme", see (Louis 1989).

Figure 5 show the eigenvalue spectra for a given simulated data set. The spectral length of the
eigenvalue spectra in Fig. 5 is of about 1 × 1015. This indicates a numerical bad condition, and means,
that the reduced normal equation is close to be positiv semide�nit with eigenvalues close to zero. This
is an additional justi�cation for the used Moore-Penrose pseodoinverse. The shape of the curve of the
eigenvalue spectra shows four classes of eigenvalues: extreme high signi�cant (a), high signi�cant (b),
signi�cant (c) and not signi�cant (d) region. The transitions from (a) to (b) and from (b) to (c) are
well determined step functions. The transition (c) to (d) is a continuous slope. From such an eigenvalue
classi�cation results a special classi�cation of the unknown parameters of the functional model, not
investigated at this stage of the work.

2.6 The Error Budget

According the minimized functional L and using equation (4) one can calculate the rms of unit weight
m0:

v =


v1

v2

...
vn

 , m0 =

√
vT Q−1

ll v + vT
x Q−1

xx vx

m + mx − u
, (19)

where m denotes the number of all observations, mx denotes the number �ctitious observations and u
is the number of all unknowns including the astrometric source parameters. Qll ist the covariance matrix
of the measurements with a diagonal or block diagonal structure. Q−1

ll can be calculated easily, since this
matrix is positive de�nite per de�nition and sparse. With the a priori known (or estimated) σ0 one can
use the

χ2 =
m2
◦

σ2
◦

(m + mx − u) (20)
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Figure 6: Eigenvalues of the reduced normal equation matrix with constraints based on dataset DSL.

for a lot of statistical tests. Especially the χ2-test or the F-test allows one to check whether the satellite
observations reached the expected accuracy or not: One of the �rst and main goals of this task. This is
the �rst indication of the functioning of the satellite.

Denoting the covariance matrix of the unknowns in common by Gx,x which is the inverse of the
reduced normal equation matrix in equation (15) the rms of an unknown xn is given by

m2
x = m2

◦ · gn, (21)

where gn are the main diagonal elements of Gx,x. Using (Wolf 1975) p.115 one can compute the block
diagonal covariance matrix of the di�erent sources j:

Gsj ,sj
= G−1

j,j + G−1
j,j A

T
sj

Q−1
jj

(
Aaj ,Acj

)
Gx,x

(
Aaj ,Acj

)T
Q−1

jj AsjG
−1
j,j , (22)

with G−1
j,j =

(
AT

sj
Q−1

jj Asj

)−1
. The rms errors of the source parameters are:

m2
sj

= m2
◦ · gsj . (23)

gsj
are the main diagonal elements of Gsj ,sj

. Equation 20 allows the computation of covariances of
the unknowns for a star in question. The computation of covariances between unknowns of di�erent stars
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Figure 7: Eigenvectorcomponents of the �rst zero-eigenvalue of the reduced normal equation matrix with
constraints based on dataset DSL.

is in practise not feasible in the Ring Solution. The calculation of the covariance matrix of the residuals
Qvv is feasible in blocks star by star:

Qvjvj = Qjj −AsjG
−1
j,j A

T
sj
−
(
Aaj ,Acj

)
Gx,x

(
Aaj ,Acj

)T
. (24)

2.7 Used Constants and Units
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Figure 8: Eigenvectorcomponents of the second zero-eigenvalue of the reduced normal equation matrix
with constraints based on dataset DSL.
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Figure 9: Eigenvectorcomponents of the third zero-eigenvalue of the reduced normal equation matrix with
constraints based on dataset DSL.
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3 Investigations of the Residuals

The investigations on the capability and functioning of the satellite includes the estimability of the
parameters in question, the achievement of the expected error budget and a random and undisturbed
behaviour of the residuals. Concerning the last demand on the measurements, we plan to estimate a
series of appropriate covariance functions, some very special Fourier and/or Wavelet analysis, and we
want to use the data to extract special e�ects by some special �lterings. The residuals will be treated
as prewhited time series of unevely spaced data. A reference for all those diagnostics could be obtained,
when one executes the parameter adjustment and all computations concerning the residual investigations
twice: �rst, a random number generator could be used to generate so-called quasi ideal observations which
lead to a new vector of observed minus computed values l◦. The application of this new vector to the
full machinerie of the adjustment and error diagnostics delivers the referencee for the second step when
one execute the same formulas with the real observations l. A series of F-test statistics could be used to
check whether the satellites measurements achieved the expected results or not.

For this purpose, one must summarize and reorder the residuals which are obtained star by star in
section 2.7. concerning di�erent criteria. For example, all residuals of all stars of magnitude m with
mmin ≤ m ≤ mmax, where mmin and mmax must be de�ned appropriately, ordered by ascending time,
form such a special class of data. Those classes can be formed by very di�erent cryteria: magnitude
di�erences can be used as well as colour di�erences. At this stage of the work, those classes are not
established, however one needs such a classi�cation during the residual analysis of the FLP Task. These
classes of data are considered as the basis of the calculations of the subchapters a), b) and c).

3.1 Covariance Functions

In order to estimate covariances, one must bin the data of each class. Now, there is no experience
concerning a reasonable time span for such a binning. But some simulations can help to obtain an
appropriate binning. In general, such an empirical covariance function is given for evenly spaced data:

cov(τ) =
1
N

N∑
(v(t)− v̂)(v(t + τ)− v̂). (25)

Applying equation (24), one gets a series of covariance functions where each will probably look like a
series of Bell-shaped curves. Comparing these covariance curves, we expect a smooth crossing from one
curve to each other. Any kind of discontinuty or leap is the reason for an alert about the functioning of
the satellite.

3.2 Fourier and Wavelet Analysis

Here we summarize all residuals of all stars and reorder these data by ascending time instants. A subse-
quent Fourier analysis should not show any signi�cant higher order of harmonics. Otherwise, one must
introduce a deformation (warp) of the basic great circle plane, which is a contradiction to our assumptions
in the data analysing method and a hint about a problem of the satellite.

In principle, disturbances of the satellite often enter as a cyclic but not strictly periodic e�ect in the
observations. For example, a disturbance occure at di�erent frequencies within certain time spans. In
such a case a wavelet analysis is a better tool than a Fourier analysis. At this stage of the work no details
about such an analysis is speci�ed, but generally foreseen.

3.3 Filtering

In the subchapters a) and b) we tried to extract any kind of disturbances from the residuals, which are
treated as time series. In contrast, one can bene�t from a transformation of such time series. Moreover,
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we make an assumption of a special disturbance and we try to estimate the time location and the
corresponding strength. Here we plan to accomplish several types of data �ltering, like Wiener �lter
or Joseph-Bucy �lter for example. During the measurement phase of the satellite, we hope to get no
signi�cant signal, which could give a hint for a failure of the satellite.
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Figure 10: Programming Scheme of Equation 16
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4 Software Prototype

4.1 Equipment

4.1.1 Hardware

large RAM necessary
tucana: DualPentiumIII 1000 MHz 4096 MB RAM
hydra: DualPentium 4 Xeon 2200 MHz 4096 MB RAM
ceres: Intel Pentium4-64 mit 3400 MHz and 2048 MB RAM

4.1.2 Software

External Software EISPACK http://www.netlib.org/eispack/
Random Number Generator
NumRec ??

GAIA-Software GAIA-LL37 (Lindegren 2001)

4.2 Input Data

4.2.1 Simulated GAIA-Data

Table 1: Data sets used

name noise level number of objects number of measurements per co-ordinate

DSI true 7716 94141
DSK exp3 7716 94140
DSL true 40091 488823
DSM exp3 40091 488821

4.3 Software Implementation and Data Flow

4.3.1 Computing Time Simulation

In the �rst step a simulation of the computing time using di�erent compilers and computers was provided
(Hirte 2004). It could be shown that it is possible to deal with the size of the normal equations which is
necessary for the �rst look.

4.3.2 Tests

Several tests were provided to check the quality and correctness of the developed programms.

Comparison of the observation equations with ODIS The ODIS was the �rst method developed
and tested for the �rst look preprocessing. It used the same data sets as the ring solution. Therefore
the proper directions, derivatives with respect to the unknowns, and the di�erences `observed minus
computed' could directly be compared with that from ODIS.
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Structure of the normal matrix Another important test was to plot and interpret the structure of
the accumulated pre-reduced normal-equation matrix. Figure 3 shows the structure of that matrix

Moore-Penrose test of the pseudo-inverse of the normal matrix blabla

4.3.3 Ring Solution
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5 Results and Documentation

5.1 Validity Check with �true Data�

5.2 Noisy Attitude

5.3 Noisy Calibration

5.4 Realistic Experiment
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6 File Utilization in the First Look Preprocessing

6.1 Contents of the Files
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