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Abstract: The derivation of stellar parameters by automated methods is only meaningful if
some measure of confidence for the predicted value can be stated. In this work we introduce one
possible method for obtaining standard errors and confidence intervals for stellar parameters
Teff , log g, [Fe/H] and extinction AV as predicted by neural networks (NN). We applied the
bootstrapping method to a feedforward NN for Blind Testing Cycle 2 medium band 1X and
2F photometry for end of mission magnitudes G=15 and 19 mag. We further tested whether
the parametrization results can be improved if multiple noisy versions of a filter flux vector
(for a given astrophysical parameter) are used in the training set. The obtained results show
that the bootstrap standard errors only change significantly if the overall signal to noise ratio
is high.

1 Introduction

A feed-forward neural network as used in these and earlier tests (see e.g. Willemsen et al.
2004, hereafter ICAP-PW-003) is a regression model that maps inputs into outputs. Because
of this feature, the concepts of standard errors and confidence intervals can also be used for
this kind of parametrizer. We describe how uncertainty measures for a parameter as predicted
from a neural network can be found via the bootstrap method. Further information as well
as comparisons between different techniques on confidence and prediction interval estimation
for neural networks can be found e.g. in Heskes (1997), Leisch et al. (2000), Papadopoulos
et al. (2000) and especially Dybowski & Roberts (2000) (see also Bishop (1995) for general
discussions about neural network regression).

1.1 Neural networks performing regression

A regression as represented by a feed forward neural network model relates an input vector of
observations x (with components xi which here are the filters in the GAIA 1X MBP system,
i ∈ [1:11]) to one or several output values y (here stellar parameters Teff , log g, and [Fe/H],
plus extinction AV ). During training, the weights of the network are updated according to
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some measure of error between the network outputs y and the target outputs t which is (for
regression) most often the sum-of-squares error

E =
1

2

N
∑

n=1

K
∑

k=1

[yk(x
n;w) − tnk ]2 (1)

The first sum runs over the N training patterns and the second is for the general case of
K outputs. To make things easier, we will only consider one single output (k=1).

If the number of training patterns goes to infinity, the sum over the patterns can be
replaced by an integral, yielding

E =
1

2

∫ ∫

[y(x;w) − t]2p(t,x) dt dx (2)

where p(t,x) can be decomposed into the product p(t|x) p(x), i.e. the (conditional) target
data probability density of t given a particular x and the unconditional density of x.

By defining the conditional average of the target data by 〈t|x〉 ≡
∫

t p(t|x) dt and decom-
posing the term [y − t]2 in expression 1 into [y − 〈t|x〉 + 〈t|x〉 − t]2, one obtains

E =
1

2

∫

[y(x;w) − 〈t|x〉]2 p(x) dx +
1

2

∫

[〈t2|x〉 − 〈t|x〉2] p(x) dx (3)

The second term is independent on the network weights and can be neglected for this dis-
cussion. The first term however is important as it tells us that the minimum of the error is
obtained if

y(x; ŵ) = 〈t|x〉 (4)

where ŵ is the estimated weight vector at the minimum of the error function. Equation 4 shows
that, if N goes to infinity (and if the number of weights is sufficiently large to ensure unlimited
flexibility), the network mapping y(x;w) is given by the regression of t conditioned on x. In
real world applications, the training set is naturally limited so that a network trained on a
dataset (xn; tn) and minimizing equation 1 will approximate the mean value for t conditioned
on x, i.e. the equality in 4 is relaxed to y(x; ŵ) ≈ 〈t|x〉. It is thus evident that such a network
can be regarded as a regression function. Note that the components relating the target to the
input can be distuinguished into a stochastic term, which describes the random fluctuation
of t about its mean and a deterministic component which is described by the functional
relationship (or mapping) y(x;w).

1.2 Uncertainties in training neural networks

There are basically two sources of uncertainty related with neural networks. These are (1)
uncertainties in the training data and (2) limitations of the model. The training data in-
accuracies result from the fact that the set is typically noisy and incomplete. The random
sampling of templates from the associated population as well as from the random fluctuation
of t about the average 〈t|x〉 introduces uncertainties. Thus, the aquisition of a training set is
already prone to sampling variation. Since each training set can yield very different sets of
network weights ŵ, there is a distribution of (estimated) network mappings ŷ(x; ŵ) for given
inputs x.
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The model limitiations arise from local minima of the error function as well as from
a suboptimal training algorithm both of which can again result in a number of possible
estimated weight vectors ŵ. In principle, the choice of the model such as the overall topology
(number of hidden layers/nodes) and the shape of the transfer functions contribute to the
uncertainty in ŵ. In what follows, it is assumed that the chosen network topology is optimal.

1.3 Bootstrapping

The bootstrap was introduced by Efron (1979) for estimating various sample properties such
as bias, variance and confidence intervals for any population parameter estimate. Since then,
this method was successfully applied in many areas of statistics, including linear (Freedman
1981) and nonlinear nonparametric regression (Härdle & Bowman 1988). We will give an
introduction to this technique with special emphasis on its application to neural networks
performing parametrization. For a more detailed discussion see Efron & Tibshirani (1993).

Given a (random) training sample S by pairs of inputs x and corresponding outputs y,
i.e. S = (x1, y1), (x2, y2), ..., (xN , yN ), taken from a population F , we want to estimate the
ensemble of model parameters of interest (network weights) θ = f(F ), which could be done by
calculating θ̂ = g(S) based on S. The bootstrap is a data based method for statistical inference
which allows us to determine the error of the network outputs as given from different values of
θ̂. To obtain the bootstrap standard error, one needs to build bootstrap samples. A bootstrap
sample S∗ is a random sample of the same size N as the original sample which is created
by randomly resampling S with replacement (i.e. S∗ ⊆ S ⊂ F ). In this way, one obtains
B bootstrap samples the bth bootstrap sample given by (x∗b

1 , y∗b1 ), (x∗b
2 , y∗b2 ), ..., (x∗b

N
, y∗b

N
). For

each sample, we minimize
∑

N

n=1[y
∗b
n − y(θ;x∗

n)]2 (i.e. we derive B regression functions by
training a network on each bootstrapping sample) yielding θ̂∗b. The (nonparametric) estimate
of the bootstrap standard error (bse; i.e. the variance of the distribution) for the nth predicted
value is then found from

BSE(x) =

√

√

√

√

1

B − 1

B
∑

b=1

[y(xn; θ̂∗b) − yboot(xn; ·)]2 (5)

with yboot(xn; ·) being the bootstrap committee’s regression given by 1
B

∑

B

b=1 y(xn; θ̂∗b).
It is also possible to calculate a confidence interval (and, with some more effort, even a

prediction interval, see e.g. Dybowski & Roberts 2000) from this booststrap standard error
via

yboot(xn; ·) ± tconfidence BSE(x) (6)

where tconfidence is a factor to be taken from the Student’s t-distribution corresponding to
the desired level of confidence (here 95 %) with the number of degrees of freedom equal to
the number of bootstrap samples B (see Heskes 1997).

The architecture of the networks is the same for each bootstrap sample but each network
trained on a specific bootstrap sample starts at a different position in weight space. This
approach accounts for model uncertainty caused by local minima in the error surface and is
thus a better measure of standard error than e.g. the Delta method or the Sandwich estimator
(see Tibshirani 1995). The number of bootstrap samples is ordinarily in the range from 25 to
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200 (see Efron & Tibshirani 1993 for a detailed discussion and examples where this does not
hold). Note that the ‘error on the error’ is proportional to 1√

(B−1)
.

The presented bootstrap strategy is also called Bootstrap pairs sampling and should not
be confused with Bootstrap residual sampling. For the latter, the model residuals (yi − ŷi) are
taken as the sampling units. As outlined in Dybowski & Roberts (2000), residual sampling
uses the assumption that the residuals are independent of the inputs which need not be the
case. Due to this and other reasons (see especially Tibshirani 1995), the more robust pair
sampling procedure was chosen for these tests.

Above, it is assumed that the ensemble of networks yields unbiased estimates of the (true)
regression function. As discussed in Heskes (1997), this is not really the case (neural networks
are biased estimators) since models trained on a limited number of patterns will always tend
to oversmooth sharp peaks in the data. We here follow Heskes (1997) and assume that the
bias component of the errors is small as compared to the variance component (see Sect. 3).

2 The data set and bootstrap simulations

The data used were those of Blind Testing Cycle 2 for G=15 and 19 mag. For completeness,
a graphical representation of the astrophysical parameter (AP) combinations in the training
and validation sets is shown in Fig. 1 (but see also Brown 2003).

A training set at a given magnitude has 20000 different APs with the corresponding 11
filter fluxes. There are 20 different noise versions (noise in the filter fluxes) of the training
set. We performed several tests with different numbers of noisy training templates for a given
astrophysical parameter combination (see Sect. 4). This procedure is motivated by the fact
that additional noise can help to regularize the network, e.g. prevent overfitting (see e.g.
Bishop 1995). The random resampling was done with a random number generator as given
in Press et al. (1992).

For the general case (case1), we chose 1 of these 20 noise versions with 20000 inputs
of filter fluxes (plus corresponding stellar parameters) and randomly sampled 80 bootstrap
sets. For such a large number of patterns, 80 bootstrap samples may seem rather small. To
allow for a sufficiently large amount of resampling (by which we mean that a pattern does
not appear in the training set), we therefore ensured that 1000 patterns of the original 20000
were indeed missing in each bootstrap sample (on average, each training pattern is missing
four times for the 80 bootstrap samples). The tests for this case were done for the 1X and 2F
photometric system.

Additionally, we calculated the bootstrap errors from the same networks’ outputs, but
only for 20 bootstrap replications (instead of 80). This is referred to as case1b.

For the second case (case2), we did the same as above but, in case that an AP combination
was randomly chosen into the bootstrap sample, we chose 5 noisy (filter flux) versions for this
specific AP, i.e. each bootstrap sample is made up of 20000 × 5 (number of noise versions
for given AP) training templates. In total, we created 20 bootstrap samples in this way for
both magnitudes. Only the 1X system was considered for this case. Note that the random
resampling was done over the APs and not over the noise versions!

For the third case (case3), we did the same as above, but chose in total 15 noise versions
for each randomly resampled AP, i.e. each bootstrap sample is made up of 20000 × 15 inputs
(number of noise versions for given AP). As before, we created 20 bootstrap samples in this
way for both magnitudes but only for the 1X system.
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The choice of the number of bootstrap replications is here mainly motivated by the limited
amount of available computer time. Especially for the last case with 300000 templates per
training set we had to choose a smaller number of replications, given that the training for one
of these network takes very long.

For the validation, we chose only one pattern out of the 20 noisy versions available. For
each bootstrap sample a network with architecture 11:13:13:4 was trained (11 filter flux inputs,
two hidden layers each having 13 neurons and 4 outputs, one for each parameter). In addition,
we trained networks with the same architecture but on the whole training set of 20000 AP
combinations (i.e. without resampling). For case1, a committee of 5 networks was trained,
while for the two other cases only single networks were set up. The code used was that of
Bailer-Jones (2000).

Note that these networks are different from those used in Blind Testing Cycle 2 (results of
Kaempf & Willemsen) which were specialized networks trained on specific ranges in parameter
space and which had a larger number of hidden neurons.
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Figure 1: The astrophysical parameter grids of the training (small dots) and validation set
(large dots) as used in the second cycle of blind testing and in this work.
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3 Results and discussion

In the following the major results of the bootstrap standard error distributions and their
correlations for different stellar parameters are highlighted.

3.1 Bootstrap standard errors for individual stars

Figs. 2 and 3 show examples of bootstrap standard error bars and confidence intervals for
selected stars in the validation set. These results are for bootstrap samples with one filter flux
noise version for a given AP (case1), i.e. 20000 inputs.

In general, it appears that the bootstrap standard errors (bse) are larger for higher tem-
perature objects. Note however, that the fractional error is about the same (∼ 6 % at G =
15 mag) for all temperatures and that the systematic deviations appear to be stronger for
hotter objects due to the chosen scale. The points for the 2F photometric system are not
much different from those of the 1X system.

For gravity we see a systematic trend for the 1X system which is not found for the 2F
photometry. Especially for the 1X case, we see that the precision of the networks is high (the
bootstrap standard errors are small) while the accuracy is rather low (the computed values
are systematically too large or too small).

In going to lower S/N, we observe an overall systematic trend in both filter systems where
low gravities are strongly overestimated while at the same time, the bse are smaller. This
shows that a higher noise level in the input data does not necessarily mean a higher variance
of the estimated output parameters.

There is something peculiar when looking at the errors for the different parameters. For
those parameters which mostly affect the continuum of a stellar energy distribution (Teff and
AV ), we see that a lower S/N (going from G = 15 mag to G = 19 mag) results in equal
or larger bootstrap standard errors. However, for parameters which are (to first order) only
acting on the lines ([Fe/H] and log g) the bses become significantly smaller for smaller S/N.
This can also be seen from the distributions of the bootstrap standard errors as shown in
Figs. 4 and 5 (both case1), or Figs. 6 and 7.

An explanation for these trends might be given by the fact that [Fe/H] and log g are much
more affected by noise than those parameters which can be read from the continuum (we
here primarily refer to Teff since the above trends are not so significant for AV ). Moreover,
given that Teff acts on the whole stellar energy distribution, combinations of all or many
of the 11 filters are used for the determination of this parameter, while for the line-based
parameters only certain filters (centered on specific lines) are of relevance. An increase of
the noise (in going from G = 15 to 19 mag) heavily deteriorates the signal (the information
content) of the line sensitive parameters, thus making the filter flux combinations look almost
equal (equal due to the noise) for different values of in these parameters. The networks trained
on the different bootstrap samples cannot discriminate well the APs, therefore always ending
up on almost the same values (the bses, which measure the variance about the bootstrap
committee’s mean value become small). The temperature information however can still be
found in the continuum, thus allowing for a determination of this parameter. Increasing the
overall noise in the input data therefore yields only a higher variance (bse) for this parameter.
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G=15 mag G=19 mag

# noise templates 1 5 15 1 5 15

∆(Teff) [K] −20 −18 10 228 235 247

∆(log g) [dex] −0.02 0.01 0.02 −0.03 −0.02 −0.02

∆([Fe/H]) [dex] −0.31 −0.28 −0.32 −0.71 −0.69 −0.71

∆(AV ) [mag] 0.04 0.05 0.04 0.18 0.18 0.15

Table 1: This table shows the changes of the systematic errors (for the 1X system) for different
magnitudes and different numbers of noisy filter flux vectors for a given AP in the training
set (1, 5 and 15). ∆(X) is the median of the difference between the bootstrap mean value for
a given parameter and the true value, i.e. ∆(X) = median(meanboot - true(X)).

4 Bootstrap errors for multiple noisy filter flux versions in the

training set

A network which is too complex tends to overfit the training data, giving bad generalization
performance. As mentioned above, we therefore tested whether the regularization of the net-
work can be improved if there are several noisy versions of a filter flux vector (for a given
AP) in the training set.

Figs. 6 and 7 show the results for indiviudal stars for G = 15 and 19 mag, respectively.
The bootstrap error distributions for the three cases are shown in Figs. 8 and 9 for the two
magnitudes. In Table 1 we further state some measure for the systematic errors for the different
cases.

For G= 15 mag, i.e. a high a S/N, we see that only the absolute systematic error of Teff

decreases while the others remain almost the same when there are several noisy flux vectors
for a given AP in the training set. At G = 19 mag however, the absolute systematic error
for Teff increases while for the other parameters the systematics become smaller (for AV and
log g).

Concerning the bootstrap errors we note from Figs. 8 and 9 that for G= 15 mag all bses
increase by more than ∼ 10 % when there are several noisy flux vectors for a given AP in
the training set. At G= 19 mag however, only the bse of AV increase significantly while the
bootstrap errors for the other parameters remain the same or get slightly smaller.

This shows that multiple noisy templates in the training set only change the results for
those cases where the overall S/N is rather high. This is sensible since for very low S/N the
parametrization performance is always poor (due to less significant information in the training
set and probably not because of model imperfections). Additional noise versions of a filter
flux vector do therefore not help in the parametrization.

4.1 Bootstrap standard error correlations

Figs. 10 and 11 show the dependencies of the standard bootstrap errors for different parame-
ters (only case1), while Figs. 12 and 13 show the dependencies of the overall parametrization
errors (given as computed − true) versus the bootstrap errors (only case1, 2F system). To
have some quantitative (albeit somewhat arbitrary) measure for the error’s dependencies, we
also state the correlation coefficients for each parameter pair. However, these numbers should
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not be overinterpreted since even a scatter for a small fraction of the points will naturally
give other values. Moreover, it should be remembered that the plots reflect the underlying
grid of validation stars (e.g. not all parameter combinations are represented).

For analysing such dependencies one has to consider how uncertainties in a regression are
also caused by the input pattern in terms of physical stellar characteristics. For example, a
hot star will almost always yield a high standard error for metallicity, independent of any
sample distribution, initial weight setting etc., but simply due to the fact that there are
almost no metal sensitive features in such spectra. As a result, the regression in this part
of the parameter space is supposed to be almost random, yielding a high variance of the
regression functions estimated by the neural network.

From Figs. 10 and 11 it can be seen that the parameters’ estimated standard errors are
correlated albeit with different degrees of strengths. That bse(teff) is (weakly) correlated
with bse([Fe/H]) can be understood from the above said: hot stars, which have larger errors
due to the smaller training grid density (and the overall similar spectral shape, expressed
by the Rayleigh-Jeans approximation) at these temperatures do not show strong metal lines.
The standard errors of log g seem to be only weakly correlated with the uncertainties in Teff .
This is sensible since temperature information is drawn from the continuum (which can be
well estimated in most cases) while log g is mostly a line sensitive feature (at least for certain
temperatures) as is metallicity. This also explains why the errors of [Fe/H] and log g are
strongly correlated.

Interestingly, we find that the errors of AV and [Fe/H] or log g are strongly correlated
while that of AV and Teff are not. Intuitively, one might have expected that large uncertainties
in Teff correspond to large errors in extinction AV , given that both parameters act on the
continuum in a similar way. An explanation is possibly given by the fact that extinction
is mostly acting in the blue part of the spectrum (see extinction curves of e.g. Fitzpatrick
1999), while Teff affects the whole spectral energy distribution so that a robust temperature
estimation is possible even if extinction determination fails. Due to the CCDs sensitivity, the
S/N is generally lower at blue wavelengths which is especially the case for low temperature
(red and yellow) objects for which extinction cannot be derived easily. Given that for such
objects log g is possibly derived from the (shallow) Balmer Jump or other features at blue
wavelengths, we can understand that bse(log g) ∼ bse(AV ). In the same way, metallicity
information is mostly available at bluer wavelengths (take the Stroemgren m1 index as an
example which is commonly used to derive metallicities for red giants). Thus, low S/N at
these wavelengths deteriorates both, AV and [Fe/H].

A comparison of the distributions in Figs. 12 and 13 shows that the weak correlation
between the overall parametrization errors and the bootstrap errors which can be seen at G

= 15 mag almost totally levels off at G = 19 mag. It can also be seen that the bses of the line
sensitive parameters (log g and [Fe/H]) generally become smaller for lower S/N, something
which was discussed in Sect. 3.1.

4.2 Distributions of bootstrap replications

It is always useful and sometimes also necessary to look at the distribution of the individual
bootstrap realizations. For example, outliers or heavily skewed distributions would rather call
for some more robust measure of standard deviation than given in equation 5. In such a case
one could consider to use a measure based on the quantiles of the distribution (note that this
specific measure is biased, see e.g. Efron & Tibshirani 1993).
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Fig. 14 shows the results for two stars with different temperature and gravity but equal
metallicity and extinction (only case1). It can be seen that the distributions are rather well
behaved, i.e. do not markedly look different from normal distributions. Note that for the
gravity and extinction distributions of the second star (lower panels) the variance is rather
large but more bootstrap replications would probably yield normal distributions.

5 Conclusions

The results show that the bootstrap method is applicable for the estimation of standard
errors for stellar parameters as determined by neural networks. At this point, it must be
mentioned that other methods for uncertainty estimation of predicted values exist. The most
promising alternative is a Bayesian framework as suggested in e.g. Bishop & Qazaz (1997).
Such an approach allows the noise variance itself to depend on the input variables, unlike the
ususal assumption of a normal noise distribution with a constant variance (which can yield
systematically underestimated noise variances). Bishop & Qazaz (1997) could show that this
framework can significantly reduce such a bias. Future work on the estimation of error bars
should therefore include a Bayesian approach.

From our results, we conclude that

• the bootstrap standard errors of the different parameters depend on each other, al-
beit to very different degrees of strength. The strongest dependencies are found for the
bootstrap errors of [Fe/H], log g and AV , which probably reflects the fact that these
parameters are mostly derived from the blue part of the spectrum, i.e. a signal deterio-
ration results in larger uncertainties for all three parameters.

• the bootstrap standard errors become smaller for overall smaller S/N most noticably
for log g and [Fe/H]. This can probably be explained in that the networks cannot dis-
criminate well between the filter flux vectors for different APs at overall low S/N, thus
ending up at almost the same (wrong) value for each bootstrap replication.

• when using multiple noisy versions of a flux vector in the training set (at a given S/N)
the regularization performance of neural networks as measured by the systematic errors
can be improved but only for overall high S/N and only for Teff while for the other
parameters no relevant changes are seen. At lower overall S/N, small improvements
were only observed for log g and AV .

Concerning the bses, a general increase was found for all parameters when there were
several noisy templates in the training set but only for high S/N. For low S/N, the bses
only seem to increase for AV while for the other parameters they essentially remain the
same.
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Figure 2: Shown is the difference between the network committee’s mean value and the corre-
sponding true stellar parameter for specific stars for case1 at G=15 mag for the 1X (left) and
2F system (right column). The error bars are the bootstrap standard errors and the triangles
denote the limits of the corresponding 95 % confidence intervals. In the top panel, the results
are shown for stars of different temperature (in units of kilo Kelvin), the other parameters
fixed at AV = 0.95 mag, [Fe/H]= −1.39 dex and log g∼ 4.5 dex for Teff≥ 5000 K and log g =
1.73 dex for Teff ≤ 5000 K. The second row is for different stellar surface gravities with the
same metallicity and extinction and Teff= 5650 K. The metallicity results are for stars with
Teff = 5650 K and log g = 4.21 dex while those for extinction have Teff= 5650 K and log g =
2.54 dex.
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Figure 3: The same as in Fig. 2 but for G=19 mag. Note that the scale is the same as in Fig. 2
so that certain points fall outside the plotted range.
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Figure 4: The distributions of the bootstrap standard errors bse from top to bottom for the
stellar parameters Teff , log g, [Fe/H] and extinction AV for G=15 mag and case1 (1 noise
version of filter fluxes, 80 bootstrap replications). The left column is for 1X, the right for 2F
photometry. The numbers in brackets show the mean values of the distributions.
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Figure 5: The same as in Fig. 4 but for G=19.
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Figure 6: The same as in Fig. 2 (G = 15 mag, only 1X system) but for the different cases
of multiple noisy flux vectors in the training set for a given AP (here refered to as noise
templates). Left column for 1 noise template (case1b), middle for 5 (case2), right for 15 noise
templates (case3) in the training set per AP.
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Figure 7: The same as in Fig. 6 but for G = 19 mag.
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Figure 8: The distributions of the bootstrap standard errors bse from top to bottom for the
stellar parameters Teff , log g, [Fe/H] and extinction AV for G=15 mag as in Fig. 4 but for the
1X system and for different numbers of noise versions (per AP) in the training set.

17



1 noise template / <Teff> = 504 K

BSE(teff) [K]

0 250 750 1250 1750

0
25

0
50

0
5 noise templates  / <Teff> = 474 K

BSE(Teff) [K]

0 250 750 1250 1750

15 noise templates  / <Teff> = 499 K

BSE(Teff) [K]

0 250 750 1250 1750

<logg> = 0.17 dex

BSE(logg) [dex]

0.0 0.4 0.8 1.2

0
25

0
50

0
75

0

<logg> = 0.15 dex

BSE(logg) [dex]

0.0 0.4 0.8 1.2

<logg> = 0.16 dex

BSE(logg) [dex]

0.0 0.4 0.8 1.2

<[Fe/H]> = 0.16 dex

BSE([Fe/H]) [dex]

0.0 0.4 0.8 1.2

0
25

0
50

0
75

0

<[Fe/H]> = 0.15 dex

BSE([Fe/H]) [dex]

0.0 0.4 0.8 1.2

<[Fe/H]> = 0.16 dex

BSE([Fe/H]) [dex]

0.0 0.4 0.8 1.2

<Av> = 0.20 dex

BSE(Av) [mag]

0.0 0.4 0.8 1.2

0
25

0
50

0
75

0

<Av> = 0.19 dex

BSE(Av) [mag]

0.0 0.4 0.8 1.2

<Av> = 0.21 dex

BSE(Av) [mag]

0.0 0.4 0.8 1.2

Figure 9: The same as in Fig. 8 but for G=19.

18



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  500  1000  1500  2000  2500  3000

B
S

E
(lo

gg
) 

[d
ex

]

BSE(Teff) [K]

0.15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  500  1000  1500  2000  2500  3000

B
S

E
([

F
e/

H
])

 [d
ex

]

BSE(Teff) [K]

0.37

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  500  1000  1500  2000  2500  3000

B
S

E
(A

V
) 

[m
ag

]

BSE(Teff) [K]

0.23

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

B
S

E
(lo

gg
) 

[d
ex

]

BSE([Fe/H]) [dex]

0.83

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

B
S

E
(A

V
) 

[m
ag

]

BSE([Fe/H]) [dex]

0.83

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

B
S

E
(A

V
) 

[m
ag

]

BSE(logg) [dex]

0.94

Figure 10: Shown are the correlations of the bootstrap standard errors (bse) for the different
parameters Teff , log g, [Fe/H] and extinction AV , for 1X photometry (G=15 mag, case1). The
numbers in the upper right part of each plot are the correlation coefficients as calculated for
the data in the plotted ranges.
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Figure 11: The same as in Fig. 10 but for 2F (G=15 mag) photometry.
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Figure 12: The parametrization error given as computed − true versus the bse for the astro-
physical parameters. This plot is for G = 15 mag (case1) in the 2F system.
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Figure 13: The same as in Fig. 12 but for G = 19 mag.
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Figure 14: The distributions of 80 bootstrap neural network replications (case1, 1X) for two
stars at G=15, with log g = 4.21 dex and log(Teff ) = 3.75 (top four panels) and log g = 1.73
dex , log(Teff ) = 3.55 (lower panels). AV and [Fe/H] were fixed to 0.95 mag and −1.39 dex.
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