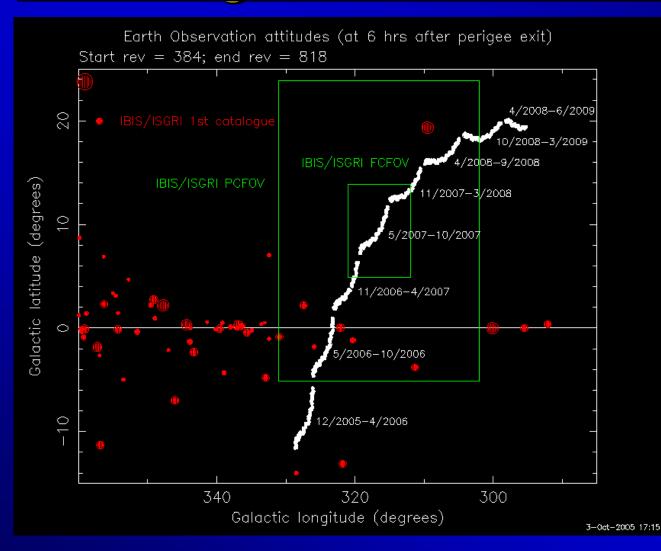


Earth observation:


planning at ISOC

Erik Kuulkers (ISOC @ ESAC/ESA, Spain)

Selecting the time and target

Decision at ISWT: 1) do it asap ⇒ with no observation constraints: ⇒ Jan 2006

2) Target =
earth position
@ 6 hrs > perigee
exit = ⊕_{6hrs}

<u>The long-term plan</u>

Integral Long-Term Observation Plan

	Time Interval	Source (*)	Proposal	Commonto (#1)
			pas said	Comments (**)
398				
	2006–Jan–15 to 2006–Jan–18	GPS quadrant 1/2	399821	ISWT proposal; SPI annealing
		Arp 220	320067	SPI annealing
399	2006–Jan–18 to 2006–Jan–21	GPS quadrant 1/2	399822	ISWT proposal; SPI annealing
		GPS quadrant 1/2	399823	ISWT proposal; SPI annealing
		Arp 220	320067	SPI annealing
400 3	2006-Jan-21 to 2006-Jan-24	GPS quadrant 1/2	399824	ISWT proposal; SPI annealing
		Arp 220	320067	SPI annealing
		Cas A / Tycho	320056	
401 3	2006-Jan-24 to 2006-Jan-27	Field_1	320108	
402 2	2006-Jan-27 to 2006-Jan-30	SN1006 / Cen X-4	329700/0003	Amalgamated
		Mid-Latitude North	320013	
403 3	2006–Jan–30 to 2006–Feb– 2	GPS quadrant 1/2	399825	ISWT proposal
		SN1006 / Cen X-4	329700/0003	Amalgamated
404 3	2006-Feb- 2 to 2006-Feb- 5	GPS quadrant 3/4	399814	ISWT proposal
		SN1006 / Cen X-4	329700/0003	Amalgamated
405	2006-Feb- 5 to 2006-Feb- 8	SN1006 / Cen X-4	329700/0003	Amalgamated
		Mid-Latitude North	320013	
406	2006-Feb- 8 to 2006-Feb-11	OMC FF		Calibration observation
		Galactic Bulge region	320109	Monitoring every revolution, 1 Hex dither
		SN1006 / Cen X-4	329700/0003	Amalgamated
407 3	2006-Feb-11 to 2006-Feb-14	GPS quadrant 1/2	399826	I S WT proposal
		Galactic Bulge region	320109	Monitoring every revolution, 1 Hex dither
		SN1006 / Cen X-4	329700/0003	Amalgamated

asap = after SPI annealing:

401, 402, 403, ...

But at expense of GO observations!

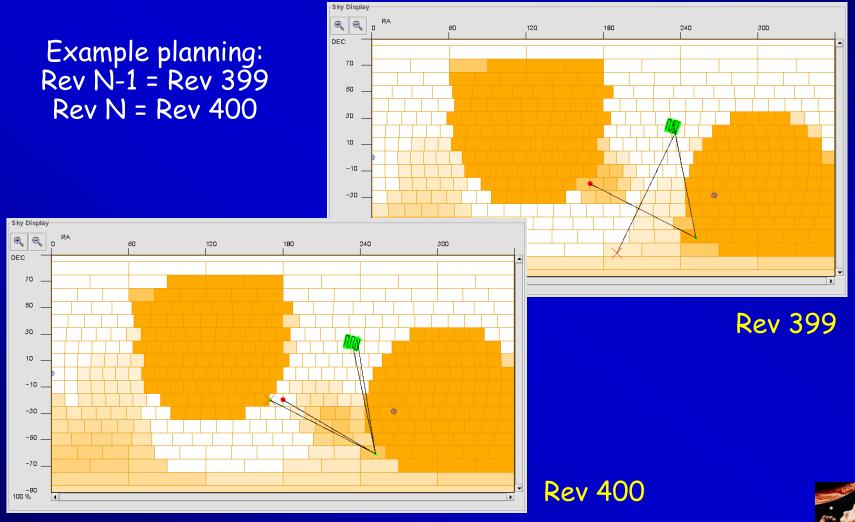
What to plan?

Target Earth = earth observation constraint!

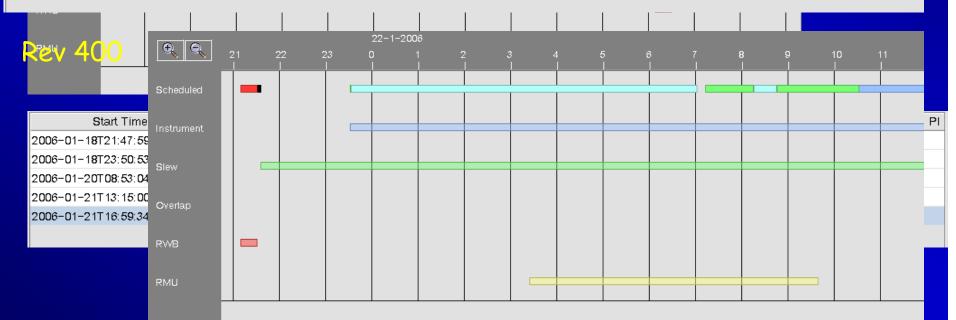
- \Rightarrow Manual interventions (mainly MOC): reduce to absolute minimum
- ⇒ Safety: if decision = no earth observation, then use pre-planned safe attitude (then no additional actions)
- Proposed sequence (to ensure proper commanding of instruments):
- 1) Point at $\mathcal{D}_{6hrs} \equiv$ "pre-earth" observation
- 2) Plan "earth" observation at safe attitude
- 3) Point at $\mathcal{O}_{6hrs} \equiv$ "post-earth" observation
- If slews from/to ⊕_{6hrs} to/from safe attitude taken out:
 ⇒ "earth" observation = earth observation

<u>What to plan - 2 ?</u>

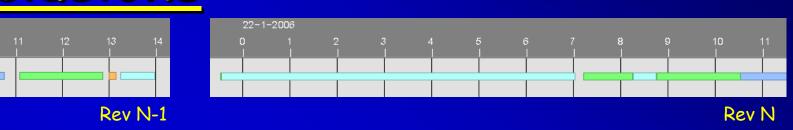
Planning constraints at ISOC:


- ⊕_{6hrs} ≠ safe perigee passage
 (note: in ISOC planning system; can NOT be changed)
- \Rightarrow "pre-earth" pointing NOT in rev N, but in N-1
- Slew from "earth" observation to "post-earth" pointing can ONLY start when ⊕_{6hrs} is unconstraint @ start of slew
 ⇒ "post-earth" observation starts later
- \rightarrow post-earth observation starts later
- Distance $\oplus_{6hrs} \Leftrightarrow$ safe attitude = large \Rightarrow RWB
- Safe perigee passage = (α, δ) of safe attitude

Planning results



<u>Planning results - 2</u>


	7 8 9 	0 10 11 I I	12 13 I I	14 15 I I	16 17 I I	18 	19 	²⁰ Rev	399
Start Time	Duration	Source	Ra	Dec	Dither	Start	End	Exp ID	PI
2006-01-21T21:32:40Z		Perigee Exit	11:20:00.00	-20:00:00.0					
2006-01-21T23:33:36Z	27000	Earth 1	170.000	-20.000	Staring	1	1	4000001	Public
2006-01-22T08:16:00Z	1800	Post earthpointing	251.860	-60.983	Staring	1	1	4000002	Public
2006-01-22T10:32:27Z	73348	Arp 220	233.738	23.503	5x5	62	83	4000003	Dudley
2006-01-23T08:04:29Z	90018	Arp 220	233.738	23.503	5x5	84	110	4000004	Dudley
2006-01-24T13:00:00Z	2652	Pre-earth pointing	251.723	-60.936	Staring	1	1	4000005	Public
2006-01-24T16:44:53Z		Perigee Entry	12:00:00.00	-20:00:00.0	Unknown strategy				

<u>Conclusions</u>

Rev N-1:

time = slew time from astronomical target to \oplus_{6hrs} + GSHO time + "pre-earth" pointing \cong t_{slew 1} + 1 hr

<u>Rev N</u>:

time = total earth observation + slew from safe attitude to \mathcal{D}_{6hrs} + "post-earth" pointing + slew time from \mathcal{D}_{6hrs} to astronomical target \cong 7.5 hr + 1 hr + 0.5 hr + $t_{slew,2}$ = 9 hr + $t_{slew,2}$ • Total time to be used for earth observation sequence \cong

10 hr + $t_{slew,1}$ + $t_{slew,2}$

Note: ${\rm t}_{{\rm slew},1}$ & ${\rm t}_{{\rm slew},2}$ can be minimized by choice of scheduling sequence of astronomical targets

