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Abstract. The detailed analysis of a complex object, such as a partially re-
solved visual binary, may be simplified if the observations are referred to a local
coordinate system after taking into account the satellite attitude, instrument
geometry, aberration and gravitational deflection. Thus these e↵ects need not
be further considered in the analysis. This is possible, to microarcsec accuracy,
within a radius of ' 1 arcmin from a chosen reference point. The definition
of such local plane coordinates (LPCs) is given, together with a specification
of the data that need to be provided with the individual observations. The
advantage of the method is that the object can be analyzed without access
to attitude, geometric calibration and orbit data, and without need for the
corresponding transformations. The necessary computations will probably be
done by CU4 and CU5 “on the fly”, in order to avoid extra inter-CU data flow
volume.

The second issue of GAIA-LL-061 made the concept more complete compared
to issue 1 of 9 October 2005. The third issue pointed out that the aberra-
tional contraction/expansion of the sky is automatically taken into account
by the proposed computational procedure, and it added the formulae for the
computation of the scan direction. The fourth issue corrected two little errors
discovered by Craig Stephenson. The fifth issue introduces the barycentric cor-
rection (Roemer delay) in (4) and the use of tB (the barycentric date) as the
time argument for the LPCs. The sixth issue contains the new Appendix C de-
tailing the computation of the LPC centoids (epoch astrometry). The seventh
issue changes the sign convention for the barycentric correction (see footnote 8)
and adds Appendix D on the transformations for changing the reference point.
Issue 8 adds Appendix E with an example where the standard stellar model is
fitted to the epoch astrometry for Barnard’s star.

The source files for this document are in the DPAC Subversion repository under
http://gaia.esac.esa.int/dpacsvn/DPAC/CU3/docs/General/LPC-LL-061

1 Introduction

The detailed analysis of window (sample) or elementary (centroid) data for a non-single
object is complicated by the fact that the individual observations only make sense in
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relation to certain attitude, calibration, and orbital data. These auxiliary data may be
given in several separate, possibly quite large data sets, and their proper use requires a
long sequence of transformations that are not really central to the specific object analysis
problem at hand.

At the level of the object processing (CU4) and 2-d imaging (CU5), these auxiliary data
are known from the astrometric AGIS and other core processes, and it would seem like a
good idea to ‘correct’ the window/elementary observations for these (known) e↵ects, before
handing them over to the object processing. This note describes a possible procedure for
this. If and how it should actually be used is briefly discussed in Sect. 6.

The basic idea is to define for each object a local plane coordinate (LPC) system in
the tangent plane of the unit sphere, in which the coordinate direction of the object is
modelled. The local system is uniquely defined by the chosen celestial coordinates of the
tangent point (↵0, �0). The local coordinates are similar to the ‘standard coordinates’
customarily used in small-angle astrometry (e.g., [2], [4]), basically obtained through a
gnomonic (central) projection onto the tangent plane. For the individual observations,
data are referred to axes oriented according to the local scan direction.

An important constraint for such local coordinates to be practically useful is that the
di↵erences between coordinate directions and observed (proper) directions are locally neg-
ligible after allowing for a change of origin and scale. This limits the size of the area in
which local coordinates can be used, as discussed in the next section.

2 Di↵erential e↵ects of aberration and light deflection

To first order, stellar aberration causes the apparent position of an object to be displaced
by the small angle (v/c) sin towards the direction of motion (apex), where v is the speed
of the observer, c the speed of light, and  the angle of the object from the apex point. It
is easily seen that, within a small area around the object, the di↵erential e↵ect amounts to
an isotropic change of angular scale by the factor 1� (v/c) cos . Thus, an object located
near the apex appears smaller by the (linear) factor 1�(v/c), while an object near antapex
appears magnified by the factor 1 + (v/c). Since the di↵erential e↵ect is isotropic, there
is no distortion of the image: a circular object remains circular.

The barycentric velocity of Gaia is always around 30 km s�1, or v/c ' 10�4. The apparent
magnification factor consequently varies between 0.9999 and 1.0001. At Gaia accuracies,
this is significant even for ‘small’ objects; e.g., in a binary with component separation
1 arcsec, the apparent separation may vary by ±100 µas (it also a↵ects the apparent flux
by some fraction of a millimag). Thus, e.g., if the object appears smaller, the observed
proper direction o↵sets have to be increased in the transformation to coordinate direction
o↵sets.
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On a much larger angular scale, the di↵erential e↵ect obviously cannot be isotropic, so
the representation by a single magnification factor breaks down at a certain radius. From
numerical tests using the full relativistic aberration formula (Lorentz transformation), it
is found that, for v = 30 km s�1, the simple magnification model is accurate to  1 µas
within a radius of ' 1 arcmin. This holds even for the most unfavourable case of  ' 90�.
The residual error increases quadratically with the radius.

There are other e↵ects besides aberration that must be considered when defining the local
plane coordinates, the most important being gravitational deflection by the Sun. This
causes an apparent shift by approximately (4 mas) cot( /2) away from the Sun, where
 is now the angle of the object from the Sun. In contrast to the aberration, the e↵ect
is anisotropic: the image is always compressed along the circle through the object and
the Sun, and somewhat less compressed (or, for  < 90�, magnified) in the perpendicular
direction. Thus, di↵erential light deflection cannot be described by a single scale factor.
Fortunately, the e↵ect is much smaller than for the aberration, and does not exceed 1 µas
within a radius of 19 arcsec in the most unfavourable case of  = 45� (the smallest Sun
angle allowed by the scanning law). The residual e↵ect increases linearly with radius, and
may in practice be neglected (< 3 µas) within a radius of 1 arcmin.

To su�cient accuracy for the Gaia object processing, the di↵erential e↵ects of aberration
and light deflection by the Sun can therefore always be represented by a simple change of
scale within a field of up to ⇠ 1 arcmin radius.

There are exceptional circumstances where this model is inadequate to describe the local
distortion. This may be the case near one of the major planets (Jupiter, Saturn, etc.).
A possible solution could be to model the gravitational deflection near these bodies as
a superposed, local e↵ect. Moreover, the local coordinates are of course only useful for
objects that stay within the 1 arcmin area for the duration of the mission; this applies to
all stellar and extragalactic objects, but not to solar-system objects.

The use of local plane coordinates, in which di↵erential aberration is accounted for by a
change of scale, was originally adopted for the NDAC processing of double stars [3].

3 Transformations involving local plane coordinates

For the reference point (↵0, �0) we define the reference triad [p0 q0 r0 ] by means of the
three orthogonal unit vectors

p0 =

2

4
� sin↵0

cos↵0

0

3

5 , q0 =

2

4
� sin �0 cos↵0

� sin �0 sin↵0

cos �0

3

5 , r0 =

2

4
cos �0 cos↵0

cos �0 sin↵0

sin �0

3

5 . (1)
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r0 is the direction to the reference point, while p0 indicates local ‘East’ (increasing ↵)
and q0 local ‘North’ (increasing �) if |�0| < 90�. Note however that the reference triad is
perfectly well-defined also at the celestial poles, where ↵0 remains significant.1

For an arbitrary coordinate direction c (in the vicinity of r0, so that r00c > 0) local plane
coordinates (LPC) (a, d) are usually defined through gnomonic projection2

a =
p0
0c

r00c
, d =

q00c

r00c
. (2)

The inverse relation is

c =
r0 + p0a+ q0d

(1 + a2 + d2)1/2
. (3)

Equations (2) and (3) are formally identical to the usual transformations involving stan-
dard coordinates (e.g., [4]), except for the purely practically motivated absence of the
denominators. However, we make the important distinction that c must always be inter-
preted as a coordinate direction, not as an observed (proper) direction. This guarantees
that the object modelling can be completely carried out in (a, d). For example, the com-
bination of proper motion, parallax and a Keplerian orbit (using Thiele–Innes elements)
can be parameterized as

a = aT + (tB � T )µ↵⇤ + fa(t)$ +BX(tB) +GY (tB)

d = dT + (tB � T )µ� + fd(t)$ +AX(tB) + FY (tB)

)
(4)

where (aT , dT ) is the o↵set at epoch T and fa, fd are the known parallax factors, etc; t is
the coordinate time (TCB) of the observation, and tB is the time of observation corrected
for the Roemer delay,

tB = t+ r00bG(t)/c , (5)

where bG(t) is the barycentric position of Gaia at the time of observation and c is the
speed of light. The use of tB as the time argument in (4), rather than t, eliminates the
need for the user to consider the Roemer delay when modelling the motion in the (a, d)
coordinates. As indicated in the equation, this applies both to the proper motion e↵ect
and any orbital motion.3 (As indicated in the equations above, the parallax factors and

1
For example, the two reference points (↵0, �0) = (0

�, 90�) and (↵0, �0) = (90
�, 90�) are not equivalent:

they define di↵erent reference triads.
2
The usual notation for standard coordinates is (⇠, ⌘), but since ⌘ is used for the along-scan field angle,

(a, d) is here suggested for the local plane coordinates. a and d roughly correspond to �↵ cos �, ��.
3
The barycentric correction is important for sources with a high proper motion, or a large orbital motion.

The maximum di↵erence |tB � t| ' 500 s, corresponding to the light time of 1 au, during which Barnard’s

star moves about 160 µas. – In (5) the barycentric correction is calculated for the fixed direction r0, whereas

it should, more correctly, be calculated using the coordinate direction c at the time of the observation.

Within a radius of 1 arcmin from the reference point, the maximum error from this approximation (for

Barnard’s star) is only (160 µas) ⇥ sin 1
0 ' 0.05 µas, so the approximation is acceptable which greatly

simplifies the use of the LPCs.
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Figure 1: The transformation between local celestial coordinates (a, d) and local scan
coordinates (w, z) is uniquely given by the position angle of the scan, ✓. The figure
indicates the sense of directions as seen from the centre of the celestial sphere.

bG are evaluated at t, not tB. But because this is only done when the LPCs are generated,
the subsequent user of the LPCs has no need for t.)

In order to express observations as simply as possible in the local system, we make however
one further transformation, viz., from the local celestial coordinates (a, d) to the local
scan coordinates (w, z) (Fig. 1). This transformation is completely determined by ✓, the
position angle of the scan:

w = a sin ✓ + d cos ✓

z = �a cos ✓ + d sin ✓

)
. (6)

Conversely,
a = w sin ✓ � z cos ✓

d = w cos ✓ + z sin ✓

)
. (7)

Loosely speaking, +w is the local direction in which the FOV moves on the sky (the AL
direction in the local system), while +z is the local AC direction (with the Sun at z > 0).
The precise definition, however, is the following: +w is the local direction of increasing
field coordinate ⌘; +z is the local direction of increasing field coordinate ⇣. The procedure
for calculating ✓ for a particular observation is detailed in Appendix B. It involves nothing
but the attitude and the instantaneous field coordinates (⌘, ⇣) of the celestial object under
consideration.

The use of (w, z) instead of (a, d) allows to distinguish easily between AL and AC quan-
tities. For example, in many cases only the AL coordinate is of interest, and we may
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then omit z altogether. Also, the observational errors are normally uncorrelated between
w and z (and usually much larger in z than in w), whereas a strong correlation would
usually be found between a and d. The specification of samples, patches and windows is
also naturally related to (w, z).

The transformation of an arbitrary object model to the local scan coordinates is straight-
forward; for example, for the model in (4) we obtain

w = saT + cdT + (tB � T )sµ↵⇤ + (tB � T )cµ� + fw$ +XcA+XsB + YcF + YsG

z = �caT + sdT � (tB � T )cµ↵⇤ + (tB � T )sµ� + fz$ +XsA�XcB + YsF � YcG

)

(8)
where, for brevity, we have put s = sin ✓, c = cos ✓ and introduced the parallax factors in
local scan coordinates,

fw = fa sin ✓ + fd cos ✓

fz = �fa cos ✓ + fd sin ✓

)
. (9)

4 Expressing observations in local coordinates

4.1 Elementary observations (centroid positions)

The outcome of the image centroiding process is a determination of the accurate time t
when the image centre crossed an abstractly defined fiducial line on the respective CCD
detector, interpolated to sub-pixel resolution (note that the observations are labelled with
the instant when a specific sample line of the corresponding CCD window was was trans-
ferred to the read-out register, the di↵erence being half the exposure time on the CCD).
This is the main along-scan (AL) astrometric observation. There is also an across-scan
(AC) coordinate, given by the CCD number (n) and pixel column number (m) [1], which
for the SM will also always be interpolated to sub-pixel resolution. For the AF it can be
measured only in exceptional cases (bright stars and special calibration modes) due to the
on-chip binning in the AC direction. The geometrical calibration of the CCDs provides
the mapping from (n,m) and FOV index to field angles (⌘, ⇣), which combined with the
attitude gives the observed (proper) direction u to the object at the instant t. Removing
aberration and gravitational light deflection gives the coordinate direction c at time t,
from which (a, d) are computed by means of (2) and finally (w, z) by (6).4

Note that this computational procedure automatically takes into account (i.e. corrects)
the aberrational contraction/expansion of the sky discussed in Section 2.

Note furthermore that for the above transformations the knowledge of the across-scan field
coordinate ⇣ is needed. This cannot be derived directly for the vast majority of the AF

4
This computation can be simplified by skipping the intermediate coordinates (a, d)
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measurements. In these cases it must thus either be extrapolated from the corresponding
measured SM centroid or from prior knowledge of the object’s astrometric parameters.
Appendix A shows that integer-pixel precision is not su�cient for the purpose.

Now let �w = �⌘ and �z = �⇣ be the standard errors of the centroiding AL and AC,
respectively, expressed as angles; then the complete specification of the elementary astro-
metric observation is: (t, ✓, w,�w, z,�z, fw, fz), where z,�z can be omitted for a purely
one-dimensional (AL) observation (at least �z will not make much sense). Note, however,
that we added the parallax factors (fw, fz), so that one does not need a satellite ephemeris
to interpret the observations. In addition, the reference point (↵0, �0) must of course be
specified; this would be the same for all observations of a given object.

We herewith define the reference point (↵0, �0) to be the catalogue position (i.e. the position
at the catalogue epoch) in the astrometric source catalogue file belonging to the same
delivery of the Gaia Main Database as the local plane coordinates file under consideration.
This definition is always unambiguous, and it is in accordance with the ‘versioning’ concept
for the overall data flow in the Gaia data reduction. It also does not entail any extra data
flow or data organization, since the astrometric parameters of any object will always be
needed for object processing.

In the original data (t, n,m), the AL positional information was essentially provided by
the time t, which therefore had to be given with a resolution of some nanoseconds.5 When
transformed to local scan coordinates, the AL positional information is instead given by
w, and t is only needed to the moderate precision determined by the object’s motion or
variability. For example, a common value for t may su�ce for each FOV transit (not
for planetary objects!), and the sequence of (w, z) values for the individual CCD transits
could similarly be condensed, by averaging, to a single observation for each FOV transit.6

Table 2 shows a possible specification of an LPC file, i.e. of the input data for the “object
processing” by CU4 per celestial source.

Note that photometric data are not included in the table, although it would be natural
to include at least the G magnitudes (calibrated, and probably averaged over all AF
strips) and some RP/BP colour information for each FOV transit in the same structure.

5
Double precision is not su�cient to express time to that resolution over a su�ciently long period.

A suitable format for absolute time scales, and the one chosen by DPAC, is instead be the number of

nanoseconds from J2010.0, expressed as a signed long integer (64 bits). The wrap-around time is 2
63

ns =

292 years.
6
During the discussions of issue 1 of the present document, both D. Pourbaix (for CU4) and U. Bastian

(for CU3) have argued against this averaging, because it would kill a lot of noise information and outlier

treatment possibilities (cosmic rays, disturbing stars from the other field of view and so on). It also

would disable CU4 to independently take the correlations between di↵erent CCD transits from the same

field-of-view transit into account in their error calculus. L. Lindegren has argued to the contrary, saying

that all this can be done by CU3 already, in the computation of the average and its standard error. The

simplifications for the later stage (object processing) are very great, indeed. This discussion is still open.

It has no impact on data volumes if CU4 produces the LPCs “on the fly”.
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Figure 2: Specification of a window of I ⇥ L samples in local scan coordinates (w, z).

This inclusion was indeed requested by CU4 during the discussion of version 1 of the
present document. Of course, CU4 is well justified to request a smooth and easy-to-
use combination of astrometric and photometric data. However, the present document
intends to specify the conceptual interface between Gaia’s core astrometry and its users.
The combination to other data should be an issue in the compilation of the Interface
Control Document for the Gaia Main Database, into which the whole concept of the
present document has to enter eventually, too.

4.2 Window data (samples), simplified model

The local scan coordinates are convenient also for specifying in an absolute sense the
celestial location of any sample, patch or window in the CCD data stream. Consider
the fairly general case of a window containing I ⇥ L samples, as shown in Fig. 2 (one-
dimensional windows are represented with L = 1). Within the window, let the samples be
indexed i = 0 . . . (I � 1) along scan and l = 0 . . . (L� 1) across scan.

For ease of reference and ease of understanding we give the original model of issue 1 in
the present subsection, and a more complete one in the following subsection.

Taking the sample indexed (i, l) = (0, 0) as origin, we may compute the observed (proper)
direction corresponding to its centre exactly as for the image centroid in Sect. 4.1. Re-
moving aberration and light deflection gives the coordinate direction and hence, using (2)
and (6), its local scan coordinates (w0, z0). In principle we could repeat the calculation
for each sample, but it is su�cient to compute the sample dimensions (�w,�z) (which

8



may be negative depending on the adopted indexing convention), from which

wi = w0 + i�w (i = 0 . . . I � 1)

zl = z0 + l�z (l = 0 . . . L� 1)

)
. (10)

A simple expedient (albeit perhaps not the most e�cient one) could be to compute
(wI�1, zL�1) rigorously as for the first sample, and then use (10) to compute (�w,�z).
It should be noted that the sample dimensions vary among the observations because of
di↵erential optical distortion and di↵erential aberration, so it will not be possible to use
fixed values.

The complete specification of the window data would consist of t (the approximate time of
observation); ✓ (the position angle of the scan); I and L (the size of the window); w0 and
z0 (the local scan coordinates of the first sample); �w and �z (the sample dimensions in
local scan coordinates); and the sample values Sil for i = 0 . . . I � 1 and l = 0 . . . L � 1.
Again, the parallax factors fw and fz should be added, but they are in practice identical
for all CCD transits in a given FOV transit. Table 3 shows a possible specification of the
input data per object, neglecting additional information needed for photometric uses, but
already including the shear terms introduced and motivated in the following subsection.

4.3 Window data (samples), complete model

The previous subsection mentions optical distortion and di↵erential aberration to cause
variations in the e↵ective sample dimensions (�w,�z). In fact there are more causes
for such variations: Focal-length evolution, scan motion variations along scan, non-zero
attitude motion across-scan. Furthermore, most of these e↵ects do not only create changes
in (�w,�z), but they also lead to shear terms in (10). These shear terms are too large
to be ignored, as will be shown below. A complete model for the window (sample) data
would thus have to use an extension of (10) in the following form:

wi,l = w0,0 + i�w + lcw (i = 0 . . . I � 1, l = 0 . . . L� 1)

zi,l = z0,0 + l�z + ivz (i = 0 . . . I � 1, l = 0 . . . L� 1)

)
. (11)

In this case, the simple (albeit again perhaps not the most e�cient) expedient could be
to compute (w0,0, z0,0), (w0,L�1, z0,L�1) and (wI�1,0, zI�1,0) rigorously, and then use (11)
to compute (�w,�z, cw, vz),, see Fig. 3.

Note that this procedure uses only three out of the four “corners” of a window, thus
introducing a kind of asymmetry in the treatment of the samples. The obvious way out
would be to also compute (wI�1, zL�1) and to do a full 2-d linear interpolation. This
is not necessary in a first implementation of the LPC concept, but could be an item for
improvement later on. The possible errors (introduced by the nonlinearity of the scan
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Figure 3: Local scan coordinates (w, z) for individual samples, with and without shear
terms.

zzz

w ww

Figure 4: The underlying causes of the shear terms illustrated; see text.

motion and the calibration function over the small range given by the size of a window)
should be small, and for a given source they should not be systematic. On the other hand,
using the fourth “corner” of the window might be used as a convenient way to create a
unit test for the “3-corner” version.

It might be instructive to briefly consider the causes of the shear terms and their probable
sizes. This subject is illustrated in Fig.. 4. This will be done in the rest of the present
subsection. It may be skipped without disadvantages for the implementation or usage of
the local plane coordinates.
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The left-hand panel shows that shear terms may arise in the w, z coordinate system even
if the pixels/samples form an exactly rectangular pattern on the sky. The reason is a
possible rotation of the image of the CCDs on the sky with respect to the field-of-view
reference system (the latter being defined by the great circle joining the two projections
of some ‘central’ FPA point on the sky, in this way setting the (⌘, ⇣) field coordinates, and
in consequence the (w, z) local scan coordinates). Due to the TDI operation of the CCDs,
such a rotation leads to a cw term only, but not to a vz term (see below). Possible causes
of such a rotation are at least threefold: the imprecision of the glueing of the CCDs onto
the focal-plane array (FPA), a rotation of the FPA with respect to the above-mentioned
great circle (the ‘image rotation’ known from Hipparcos), and an across-scan o↵set of the
‘central’ FPA point from that great circle (the ‘di↵erential image rotation’ known from
Hipparcos). Appendix A shows that the e↵ects are probably significant.

The center panel shows an actual shear of the CCD image on the sky. It may be created
by optical distortion. Again, due to the TDI operation of the CCDs, this e↵ect leads to a
cw term only, but not to a vz term (see below).

The right-hand panel shows the e↵ect of an across-scan attitude motion. This time the
samples/pixels shown in the panel do not indicate the projection of the physical CCD
samples/pixels on the sky, but the projection of TDI samples, i.e. of the actual Gaia
data items. The location of a TDI sample represents the average location on the sky of
the corresponding charge cloud over the actual exposure time for this sample. An across-
scan attitude motion slowly shifts the location of a given CCD column in the across-scan
direction on the sky, and thus the across-scan position of the TDI samples derived from
that column. Across-scan attitude motion is the only e↵ect that creates a vz term.

As an aside we would like to make a remark on the ‘sample dimensions’ (�w,�z). Due
to the TDI operation of the CCDs, the along-scan sample dimension (i.e. �w) has no
connection whatsoever with the physical size of the samples/pixels on the sky. Thus it
does not change by e.g. focal-length variations, optical distortion or other optical e↵ects.
Instead, it is determined solely by the ratio between the along-scan attitude motion and
the TDI time interval. It strictly measures the angle by which the spacecraft has rotated
between two successive TDI clock strokes, averaged of over the actual exposure time for
any given star image. In stark contrast, the across-scan sample dimension (i.e. �z) is
solely determined by optical e↵ects and by the physical size of the CCD pixels, i.e. by the
focal length, optical distortion, the FPA temperature and so on. It strictly measures the
angular o↵set between neigbouring CCD columns, averaged over the path that the star
image has taken on the CCD until being read out at the trailing edge of the CCD.

4.4 Combining elementary and window data

Several data items appear both in Table 2 and 3, and it might be desirable to combine
the two data structures (Table 4). Since most of the overlap is in the headers, the saving
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is moderate in terms of the total data volume.

5 Planetary objects

The concept of local plane coordinates as presented in this document cannot be used for
solar-system objects, for at least two fundamental reasons:

1. There is no obvious choice for the reference point (↵0, �0). In fact, since most of
the planetary objects over the course of five years move across the whole sky, no
possible choice of (↵0, �0) for a given object could be used throughout the whole
Gaia mission.

2. For a planetary object it is impossible to compute a coordinate direction without pre-
cisely knowing the orbit. Both the (huge) parallactic e↵ect as well as the relativistic
light bending strongly depend on the distance to the object.

Therefore it seems unavoidable that the planetary-objects task has to make use of the
original Gaia centroids, corresponding to proper directions. Further thinking might lead
to an interface that avoids explicit use of the Gaia calibration and attitude files, but the
Gaia orbit and solar-system ephemeris are fundamentally unavoidable. It is thus doubt-
ful whether a special astrometric interface would be worthwhile in the case of planetary
objects.

As an aside we mention that in the case of planetary objects any averaging over several
CCD transits should not be done. The angular motions of the objects are quite large, and
also the changes of the actual scan direction over a minute of time are relevant.

6 Discussion

Since the appearance of issue 2 of GAIA-LL-061 it has been decided that LPCs will be used
by DPAC, and that indeed (as indicated above) they will be produced by CU4 and CU5
internally, i.e. “on the fly”. Nevertheless we keep the following discussion from issue 2, to
illuminate the background of this decision.

The decision includes the agreement that the necessary software module will be provided
by CU3. The necessary input data (source catalogue, attitude, calibration, orbit and
ephemerides) will be available at the CU4 and CU5 processing centres by virtue of the
regular deliveries of the Main Data Base.

Using local coordinates as described above for the astrometric data input to the object
processing, either at the elementary or window level, gives two very significant advantages:
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1. It relieves the object processing and 2-d imaging workpackages from the tedious,
complicated and potentially error-prone mechanics of making all the transformations
and corrections involving the attitude, calibration and orbital data.

2. It provides an extremely simple and transparent data interface, where all the relevant
information for a specific object may be collected in a single, small file.

Possible disadvantages are:

1. More processing is required to generate the data in local coordinates than just to
copy the relevant files (elementary or raw data, plus attitude, etc). Actually, the
total processing may not be much a↵ected, since the processing is merely shifted
from one place to another.

2. The data volumes to transfer may increase, since the local scan coordinates require
additional information to be provided along with the data – position angle of the
scan, pixel dimensions in local scan coordinates, etc. See below.

3. Definitely, similar data need to be transferred several times as the attitude and
calibration data are modified in the global AGIS iterations. Even the original (pixel-
coordinate) centroids and the sample values will change, although less frequently.

Concerning item 2 we have to compare the data sizes in Tables 2–4 with the typical sizes of
the astrometric elementary and window data per object. For the astrometric elementaries
we need the time (long) and transverse pixel coordinate (int) per CCD transit, the CCD
row (int) and flags (int) per FOV transit, and an identifier (long) per object; the total size
(assuming N = 80, M = 10) is 11 kBytes per object. This is nearly 3 times the amount in
Table 2, and about a quarter of that in Table 4. For the sample data we need in addition 6
sample values (float) per CCD transit (assuming IL = 6), increasing the size to 32 kByte
per object. The saving compared to Table 4 is only 30% or 14 kByte per object. This can
be further reduced if the data for the local plane coordinates are directly combined with
the astrometric elementaries.

Note however that the attitude file for the whole mission (5 years) will be about 1 GByte,
and the geometric calibration files will be at least of the same order. These need to be
transferred in addition to the elementary/sample data in case the local scan coordinates are
not used. Thus, whether or not there is a net saving in the total data volume depends on
the total number of objects that will be treated by the object processing and the 2-d imag-
ing, and whether the transfer of the relevant data for a subset of the whole 109 Gaia objects
will be practical. The break-even number is of order (3 GByte)/(6 kByte) = 500 000. Since
it is likely that many millions of objects will be treated in the object processing task, and
essentially all objects in the 2-d imaging task, the raw sample data plus attitude etc. would
still give the smaller volume, but only by about 15%. The penalty would be to install a lot
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of additional astrometric and data handling software on the side of the object processing
and 2-d imaging.
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Appendix A: The need of AC field coordinates to compute AL local
coordinates

The practical computation of local scan coordinates (w, z) from measured centroids (t, n,m)
was briefly sketched in Section 4.1, where t is the observed transit time (also called along-
scan pixel coordinate), n is the CCD number and m is the across-scan pixel coordinate.
In slightly more detail this computation runs as follows:

Step 1: (t, n,m) ! (t, ⌘, ⇣), field coordinates, using the geometric calibration
Step 2: (t, ⌘, ⇣) ! u, proper direction, using the attitude
Step 3: (t,u) ! (t, c), coordinate direction, using ephemerides (sun and spacecraft)
Step 4: (t, c) ! (t, a, d), local celestial coordinates, using reference point (↵0, �0)
Step 5: (t, a, d) ! (t, w, z), local scan coordinates, using attitude information.

Generally, in the AF the coordinate m, and thus ⇣ is not directly known from the mea-
surements. Therefore the above transformation steps could not be done to the necessary
high precision unless these coordinates would be derived from external information. Such
information can either be the measured AC coordinate of the same celestial object from
the (always available) immediately preceding SM transit, extrapolated to the time of the
AF transit under consideration. Alternatively it could be an approximate knowledge of the
object’s position from a-priori astrometric parameters (position, proper motion, parallax).

This appendix briefly looks at the question which precision the external AC information
needs to have in order not to disturb the inherent precision of the AL measurements in
the AF. Integer-pixel precision is not su�cient, as will be seen immediately.

Let the glueing of the CCDs onto the Gaia focal-plane array be precise to 10µm, for the
physical location of any corner of a CCD. This implies a typical rotation of the CCDs (with
respect to their nominal orientation) of 10µm/60mm = 10µas/60mas = 30µas per AC
pixel. Thus, if the AC coordinate would be known to 1 AC pixel only, AL transformation
errors of several dozen microarcsec would result. E↵ects of similar size must be expected
from optical distortion, image rotation etc. (a di↵erent assumption for the glueing precision
would thus not help much).

An AF-external knowledge of the AC position of all objects to about 1mas is thus desirable
in order to ensure correctness of the transformation to the order of 1µas. It is clear that
this will easily be achieved in the later stages of the Gaia mission and data reduction.
For the majority of the faint stars it will not be available in the early stages, neither
from the SM transits, nor from a star catalogue. However, even for faint stars the SM
transits will be su�cient from the very beginning, since the precision of their individual
AF measurements is lower, too.
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Appendix B: Calculation of the scan direction ✓

The +w axis in Fig. 1 points in the direction of the unit vector (z ⇥ r0)/C, where C =
|z ⇥ r0| is a normalizing factor, and z is the z axis (the third axis) of the Scanning
Refererence System (SRS), as defined in [1]. Recalling that the +d axis points in the
direction of unit vector q0 we have

C cos ✓ = (z ⇥ r0)
0q0 = (r0 ⇥ q0)

0z = �p0
0z (12)

and since +a points in the direction of unit vector p0 we similarly have

C sin ✓ = (z ⇥ r0)
0p0 = (r0 ⇥ p0)

0z = q00z (13)

The position angle can therefore be computed as

✓ = atan2(q00z,�p0
0z) (14)

The unit vector z is directly obtained from the attitude quaternion at the time of the
transit.
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Appendix C: Computation of epoch astrometry from actual observations

This Appendix summarises the formulae (or code snippets) needed to compute the epoch
astrometry (i.e. the LPC centroids and ancillary data) from actual observations.

For a given source, a reference epoch T and a reference point (↵0, �0) must be chosen. In
practice these are the reference epoch of the AGIS solution and the AGIS position of the
source at the reference epoch. The reference point defines the reference triad as in Eq. (1),
i.e.

p0 =

2

4
� sin↵0

cos↵0

0

3

5 , q0 =

2

4
� sin �0 cos↵0

� sin �0 sin↵0

cos �0

3

5 , r0 =

2

4
cos �0 cos↵0

cos �0 sin↵0

sin �0

3

5 . (15)

Importantly, these vectors are fixed for a given source.7

For each CCD observation, the following input data are then needed:

1. the observation time tobs expressed in TCB;

2. the observed coordinate direction c to the source at time tobs. This could be obtained
from the observation by a sequence of transformations as in

WrsEvent observation = ...

BcrsEvent bcrsEvent = observation.toSrs().toComrs().toBcrs();

GVector3d c = bcrsEvent.getDirection();

E↵ectively, this removes aberration and gravitational light deflection (but not the
parallax) from the observed (proper) direction;

3. the spin axis z of the SRS at time tobs, expressed in the CoMRS. This could be
obtained from the attitude quaternion q at time tobs as

Quaternion q = ...

GVector3d z = new GVector3d(0., 0., 1.);

z.rotateVectorByQuaternion(q);

4. the barycentric position bG and velocity vG of Gaia at time tobs, expressed in m and
m s�1.

The position angle of the scan is obtained as in Eq. (14), i.e.

✓ = atan2(q00z,�p0
0z) . (16)

7
For a resolved binary, where the components have di↵erent AGIS solutions, it simplifies the analysis

if the epoch astrometry of both components is expressed with respect to the same reference point, for

example half-way between the components at the reference epoch. This requires that the epoch astrometry

is transformed from one reference point to another, which can be done as detailed in Appendix D.
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The parallax factors in a and d, and the barycentric correction �t are obtained as8

fa = �p0
0bG/A , fd = �q00bG/A , �t = r00bG/c , (17)

where A is the astronomical unit in m (Nature:AstronomicalUnit Meter) and c is the
speed of light (Nature:VelocityOfLight Constant Vacuum). From this, the parallax
factors in w and z are obtained as in Eq. (9), i.e.

fw = fa sin ✓ + fd cos ✓

fz = �fa cos ✓ + fd sin ✓

)
, (18)

and the barycentric epoch of observation is as in Eq. (5), i.e.

tB = tobs +�t . (19)

Finally the o↵sets in ↵ and �, obtained by Eq. (2),

a =
p0
0c

r00c
, d =

q00c

r00c
, (20)

are converted to o↵sets AL and AC by means of Eq. (6), i.e.

w = a sin ✓ + d cos ✓

z = �a cos ✓ + d sin ✓

)
. (21)

For transforming the uncertainties �⌘, �⇣ in the AL and AC field angles, we also need the
(approximate) AC field angle and the (classical) aberration factor discussed in Sect. 2.
The AC field angle ⇣ is obtained to su�cient accuracy from

sin ⇣ = z0r0 . (22)

Thus ⇣ is actually the field angle of the reference point (cf. Appendix D). For the aberration
e↵ect we have

� = r00vG/c , (23)

which is in the range |�| . 10�4. Then

�w = (1 + �)�⌘ cos ⇣ , �z = (1 + �)�⇣ . (24)

The aberration factor 1 + � corrects for the apparent contraction of images (and hence of
the error ellipses) in the direction towards which the observer moves. (The much smaller
e↵ect of the gravitational deflection is here neglected.) Because |⇣| . 0.4� it follows that
1� cos ⇣ . 2.4⇥ 10�5, so the aberration e↵ect is more important than the cos ⇣ e↵ect.

The file lpcBS.fits contains test data for the epoch astrometry. They were generated
from an AGIS solution for Barnard’s star (source id = 4472832822427129472), using
T = 2017.5, ↵0 = 269.4481674047229�, �0 = +4.743738338140268�.

8
We adopt here the convention that the correction is positive when the event at the barycentre is later

than the time of observation at Gaia. The name ‘Roemer delay’ is sometimes used for the same quantity

but with the opposite sign.
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Figure 5: Column descriptions for the test data file lpcBS.fits.

Appendix D: Changing the reference point

Occasionally it is desirable to change the reference point (↵0, �0) for a set of epoch as-
trometry to some other point (↵1, �1) very nearby on the sky (within an arcmin or so;
cf. Sect. 2). A typical example could be a resolved binary, where the components have
separate sets of epoch astrometry, but where the user wants to make a joint solution for
the system. It is then necessary to transform the epoch astrometry of one component to
the reference point of the other component, or to transform both sets to a third reference
point. This appendix briefly explans how this can be done. Not only the epoch positions
(w, z) need to be transformed, but also the ancillary data, in particular ✓. To distinguish
the two data sets we use subscript 0 for the original data referring to (↵0, �0), as in w0

and ✓0, and subscript 1 for the transformed data referring to (↵1, �1), as in w1 and ✓1.

The new reference triad [p1 q1 r1 ] is immediately obtained in analogy with Eq. (15).

The observation times tobs and are of course unchanged by the transformation. The same
is in principle be the case for the barycentric epochs tB, but if the barycentric correction
�t is computed according to Eq. (17), this is not strictly true. If the change in reference
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Figure 6: A plot of the (a, d) coordinates for the test data in lpcBS.fits.

position is less than 1 arcmin, we have |r1�r0| < 3⇥10�4 and |�t1��t0| < 0.15 s, which
has a negligible impact on the calculations even in the most extreme cases of high proper
motions. We can therefore disregard this small discrepancy and transform �t consistently
with the parallax factors. This guarantees that the transformation is strictly reversible.

For a given epoch position (w0, z0) we have from Eq. (7) the o↵set coordinates relative to
the original reference point,

a0 = w0 sin ✓0 � z0 cos ✓0

d0 = w0 cos ✓0 + z0 sin ✓0

)
, (25)

and hence from Eq. (3) the coordinate direction of the observation,

c =
r0 + p0a0 + q0d0

(1 + a20 + d20)
1/2

. (26)

The coordinate direction is of course independent of the choice of reference point (hence it
has no subscript here), which immediately allows us to compute the new o↵set coordinates
in analogy with Eq. (2),

a1 =
p0
1c

r01c
, d1 =

q01c

r01c
. (27)

It can be noted that the result of Eq. (27) is invariant to an arbitrary scaling of the vector
c; thus, if c is only used for this calculation one can omit the normalisation in Eq. (26).
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To make the transformation to AL and AC we now need ✓1, the position angle of the scan
at the new reference point. This can be obtained from Eq. (16), provided that the SRS z
axis is known. Its direction in the reference triad [p0 q0 r0 ] is completely specified by ✓0
and ⇣0, the AC field angle of the reference point at the time of observation. Specifically,
we have

z = �p0 cos ⇣0 cos ✓0 + q0 cos ⇣0 sin ✓0 + r0 sin ⇣0 . (28)

We then have in analogy with Eq. (16)

✓1 = atan2(q01z,�p0
1z) , (29)

from which
w1 = a1 sin ✓1 + d1 cos ✓1

z1 = �a1 cos ✓1 + d1 sin ✓1

)
. (30)

To compute the new parallax factors in analogy with Eq. (17) we need the barycentric
position of Gaia, bG. From Eq. (17) we have

bG/A = �p0fa0 � q0fd0 + r0�t0/⌧A , (31)

where
fa0 = fw0 sin ✓0 � fz0 cos ✓0

fd0 = fw0 cos ✓0 + fz0 sin ✓0

)
(32)

are the parallax factors in (a0, d0) and ⌧A = A/c = 499.004783836156 s is the astronomical
unit in light-seconds. The transformed parallax factors in a1, d1, and the barycentric
correction, are now obtained in analogy with Eq. (17), i.e.

fa1 = �p0
1(bG/A) , fd1 = �q01(bG/A) , �t1 = r01(bG/A)⌧A , (33)

from which
fw1 = fa1 sin ✓1 + fd1 cos ✓1

fz1 = �fa1 cos ✓1 + fd1 sin ✓1

)
, (34)

Finally,
sin ⇣1 = z0r1 . (35)

The transformation of w, z, ⇣, ✓, fw, fz, and �t from one reference point to another
is strictly reversible: when transformed back to the original reference point, the original
values are recovered up to numerical rounding errors (Table 1).
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Table 1: A numerical example demonstrating the reversibility of the transformation in
Appendix D from one reference point to another. The example is the first observation of
Barnard’s star in the file lpcBS.fits. In the column ‘Transformed value’ the reference
point has been increased by 0.001 rad in each coordinate, i.e. almost 5 arcmin in total.
The last column shows that a back-transformation to the original reference point recovers
the original (w, z) and ancillary data to the full numerical precision, or about 10�8 mas.

Quantity Unit Original value Transformed value Back-transformed value

↵0 rad 4.7027576846772785 4.7037576846772788 4.7027576846772785
�0 rad +0.0827938528536318 +0.0837938528536318 +0.0827938528536318
⇣ rad +0.0037167717231132 +0.0035033228528330 +0.0037167717231132
✓ rad �2.2061999999999999 �2.2061117644403287 �2.2061999999999999
w mas +12705.438829000001 +300555.178744405974 +12705.438828997365
z mas +21227.942417999999 +65255.769314761019 +21227.942417996732
fw – �0.5642410000000000 �0.5636542974445808 �0.5642410000000000
fz – +0.7025840000000000 +0.7026714371690873 +0.7025839999999999
�t s �210.89541299999999 �211.21329584692054 �210.89541299999985
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Appendix E: An example using the epoch astrometry

In this Appendix we fit the astrometric parameters to the epoch astrometry for Barnard’s
star, as given in the file lpcBS.fits. We begin by recalling the “standard model” of
stellar kinematics, as defined for example by Eqs. (4)–(6) in [5]; this defines the precise
meaning of the astrometric parameters and allows us to calculate the epoch astrometry
as a function of time for a given set of parameters, as well as the partial derivatives
of the observables with respect to the parameters. The actual model fitting is then a
straight-forward application of the (slightly non-linear) least-squares method.

E.1. The standard model

The standard model of stellar kinematics assumes constant space velocity relative to the
Solar System Barycentre (SSB), but ignores light-time e↵ects beyond the Solar System.9

The motion is modelled in the Barycentric Celestial Reference System (BCRS), with TCB
as the time coordinate. The coordinate direction from Gaia to the star at the time of
observation tobs is

c(tobs) = hbT + (tB � T )v � bG(tobs)i , (36)

where the angular brackets h i signify vector normalisation, hxi = x|x|�1. T is the refer-
ence epoch for the astrometry, bT the barycentric vector to the star at the reference epoch,
v the space velocity of the star, bG(t) the Gaia ephemeris, and tB = t+ c0bG(tobs)c�1 the
barycentric time of the observation. From here on, we suppress the argument tobs to c
and bG, and introduce ⌧ = tB � T for brevity.

Given the arbitrary10 reference position (↵0, �0), we can express the three vectors bT , v,
and bG in terms of the reference triad [p0 q0 r0 ] as

bT = p0(p0
0bT ) + q0(q0

0bT ) + r0(r0
0bT ) ,

v = p0(p0
0v) + q0(q0

0v) + r0(r0
0v) ,

bG = p0(p0
0bG) + q0(q0

0bG) + r0(r0
0bG) ,

9
>=

>;
(37)

where the bracketed expressions are the projections of the vectors on the triad. Because
of the normalisation operator in Eq. (36) we can divide each of the equations in (37) by
any positive number and still get the same c. We choose to divide by b0 = r00bT , that is

9
Ignoring the (large and uncertain) light time |bT |c�1

from the star to the observer is normal practice

in astrometry. Over time intervals of a few decades this has negligible impact for the modelling of the

observations, but possibly not for their interpretation in terms of physical motions in our Galaxy. See [6]

for further discussion.
10
“Arbitrary” in the sense that the reference position, at least in principle, does not have to be anywhere

near the actual position of the star at any time, as long as r0
0bT > 0. In practice, the reference point must

be reasonably close to the observations for the subsequent definitions of parallax etc to make sense.

23



the barycentric distance to the star at the reference epoch projected in the direction of
the reference point.

At epoch T and relative to the reference point (↵0, �0), the astrometric parameters are
now defined as

a0 = p0
0bT /b0 , d0 = q00bT /b0 , $0 = A/b0 ,

µ↵⇤0 = p0
0v/b0 , µ�0 = q00v/b0 , µr0 = r00v/b0 .

)
(38)

It is seen that c is obtained by normalising the almost-unit vector

c̃ = p0(a0 + ⌧µ↵⇤0 + fa$0) + q0(a0 + ⌧µ�0 + fd$0) + r0(1 + ⌧µr0 + fr$0) , (39)

where

fa = �p0
0bG/A , fd = �q00bG/A , fr = �r00bG/A . (40)

Equation (2) then gives

a =
p0
0c̃

r00c̃
=

a0 + ⌧µ↵⇤0 + fa$0

1 + ⌧µr0 + fr$0
, d =

q00c̃

r00c̃
=

d0 + ⌧µ�0 + fd$0

1 + ⌧µr0 + fr$0
, (41)

from which (w, z) are obtained by means of Eq. (6).

In the above expressions some care must be exercised concerning the angular units, unless
radians are used throughout. It is convenient to use mas (or mas yr�1) for a, d, w, z,
as well as for the astrometric parameters a0, . . . , µr0, while ⌧ is expressed in (Julian)
years and fa, fd, and fr are dimensionless. In the denominator of Eq. (41) it is however
necessary to have ⌧µr0 and fr$0 in radians; to avoid any ambiguity, we introduce hereafter
the explicit conversion factor u when needed (see below).

As a side remark we note that the astrometric parameters in Eq. (38) are defined relative
to the reference position (↵0, �0); in particular a0 and d0 specify a small, but in general
non-zero, o↵set of the coordinate direction from the reference point at epoch T . This “dif-
ferential form” is very useful for fitting the kinematic model to the observations, because
it is very nearly linear in all six parameters. However, it is not the most convenient way to
specify the astrometric parameters, for example in a catalogue. The reason is that there
are eight quantities to specify (namely, the six astrometric parameters, plus the reference
position), although the model only has six degrees of freedom. The redundancy can how-
ever be removed by selecting the reference position such that a0 = d0 = 0, and regarding
the reference position ↵0, �0 as the first two astrometric parameters instead of a0 and d0.
Indeed, this is how the astrometric parameters in the Gaia Archive must be interpreted:
for example, the proper motion components are measured along the vectors p0 and q0
defined by the reference position given by the first two astrometric parameters. This has
a subtle e↵ect for the propagation of the uncertainties in proper motion (see p. 96 in [2]).
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To summarise, we have

w =
(a0 + ⌧µ↵⇤0) sin ✓ + (d0 + ⌧µ�0) cos ✓ + fw$0

D
,

z =
�(a0 + ⌧µ↵⇤0) cos ✓ + (d0 + ⌧µ�0) sin ✓ + fz$0

D
,

9
>>=

>>;
(42)

where

D = 1 + (⌧µr0 + fr$0)u , (43)

and u = ⇡/(180 ⇥ 60 ⇥ 60 ⇥ 1000) if mas are used. Equations (42) and (43) provide the
complete model of the observed quantities (w, z) in terms of the six astrometric parameters
a0, d0, $0, µ↵⇤0, µ�0, and µr0 = vr0$0/A. The remaining quantities ⌧ = tB � T , fa, fd,
fr, and ✓ are assumed to be known with zero uncertainty.

The partial derivatives of the observables w and z with respect to the six astrometric
parameters are readily obtained from the previous expressions; they are:

@w

@a0
=

sin ✓

D
,

@z

@a0
= �cos ✓

D
,

@w

@d0
=

cos ✓

D
,

@z

@d0
=

sin ✓

D
,

@w

@$0
=

fw � wfru

D
,

@z

@$0
=

fz � zfru

D
,

@w

@µ↵⇤0
=
⌧ sin ✓

D
,

@z

@µ↵⇤0
= �⌧ cos ✓

D
,

@w

@µ�0
=
⌧ cos ✓

D
,

@z

@µ�0
=
⌧ sin ✓

D
,

@w

@µr0
= �w⌧u

D
,

@z

@µr0
= �z⌧u

D
.

9
>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>;

(44)

E.2. Fitting the standard model to the epoch astrometry for Barnard’s star

The epoch astrometry in the file lpcBS.fits refer to the reference epoch T = 2017.5 and
reference position ↵0 = 269.4481674047229�, �0 = +4.743738338140268�. Thus

[p0 q0 r0 ] =
2

4
+0.9999536194300288 +0.0007964890580278 �0.0095981557585548
�0.0096311468052894 +0.0826954601059468 �0.9965283246797758
+0.0000000000000000 +0.9965745463752554 +0.0826992957464197

3

5 . (45)
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In the file, tB is given in OBMT revolutions (Fig. 5); for the conversion to ⌧ = tB in years
the following linear relation between is good to within ±0.03 s:

⌧ = (tB rev� 5370.125526)/1460.999980 . (46)

The file contains 493 observations with �2.363957589  ⌧  +2.184157454 yr. The
parallax factors fw and fz are directly obtained from the file; fr = ��t/⌧A, where �t is
the barycentric correction and ⌧A = A/c = 499.004783836156 s.

The least-squares fit must be iterated to handle possible outliers and to take care of the
non-linearities of the problem. Using only the AL observations (w) the overdetermined
system to solve is

@w

@x0 �x = w(obs) �w(calc)(x) , (47)

where x is the vector of astrometric parameters, w(obs) the observed AL coordinates
from the file, and w(calc)(x) the values calculated from Eq. (42). A natural starting
approximation would be x = 0. However, as seen from Eqs. (42)–(44), this will make
the partial derivatives with respect to µr0 strictly zero for all observations, leading to a
singular system. It is therefore recommended to make first a solution using only the five
first parameters in x, and enable the sixth parameter later.

For the given data we find that two observations (index 134 and 317) deviate strongly; for
the remaining m = 491 observations the unweighted 5-parameter solution is:

a0 = �0.015402± 0.051988 mas

d0 = +0.061399± 0.044729 mas

$0 = +547.281095± 0.067778 mas

µ↵⇤0 = �801.732552± 0.041531 mas yr�1

µ�0 = +10364.220005± 0.038377 mas yr�1

9
>>>>>>=

>>>>>>;

(48)

The uncertainties were estimated by scaling the inverse of the normal matrix by the unit
weight variance SSR/(m� 5) = 0.519185 mas2 (SSR = sum of squared residuals).

Taking the 5-parameter solution (with µr0 = 0) as a starting approximation for an un-
weighted 6-parameter solution, using the same 491 observations, yields

a0 = �0.146310± 0.015026 mas

d0 = �0.697899± 0.016470 mas

$0 = +546.910638± 0.020092 mas

µ↵⇤0 = �801.669022± 0.011951 mas yr�1

µ�0 = +10364.274847± 0.011039 mas yr�1

µr0 = �12990.755622± 176.526506 mas yr�1

9
>>>>>>>>>=

>>>>>>>>>;

(49)
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with SSR/(m� 6) = 0.042763 mas2. The result for µr0 corresponds to a radial velocity of

vr = Aµr0/$0 = �112.60± 1.53 km s�1 (50)

(the uncertainty estimate above takes into account the moderate correlation ⇢ = +0.250508
between the $0 and µr0). The e↵ect of the perspective acceleration is highly significant,
as shown both by the high signal-to-noise ratio ' 74 for µr0 and the reduction of the
RMS residual from 0.72 mas for the 5-parameter solution to 0.21 mas for the 6-parameter
solution.
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Table 2: A possible specification of input data for object processing based on astrometric
elementary observations (e.g. for an astrometric binary). Multiplicity is the total number
of times the data item appears for a given object. The flags could code the FOV index
and CCDs used in each FOV transit, as well as some quality or reliability information
for the observations. Single-precision reals (float) are used whenever there is no risk of
compromising accuracy at the 1 µas level. Assuming N = 80, the total amount of data
is about 4 kByte per object, or 4 TB for all 109 objects.
Notes: 1) No photometric data are included. 2) The reference points may possibly be
omitted, and taken from the astrometric source catalogue instead. 3) This concept is not
applicable to solar-system objects. 4) The data set would be increased by about a factor of
8–9 if some data (w, z,�w,�z) would be given for each CCD transit individually, instead
of averages over one field-of-view transit. In this case, information on the correlation
between the di↵erent CCD transits would have to added, too (probably just one quantity
per field-of-view transit).

Quantity Designation Type Multiplicity Bytes

Data given once per object:

identifier – long 1 8

reference point in RA ↵0 double 1 8

reference point in Dec �0 double 1 8

number of FOV transits N int 1 4

Data given once per FOV transit:

time (TCB referred to the SSB) tB long N 8N
flags – int N 4N
position angle of scan ✓ double N 8N
parallax factor AL fw float N 4N
parallax factor AC fz float N 4N
local coordinate AL of image centroid w double N 8N
local coordinate AC of image centroid z float N 4N
standard error AL �w float N 4N
standard error AC �z float N 4N

Total size = 48N + 28 bytes.
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Table 3: A possible specification of input data for object processing and 2-d imaging
based on samples in rectangular windows (e.g., for a partially resolved binary). The flags
could code the FOV index and CCDs used in each transit, as well as some quality or
reliability information for the observations. Assuming N = 80, M = 10 and window size
(I, L) = (6, 1) (faint stars), the total amount of data is about 45 kByte per object, or
45 TB for all 109 objects.
Notes: 1)–3) as for Table 2. 4) The sample sizes and shear terms may significantly change
over a field-of-view transit. Therefore they are given for each CCD transit separately.
5) The position angle of scan is given only once per field-of-view transit. It is a formal
quantity relating the local scan coordinates to the ICRS. Small changes of the actual
position angle of scan are of no relevance therefore. Still, in order to avoid any systematic
e↵ects, ✓ should be chosen as the actual position angle of scan at the mid-time of a field-
of-view transit, i.e. at the readout time for AF4. Similarly, the parallax factors are given
only once, since they remain constant over a minute of time, even for the closest stars.

Quantity Designation Type Multiplicity Bytes

Data given once per object:

identifier – long 1 8

reference point in RA ↵0 double 1 8

reference point in Dec �0 double 1 8

number of FOV transits N int 1 4

Data given once per FOV transit:

time (TCB referred to the SSB) tB long N 8N
flags – int N 4N
position angle of scan ✓ double N 8N
parallax factor AL fw float N 4N
parallax factor AC fz float N 4N
number of samples AL I int N 4N
number of samples AC L int N 4N
number of CCD transits M int N 4N

Data given once per CCD transit:

local coordinate AL of sample (0,0) w0 double NM 8NM
local coordinate AC of sample (0,0) z0 float NM 4NM
sample size AL �w float NM 4NM
sample size AC �z float NM 4NM
shear term AL cw float NM 4NM
shear term AC vz float NM 4NM
sample values Sil float NMIL 4NMIL

Total size = 4NMIL+ 28NM + 40N + 28 bytes.
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Table 4: A possible specification of input data for object processing and 2-d imaging
containing both astrometric elementary observations and window sample data. The flags
could code the FOV index and CCDs used in each transit, as well as some quality or
reliability information for the observations. Assuming N = 80, M = 10 and window size
(I, L) = (6, 1) (faint stars), the total amount of data is about 46 kByte per object, or
46 TB for all 109 objects.

Quantity Designation Type Multiplicity Bytes

Data given once per object:

identifier – long 1 8

reference point in RA ↵0 double 1 8

reference point in Dec �0 double 1 8

number of FOV transits N int 1 4

Data given once per FOV transit:

time t long N 8N
flags – int N 4N
position angle of scan ✓ double N 8N
parallax factor AL fw float N 4N
parallax factor AC fz float N 4N
local coordinate AL of image centroid w double N 8N
local coordinate AC of image centroid z float N 4N
standard error AL �w float N 4N
standard error AC �z float N 4N
number of samples AL I int N 4N
number of samples AC L int N 4N
number of CCD transits M int N 4N

Data given once per CCD transit:

local coordinate AL of sample (0,0) w0 double NM 8NM
local coordinate AC of sample (0,0) z0 float NM 4NM
sample size AL �w float NM 4NM
sample size AC �z float NM 4NM
shear term AL cw float NM 4NM
shear term AC vz float NM 4NM
sample values Sil float NMIL 4NMIL

Total size = 4NMIL+ 28NM + 60N + 28 bytes.
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